1
|
Castro R, Granja PL, Rodrigues J, Pêgo AP, Tomás H. Bioinspired hybrid DNA/dendrimer-based films with supramolecular chirality. J Mater Chem B 2025; 13:4671-4680. [PMID: 40130482 DOI: 10.1039/d4tb02761b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Bioinspired hybrid DNA/dendrimer films were obtained by heating long double-stranded DNA (dsDNA) above its melting temperature and, while in the denatured state, mixing it with poly(amidoamine) (PAMAM) dendrimers, followed by controlled cooling. The formation of these new types of films was found to be dependent on several parameters, including the initial heating temperature, pH, buffer composition, dendrimer generation, amine/phosphate (N/P) ratio, and cooling speed. In addition to the PAMAM dendrimers (generations 3, 4, and 5), films could also be produced with branched poly(ethylenimine) with a molecular weight of 25 kDa. The results indicated that these films were formed not only through electrostatic interactions established between the negatively charged DNA molecules and the positive dendrimers, as expected, but also through random rehybridization of the single-stranded DNA (ssDNA) during the cooling process. The resulting films are water-insoluble, transparent when thin, highly elastic when air-dried, exceptionally stable over extended periods, cytocompatible, and easily scalable. Notably, the slow cooling process allowed for the establishment of at least a partially ordered structure in the films, as revealed by circular dichroism, providing evidence of supramolecular chirality. It is envisioned that these films may have significant potential in biomedical applications, such as drug/gene delivery systems, platforms for cell-free DNA transcription and components in biosensors.
Collapse
Affiliation(s)
- Rita Castro
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Pedro L Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Ana Paula Pêgo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-343 Porto, Portugal
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
2
|
Xu L, Xu N, Wang L, Qian H, Li Y, Fang M, Xiang Z, Lin W, Zhang F, Shao Q, Bernards MT, Shi Y, He Y, Chen S. Spontaneously Restoring Specific Bioaffinity of RGD in Linear RGD-containing Peptides by Conjugation with Zwitterionic Dendrimers. Acta Biomater 2022; 148:61-72. [PMID: 35728789 DOI: 10.1016/j.actbio.2022.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/01/2022]
Abstract
Peptides are more versatile than small molecule drugs, but their specific bioaffinities are usually lower than their original native proteins because of the loss of preferred conformations. To overcome this key obstacle, we demonstrated a hydrogen bond-induced conformational constraint method to enhance the specific bioaffinities of peptides to achieve a high success rate by using linear RGD-containing peptides as a model of bioactive peptides. By performing molecular simulation, we found that the chemically immobilized linear CRGDS via cysteine (C) at the N-terminus on zwitterionic PAMAM G-5 can not only spontaneously restore the natural conformation of the RGD segment through the assistance of the dynamic hydrogen bond from serine (S) at the C-terminus of the peptide, but it can also narrow the distribution of all possible conformations. Consequently, the conjugates showed comparable or even better high affinity than native proteins without the use of conventional, labor-intensive, synthesis-based structure search methods to construct a binding conformation. In addition, the conjugates showed globular protein-like characteristics chemically, physically, and physiologically. They exhibited not only high efficacy and biosafety both in vitro and in vivo, but they also showed extremely high thermostability even upon boiling in a solution. This approach offers great design flexibility for reviving functional peptides without impairing their high specific affinity for their targets. STATEMENT OF SIGNIFICANCE: : In this work, we developed a swift approach to spontaneously restore the natural conformation of a linear peptide from a nature protein and thus enhance its specific bioaffinity instead of constructing a binding conformation by the labor-intensive, synthesis-based structure search method. In details, our new approach involves dynamically constraining the linear peptide on a zwitterionic PAMAM G-5 surface by a combination of chemical bonding at one terminus and dynamic hydrogen bonding at the other terminus of the linear peptide. The zwitterionic background offers abundant interaction sites for hydrogen bonding as well as resistance to nonspecific interactions. This approach fully restores the specific bioaffinity of RGD segments on a zwitterionic PAMAM G-5 through only one conjugation point at the C-terminus of the peptide. Moreover, the bioaffinity of all three types of RGD-containing peptides is successfully restored, which indicates the high rate of success of this approach in affinity restoring.
Collapse
Affiliation(s)
- Liangbo Xu
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| | - Nan Xu
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China; Institute of Zhejiang University-Quzhou, Quzhou, 324000 China
| | - Longgang Wang
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| | - Haofeng Qian
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| | - Yihan Li
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| | - Mandi Fang
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| | - Ziyin Xiang
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| | - Weifeng Lin
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| | - Fanxing Zhang
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington 40506, USA
| | - Matthew T Bernards
- Department of Chemical and Biological Engineering, University of Idaho, Moscow 83844, USA
| | - Yao Shi
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| | - Yi He
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China; Institute of Zhejiang University-Quzhou, Quzhou, 324000 China; Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Shengfu Chen
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China; Institute of Zhejiang University-Quzhou, Quzhou, 324000 China.
| |
Collapse
|
3
|
Takami T, Kanai S, Nishiyama Y, Lee HJ, Nagatani H. Transfer Mechanism of Anthracycline Antibiotics and Their Ion‐Association with PAMAM Dendrimer at Liquid|Liquid Interfaces. ChemElectroChem 2022. [DOI: 10.1002/celc.202200359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Toshinari Takami
- Kanazawa University Graduate School of Natural Science and Technology: Kanazawa Daigaku Daigakuin Shizen Kagaku Kenkyuka Division of Material Chemistry JAPAN
| | - Shohei Kanai
- Kanazawa University Graduate School of Natural Science and Technology: Kanazawa Daigaku Daigakuin Shizen Kagaku Kenkyuka Division of Material Chemistry JAPAN
| | - Yoshio Nishiyama
- Kanazawa University Graduate School of Natural Science and Technology: Kanazawa Daigaku Daigakuin Shizen Kagaku Kenkyuka Division of Material Chemistry JAPAN
| | - Hye Jin Lee
- Kyungpook National University Department of Chemistry and Green-Nano Materials Research Center KOREA, REPUBLIC OF
| | - Hirohisa Nagatani
- Kanazawa University Faculty of Chemistry, Institute of Science and Engineering Kakuma 920-1192 Kanazawa JAPAN
| |
Collapse
|
4
|
England RM, Sonzini S, Buttar D, Treacher KE, Ashford MB. Investigating the properties of l-lysine dendrimers through physico-chemical characterisation techniques and atomistic molecular dynamics simulations. Polym Chem 2022; 13:2626-2636. [DOI: 10.1039/d2py00080f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Poly(l-lysine) dendrimers up to generation 6 have been analysed by SEC, Taylor dispersion analysis and atomistic molecular dynamics simulations to determine their properties, in what could be considered an understudied dendrimer series.
Collapse
Affiliation(s)
- R. M. England
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - S. Sonzini
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - D. Buttar
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - K. E. Treacher
- New Modalities Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK
| | - M. B. Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| |
Collapse
|
5
|
Forgács A, Papp V, Paul G, Marchese L, Len A, Dudás Z, Fábián I, Gurikov P, Kalmár J. Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2997-3010. [PMID: 33401895 DOI: 10.1021/acsami.0c17012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The most relevant properties of polysaccharide aerogels in practical applications are determined by their microstructures. Hydration has a dominant role in altering the microstructures of these hydrophilic porous materials. To understand the hydration induced structural changes of monolithic Ca-alginate aerogel, produced by drying fully cross-linked gels with supercritical CO2, the aerogel was gradually hydrated and characterized at different states of hydration by small-angle neutron scattering (SANS), liquid-state nuclear magnetic resonance (NMR) spectroscopy, and magic angle spinning (MAS) NMR spectroscopy. First, the incorporation of structural water and the formation of an extensive hydration sphere mobilize the Ca-alginate macromolecules and induce the rearrangement of the dry-state tertiary and quaternary structures. The primary fibrils of the original aerogel backbone form hydrated fibers and fascicles, resulting in the significant increase of pore size, the smoothing of the nanostructured surface, and the increase of the fractal dimension of the matrix. Because of the formation of these new superstructures in the hydrated backbone, the stiffness and the compressive strength of the aerogel significantly increase compared to its dry-state properties. Further elevation of the water content of the aerogel results in a critical hydration state. The Ca-alginate fibers of the backbone disintegrate into well-hydrated chains, which eventually form a quasi-homogeneous hydrogel-like network. Consequently, the porous structure collapses and the well-defined solid backbone ceases to exist. Even in this hydrogel-like state, the macroscopic integrity of the Ca-alginate monolith is intact. The postulated mechanism accounts for the modification of the macroscopic properties of Ca-alginate aerogel in relation to both humid and aqueous environments.
Collapse
Affiliation(s)
- Attila Forgács
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Vanda Papp
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Geo Paul
- Department of Science and Technological Innovation, Universitá del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Leonardo Marchese
- Department of Science and Technological Innovation, Universitá del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Adél Len
- Neutron Spectroscopy Department, Centre for Energy Research, Konkoly-Thege Miklós út 29-33, Budapest H-1121, Hungary
| | - Zoltán Dudás
- Neutron Spectroscopy Department, Centre for Energy Research, Konkoly-Thege Miklós út 29-33, Budapest H-1121, Hungary
| | - István Fábián
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Pavel Gurikov
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - József Kalmár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, Egyetem tér 1, Debrecen H-4032, Hungary
| |
Collapse
|
6
|
Song XY, Chen K, Tian WD. PAMAM dendrimer in a phosphate solution: An atomistic simulation study. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Gelatin content governs hydration induced structural changes in silica-gelatin hybrid aerogels - Implications in drug delivery. Acta Biomater 2020; 105:131-145. [PMID: 31953196 DOI: 10.1016/j.actbio.2020.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 12/26/2022]
Abstract
Silica-gelatin hybrid aerogels of varying gelatin content (from 4 wt.% to 24 wt.%) can be conveniently impregnated with hydrophobic active agents (e.g. ibuprofen, ketoprofen) in supercritical CO2 and used as drug delivery systems. Contrast variation neutron scattering (SANS) experiments show the molecular level hybridization of the silica and the gelatin components of the aerogel carriers. The active agents are amorphous, and homogeneously dispersed in these porous, hybrid matrices. Importantly, both fast and retarded drug release can be achieved with silica-gelatin hybrid aerogels, and the kinetics of drug release is governed by the gelatin content of the carrier. In this paper, for the first time, a molecular level explanation is given for the strong correlation between the composition and the functionality of a family of aerogel based drug delivery systems. Characterization of the wet aerogels by SANS and by NMR diffusiometry, cryoporometry and relaxometry revealed that the different hydration mechanisms of the aerogels are responsible for the broad spectrum of release kinetics. Low-gelatin (4-11 wt.%) aerogels retain their open-porous structure in water, thus rapid matrix erosion dictates fast drug release from these carriers. In contrast to this, wet aerogels of high gelatin content (18-24 wt.%) show well pronounced hydrogel-like characteristics, and a wide gradual transition zone forms in the solid-liquid interface. The extensive swelling of the high-gelatin hybrid backbone results in the collapse of the open porous structure, that limits mass transport towards the release medium, resulting in slower, diffusion controlled drug release. STATEMENT OF SIGNIFICANCE: Developing new drug delivery systems is a key aspect of pharmaceutical research. Supercritically dried mesoporous aerogels are ideal carriers for small molecular weight drugs due to their open porous structures and large specific surface areas. Hybrid silica-gelatin aerogels can display both fast and retarded drug release properties based on the gelatin contents of their backbones. The structural characterization of the aerogels by SANS and by NMR diffusiometry, cryoporometry and relaxometry revealed that the different hydration mechanisms of the hybrid backbones are responsible for the broad spectrum of release kinetics. The molecular level understanding of the functionality of these hybrid inorganic-biopolymer drug delivery systems facilitates the realization of quality-by-design in this research field.
Collapse
|
8
|
Ma T, Yang P, Parris JM, Csupász T, Li MX, Bányai I, Tóth I, Lin Z, Kortz U. Indium in Polyoxopalladate(II) Chemistry: Synthesis of All-Acetate-Capped [InPd 12O 8(OAc) 16] 5- and Controlled Transformation to Phosphate-Capped Double-Cube and Monocube. Inorg Chem 2019; 58:15864-15871. [PMID: 31725279 DOI: 10.1021/acs.inorgchem.9b02282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have prepared the indium(III)-centered, all-acetate-capped polyoxopalladate(II) nanocube [InPd12O8(OAc)16]5- (InPd12Ac16), which can be further used as precursor to form the phosphate-capped (i) double-cube [In2Pd23O17(OH)(PO4)12(PO3OH)]21- (In2Pd23P13) and (ii) monocube [InPd12O8(PO4)8]13- (InPd12P8). All three novel polyoxopalladates (POPs) were synthesized using conventional one-pot techniques in aqueous solution and characterized in the solid state (single-crystal XRD, IR, elemental analysis), in solution (115In, 31P, and 13C NMR), and in the gas phase (ESI-MS).
Collapse
Affiliation(s)
- Tian Ma
- Department of Life Sciences and Chemistry , Jacobs University , Campus Ring 1 , 28759 Bremen , Germany
| | - Peng Yang
- Department of Life Sciences and Chemistry , Jacobs University , Campus Ring 1 , 28759 Bremen , Germany
| | - Jaclyn M Parris
- Department of Life Sciences and Chemistry , Jacobs University , Campus Ring 1 , 28759 Bremen , Germany
| | - Tibor Csupász
- Department of Inorganic and Analytical Chemistry and Department of Physical Chemistry , University of Debrecen , Egyetem tér 1 , 4032 Debrecen , Hungary
| | - Ming-Xing Li
- Department of Chemistry, College of Sciences , Shanghai University , Shanghai 200444 , P.R. China
| | - István Bányai
- Department of Inorganic and Analytical Chemistry and Department of Physical Chemistry , University of Debrecen , Egyetem tér 1 , 4032 Debrecen , Hungary
| | - Imre Tóth
- Department of Inorganic and Analytical Chemistry and Department of Physical Chemistry , University of Debrecen , Egyetem tér 1 , 4032 Debrecen , Hungary
| | - Zhengguo Lin
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , P.R. China
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry , Jacobs University , Campus Ring 1 , 28759 Bremen , Germany
| |
Collapse
|