1
|
Harris BS, Bejagam KK, Baer MD. Development of a Systematic and Extensible Force Field for Peptoids (STEPs). J Phys Chem B 2023; 127:6573-6584. [PMID: 37462325 DOI: 10.1021/acs.jpcb.3c01424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Peptoids (N-substituted glycines) are a class of biomimetic polymers that have attracted significant attention due to their accessible synthesis and enzymatic and thermal stability relative to their naturally occurring counterparts (polypeptides). While these polymers provide the promise of more robust functional materials via hierarchical approaches, they present a new challenge for computational structure prediction for material design. The reliability of calculations hinges on the accuracy of interactions represented in the force field used to model peptoids. For proteins, structure prediction based on sequence and de novo design has made dramatic progress in recent years; however, these models are not readily transferable for peptoids. Current efforts to develop and implement peptoid-specific force fields are spread out, leading to replicated efforts and a fragmented collection of parameterized sidechains. Here, we developed a peptoid-specific force field containing 70 different side chains, using GAFF2 as starting point. The new model is validated based on the generation of Ramachandran-like plots from DFT optimization compared against force field reproduced potential energy and free energy surfaces as well as the reproduction of equilibrium cis/trans values for some residues experimentally known to form helical structures. Equilibrium cis/trans distributions (Kct) are estimated for all parameterized residues to identify which residues have an intrinsic propensity for cis or trans states in the monomeric state.
Collapse
Affiliation(s)
- Bradley S Harris
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Karteek K Bejagam
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Marcel D Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
2
|
Compensation relationship in Thermodynamics of solvation and vaporization: features and applications. II. Hydrogen-bonded systems. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
3
|
Jiang N, Zhang D. Solution Self-Assembly of Coil-Crystalline Diblock Copolypeptoids Bearing Alkyl Side Chains. Polymers (Basel) 2021; 13:3131. [PMID: 34578031 PMCID: PMC8473287 DOI: 10.3390/polym13183131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Polypeptoids, a class of synthetic peptidomimetic polymers, have attracted increasing attention due to their potential for biotechnological applications, such as drug/gene delivery, sensing and molecular recognition. Recent investigations on the solution self-assembly of amphiphilic block copolypeptoids highlighted their capability to form a variety of nanostructures with tailorable morphologies and functionalities. Here, we review our recent findings on the solutions self-assembly of coil-crystalline diblock copolypeptoids bearing alkyl side chains. We highlight the solution self-assembly pathways of these polypeptoid block copolymers and show how molecular packing and crystallization of these building blocks affect the self-assembly behavior, resulting in one-dimensional (1D), two-dimensional (2D) and multidimensional hierarchical polymeric nanostructures in solution.
Collapse
Affiliation(s)
- Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Donghui Zhang
- Macromolecular Studies Group, Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
4
|
Reese HR, Shanahan CC, Proulx C, Menegatti S. Peptide science: A "rule model" for new generations of peptidomimetics. Acta Biomater 2020; 102:35-74. [PMID: 31698048 DOI: 10.1016/j.actbio.2019.10.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Peptides have been heavily investigated for their biocompatible and bioactive properties. Though a wide array of functionalities can be introduced by varying the amino acid sequence or by structural constraints, properties such as proteolytic stability, catalytic activity, and phase behavior in solution are difficult or impossible to impart upon naturally occurring α-L-peptides. To this end, sequence-controlled peptidomimetics exhibit new folds, morphologies, and chemical modifications that create new structures and functions. The study of these new classes of polymers, especially α-peptoids, has been highly influenced by the analysis, computational, and design techniques developed for peptides. This review examines techniques to determine primary, secondary, and tertiary structure of peptides, and how they have been adapted to investigate peptoid structure. Computational models developed for peptides have been modified to predict the morphologies of peptoids and have increased in accuracy in recent years. The combination of in vitro and in silico techniques have led to secondary and tertiary structure design principles that mirror those for peptides. We then examine several important developments in peptoid applications inspired by peptides such as pharmaceuticals, catalysis, and protein-binding. A brief survey of alternative backbone structures and research investigating these peptidomimetics shows how the advancement of peptide and peptoid science has influenced the growth of numerous fields of study. As peptide, peptoid, and other peptidomimetic studies continue to advance, we will expect to see higher throughput structural analyses, greater computational accuracy and functionality, and wider application space that can improve human health, solve environmental challenges, and meet industrial needs. STATEMENT OF SIGNIFICANCE: Many historical, chemical, and functional relations draw a thread connecting peptides to their recent cognates, the "peptidomimetics". This review presents a comprehensive survey of this field by highlighting the width and relevance of these familial connections. In the first section, we examine the experimental and computational techniques originally developed for peptides and their morphing into a broader analytical and predictive toolbox. The second section presents an excursus of the structures and properties of prominent peptidomimetics, and how the expansion of the chemical and structural diversity has returned new exciting properties. The third section presents an overview of technological applications and new families of peptidomimetics. As the field grows, new compounds emerge with clear potential in medicine and advanced manufacturing.
Collapse
|
5
|
Wei J, Sun J, Yang X, Ji S, Wei Y, Li Z. Self-crosslinking assemblies with tunable nanostructures from photoresponsive polypeptoid-based block copolymers. Polym Chem 2020. [DOI: 10.1039/c9py00385a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of reversible crosslinking assemblies with tunable morphologies are obtained from a new family of photoresponsive polypeptoid-based diblock copolymers.
Collapse
Affiliation(s)
- Jirui Wei
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Jing Sun
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xu Yang
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Sifan Ji
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Yuhan Wei
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
6
|
Liu M, Yin L, Zhang S, Zhang Z, Zhang W, Zhu X. Design and Synthesis of a Cyclic Double-Grafted Polymer Using Active Ester Chemistry and Click Chemistry via A "Grafting onto" Method. Polymers (Basel) 2019; 11:E240. [PMID: 30960224 PMCID: PMC6419024 DOI: 10.3390/polym11020240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/12/2023] Open
Abstract
Combing active ester chemistry and click chemistry, a cyclic double-grafted polymer was successfully demonstrated via a "grafting onto" method. Using active ester chemistry as post-functionalized modification approach, cyclic backbone (c-P2) was synthesized by reacting propargyl amine with cyclic precursor (poly(pentafluorophenyl 4-vinylbenzoate), c-PPF4VB6.5k). Hydroxyl-containing polymer double-chain (l-PS-PhOH) was prepared by reacting azide-functionalized polystyrene (l-PSN₃) with 3,5-bis(propynyloxy)phenyl methanol, and further modified by azide group to generate azide-containing polymer double-chain (l-PS-PhN₃). The cyclic backbone (c-P2) was then coupled with azide-containing polymer double-chain (l-PS-PhN₃) via CuAAC reaction to construct a novel cyclic double-grafted polymer (c-P2-g-Ph-PS). This research realized diversity and complexity of side chains on cyclic-grafted polymers, and this cyclic double-grafted polymer (c-P2-g-Ph-PS) still exhibited narrow molecular weight distribution (Mw/Mn < 1.10).
Collapse
Affiliation(s)
- Meng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Lu Yin
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Shuangshuang Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
- Global Institute of Software Technology, No 5. Qingshan Road, Suzhou National Hi-Tech District, Suzhou 215163, China.
| |
Collapse
|
7
|
Xing C, Shi Z, Tian J, Sun J, Li Z. Charge-Determined LCST/UCST Behavior in Ionic Polypeptoids. Biomacromolecules 2018; 19:2109-2116. [DOI: 10.1021/acs.biomac.8b00240] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chao Xing
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhekun Shi
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jiliang Tian
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jing Sun
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
8
|
Zhang S, Tezuka Y, Zhang Z, Li N, Zhang W, Zhu X. Recent advances in the construction of cyclic grafted polymers and their potential applications. Polym Chem 2018. [DOI: 10.1039/c7py01544e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three main strategies used for the construction of cyclic grafted polymers, “grafting through”, “grafting onto”, and “grafting from”, are summarized.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yasuyuki Tezuka
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Na Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
9
|
Chan BA, Xuan S, Li A, Simpson JM, Sternhagen GL, Yu T, Darvish OA, Jiang N, Zhang D. Polypeptoid polymers: Synthesis, characterization, and properties. Biopolymers 2017; 109. [DOI: 10.1002/bip.23070] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Brandon A. Chan
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| | - Sunting Xuan
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| | - Ang Li
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| | - Jessica M. Simpson
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| | - Garrett L. Sternhagen
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| | - Tianyi Yu
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| | - Omead A. Darvish
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| | - Naisheng Jiang
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| | - Donghui Zhang
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| |
Collapse
|