1
|
Ruan J, Yang J, Wang X, Liang C, Li L, Zeng Y, Wang J, Li Y, Huang W, Chen C. Heteroaggregation kinetics of oppositely charged nanoplastics in aquatic environments: Effects of particle ratio, solution chemistry, and interaction sequence. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134857. [PMID: 38876017 DOI: 10.1016/j.jhazmat.2024.134857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Interactions between positively charged amino-modified (APS) and negatively charged bare (BPS) polystyrene nanoplastics may cause heteroaggregation in aquatic environments. This study investigated the effects of particle concentration ratio, solution chemistry [electrolytes, pH, and natural organic matter (NOM)], and interaction sequence on their heteroaggregation kinetics. In the absence of electrolytes and NOM, the APS/BPS ratio for attaining maximum heteroaggregation rate (khetero) increased from APS/BPS= 3/7 to APS/BPS= 1/1 as pH increased from 4 to 10, indicating that electrostatic interactions dominated heteroaggregation. In the absence of NOM, khetero ranked APS/BPS= 2/3 > APS/BPS= 1/1 > APS/BPS= 3/2. Colloidal stability decreased linearly as pH increased from 4 to 8 at APS/BPS= 1/1, while diffusion-limited heteroaggregation persisted at pH 10. In NaCl solution, humic acid (HA) retarded heteroaggregation more effectively than sodium alginate (SA) via steric hindrance and weakening electrostatic interactions, following the modified Derjaguin-Landau-Verwey-Overbeek (MDLVO) theory. Compared with simultaneous interactions among APS, BPS, NaCl, and NOM, the NOM retardation effects on heteroaggregation weakened if delaying its interaction with others. In CaCl2 solution, the effects of NOM on heteroaggregation depended on counterbalance among charge screening, steric hindrance, and calcium bridging. These findings highlight the important role of heteroaggregation between oppositely charged nanoplastics on their fate and transport in aquatic environments.
Collapse
Affiliation(s)
- Jiahui Ruan
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Jiahui Yang
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xingyan Wang
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Cuihua Liang
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Lihua Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yaqi Zeng
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Junhua Wang
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
2
|
Takács D, Szabó T, Jamnik A, Tomšič M, Szilágyi I. Colloidal Interactions of Microplastic Particles with Anionic Clays in Electrolyte Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12835-12844. [PMID: 37647144 PMCID: PMC10501195 DOI: 10.1021/acs.langmuir.3c01700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Homoaggregation of polystyrene microplastics (MPs) and heteroaggregation of MPs with anionic clay minerals, namely, layered double hydroxide (LDH), in different salt (NaCl, CaCl2, and Na2SO4) solutions were systematically investigated using light scattering techniques. The salt type and ionic strength had significant effects on the stability of both MPs and LDH particles individually and the results could be explained by DLVO theory and the Schulze-Hardy rule. However, once stable colloidal dispersions of the individual particles were mixed, heteroaggregation occurred between the oppositely charged MPs and LDH, which was also confirmed by transmission electron microscopy and X-ray scattering. Adsorption of the LDH particles resulted in neutralization and reversal of MPs surface charge at appropriate LDH doses. Once LDH adsorption neutralized the negative charges of the MP spheres, rapid aggregation was observed in the dispersions, whereas stable samples formed at high and low LDH concentrations. The governing interparticle interactions included repulsive electrical double-layer forces, as well as van der Waals and patch-charge attractions, the strength of which depended on the mass ratio of the interacting particles and the composition of the aqueous solvent. Our results shed light on the colloidal behavior of MPs in a complex aquatic environment and, in the long term, are also useful for developing LDH-based approaches for water remediation to remove contamination with MP particles.
Collapse
Affiliation(s)
- Dóra Takács
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Centre, University of Szeged, Rerrich Bela ter 1, H-6720 Szeged, Hungary
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Bela ter 1, H-6720 Szeged, Hungary
| | - Tamás Szabó
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Bela ter 1, H-6720 Szeged, Hungary
| | - Andrej Jamnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, SI-1000 Ljubljana, Slovenia
| | - Matija Tomšič
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, SI-1000 Ljubljana, Slovenia
| | - István Szilágyi
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Centre, University of Szeged, Rerrich Bela ter 1, H-6720 Szeged, Hungary
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Bela ter 1, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Alsharif N, Viczián D, Szcześ A, Szilagyi I. Formulation of Antioxidant Composites by Controlled Heteroaggregation of Cerium Oxide and Manganese Oxide Nanozymes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:17201-17212. [PMID: 37674655 PMCID: PMC10478773 DOI: 10.1021/acs.jpcc.3c03964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Indexed: 09/08/2023]
Abstract
Antioxidant composites based on nanozymes [manganese oxide microflakes (MnO2 MFs) and cerium oxide nanoparticles (CeO2 NPs)] were formulated by controlled heteroaggregation. The interparticle attraction via electrostatic forces was systematically tuned with surface functionalization by the poly(diallyldimethyl chloride) (PDADMAC) polyelectrolyte. The PDADMAC-coated MnO2 MFs (PMn) were heteroaggregated with oppositely charged CeO2 NPs to generate the Ce-PMn composite, while the PDADMAC-functionalized CeO2 NPs (PCe) were immobilized onto bare MnO2 MFs, resulting in the Mn-PCe composite. Both the adsorption of PDADMAC and the self-assembly of oppositely charged particles resulted in charge neutralization and charge reversal at appropriately high doses. The interparticle force regimes, the aggregation states, and the physicochemical properties of the relevant dispersions were also highly dependent on the dose of PDADMAC, as well as that of PDADMAC-functionalized metal oxides (PMO) enabling the fine-tuning and control of colloidal stability. The individual enzyme-like activity of either metal oxide was not compromised by PDADMAC adsorption and/or heteroaggregation, leading to the formation of broad-spectrum antioxidant composites exhibiting multiple enzyme-like activities such as superoxide dismutase, oxidase, and peroxidase-type functions. The low cost and ease of preparation, as well as controllable colloidal properties render such composites potential enzyme mimicking agents in various industrial fields, where processable antioxidant systems are needed.
Collapse
Affiliation(s)
- Nizar
B. Alsharif
- MTA-SZTE
Lendület Biocolloids Research Group, Department of Physical
Chemistry and Materials Science, Interdisciplinary Research Center, University of Szeged, H-6720 Szeged, Hungary
| | - Dániel Viczián
- MTA-SZTE
Lendület Biocolloids Research Group, Department of Physical
Chemistry and Materials Science, Interdisciplinary Research Center, University of Szeged, H-6720 Szeged, Hungary
| | - Aleksandra Szcześ
- Department
of Interfacial Phenomena, Institute of Chemical Sciences, Faculty
of Chemistry, Maria Curie-Skłodowska
University, PL-20031 Lublin, Poland
| | - Istvan Szilagyi
- MTA-SZTE
Lendület Biocolloids Research Group, Department of Physical
Chemistry and Materials Science, Interdisciplinary Research Center, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
4
|
Gao J, Sugimoto T, Kobayashi M. Effects of ionic valence on aggregation kinetics of colloidal particles with and without a mixing flow. J Colloid Interface Sci 2023; 638:733-742. [PMID: 36780852 DOI: 10.1016/j.jcis.2023.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
HYPOTHESIS The classical Schulze-Hardy rule states that the critical coagulation concentration (CCC) of colloidal particles is inversely proportional to the counter-ionic valence at powers ranging from 2 to 6. However, the inverse Schulze-Hardy rule has recently been proposed, suggesting that the CCC can also be inversely proportional to the co-ionic valence. Previous studies on these rules did not consider the effect of flow on aggregation kinetics and the CCC. This study aims to investigate the effect of multivalent counter-ions and co-ions on aggregation kinetics and the CCCs in systems with and without a mixing flow. EXPERIMENTS We measured the aggregation rate coefficients of polystyrene sulfate latex particles as a function of the salt concentration with different ionic species. Furthermore, we analyzed these measurements using theoretical models based on hydrodynamic pair-diffusion in a random flow and trajectory analysis in two steady flows. The analysis was conducted using zeta potentials determined through electrophoretic measurements. FINDINGS Although the trajectory analysis underestimates the CCCs, the hydrodynamic pair-diffusion model can capture the shift of critical coagulation concentrations in the mixing flow to higher values than those in Brownian aggregation and also shows a better agreement with the experimental results. This result suggests that combining random flow and Brownian diffusion is crucial for developing a consistent framework for predicting both Brownian aggregation and aggregation in a mixing flow.
Collapse
Affiliation(s)
- Jiahui Gao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takuya Sugimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Motoyoshi Kobayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
5
|
Tiwari E, Singh N, Khandelwal N, Ganie ZA, Choudhary A, Monikh FA, Darbha GK. Impact of nanoplastic debris on the stability and transport of metal oxide nanoparticles: role of varying soil solution chemistry. CHEMOSPHERE 2022; 308:136091. [PMID: 36002060 DOI: 10.1016/j.chemosphere.2022.136091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The release of metal-based nanoparticles (MNPs) and nanoplastic debris (NPDs) has become ubiquitous in the natural ecosystem. Interaction between MNPs and NPDs may alter their fate and transport in the sub-surface environment and have not been addressed so far. Therefore, the present study has explored the role of NPDs on the stability and mobility of extensively used MNPs, i.e., CuO nanoparticles (NPs) under varying soil solutions (SS) chemistry. In the absence of NPDs, a very high aggregation of CuO NPs observed in SS extracted from black, lateritic, and red soils, which can be correlated with ionic strength (IS) and type of ionic species. The sedimentation rate (ksed(1/h)) for CuO NPs was >0.5 h-1 in the case of these SS. Interestingly, the stability and sedimentation behavior of CuO NPs varied significantly in the presence of NPDs. The ksed for CuO NPs decreased to half and found <0.25 h-1 in the presence of NPDs in all SS. C/C0 values in breakthrough curves increased drastically (black < alluvial < laterite < red) in presence of NPDs. Results suggest that the release of NPDs in the terrestrial ecosystem is a potential threat leading to increased mobility of MNPs in the environment.
Collapse
Affiliation(s)
- Ekta Tiwari
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India; Natural Resources Management & Environmental Sciences, College of Agriculture, Food & Environmental Sciences, California Polytechnic State University, CA, 93401, USA
| | - Nisha Singh
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India; Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Nitin Khandelwal
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Zahid Ahmad Ganie
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Aniket Choudhary
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Fazel Abdolahpur Monikh
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu, FI-80101, Finland
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
6
|
Kim MJ, Herchenova Y, Chung J, Na SH, Kim EJ. Thermodynamic investigation of nanoplastic aggregation in aquatic environments. WATER RESEARCH 2022; 226:119286. [PMID: 36323211 DOI: 10.1016/j.watres.2022.119286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
In this study, the aggregation behavior of polystyrene nanoplastics (PS NPs) in the absence or presence of oppositely charged particulate matters is systematically investigated for a wide range of electrolyte conditions. Herein, we used isothermal titration calorimetry combined with time-resolved dynamic light scattering to provide kinetic and thermodynamic insights into the NP aggregation. The thermodynamic profiles of homoaggregation and heteroaggregation were fit using an independent site and two independent sites models, respectively, demonstrating different interaction modes of both aggregation processes. We found that the contribution of solvation entropy was significant and variable in most cases, and this thermodynamic parameter was a large determinant of the thermodynamics of NP aggregation. Furthermore, the stability of PS NPs in natural water matrices was found to be correlated with ionic strength and the content of natural colloids (e.g., metal oxides and clay particles). These results point to the importance of considering the role of thermodynamic variables when studying the fate of NPs within various environmental conditions.
Collapse
Affiliation(s)
- Min-Ji Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Yuliia Herchenova
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, South Korea
| | - Jaeshik Chung
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, South Korea
| | - Sang-Heon Na
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, South Korea
| | - Eun-Ju Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, South Korea.
| |
Collapse
|
7
|
Aggregation and charging of natural allophane particles in the presence of oxyanions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Sugimoto T, Adachi Y, Kobayashi M. Heteroaggregation rate coefficients between oppositely charged particles in a mixing flow: Effect of surface charge density and salt concentration. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Li M, Kobayashi M. The aggregation and charging of natural clay allophane: Critical coagulation ionic strength in the presence of multivalent counter-ions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Alsharif NB, Muráth S, Katana B, Szilagyi I. Composite materials based on heteroaggregated particles: Fundamentals and applications. Adv Colloid Interface Sci 2021; 294:102456. [PMID: 34107320 DOI: 10.1016/j.cis.2021.102456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023]
Abstract
Homoaggregation of dispersed particles, i.e., aggregation of particles of the same shape, charge, size, and composition, is a well-studied field and various theoretical and experimental approaches exist to understand the major phenomena involved in such processes. Besides, heteroaggregation of particles, i.e., aggregation of particles of different shape, charge, size, or composition, has attracted widespread interest due to its relevance in various biomedical, industrial, and environmental systems. For instance, heteroaggregation of plastic contaminant particles with naturally occurring solid materials in waters (e.g., clays, silica and organic polymers) plays an important role in the decontamination technologies. Moreover, nanofabrication processes involving heteroaggregation of particles to prepare novel composite materials are widely implemented in fundamental science and in more applied disciplines. In such procedures, stable particle dispersions are mixed and the desired structure forms owing to the presence of interparticle forces of various origins, which can be tuned by performing appropriate surface functionalization as well as altering the experimental conditions. These composites are widely used in different fields from sensing through catalysis to biomedical delivery. The present review summarizes the recent progresses in the field including new findings regarding the basic principles in particle heteroaggregation, preparation strategies of heteroaggregated structures of different morphology, and the application of the obtained hybrid composites. Such information will be very helpful to those involved in the design of novel composites consisting of different nano or colloidal particles.
Collapse
|
11
|
Lugoloobi I, Maniriho H, Jia L, Namulinda T, Shi X, Zhao Y. Cellulose nanocrystals in cancer diagnostics and treatment. J Control Release 2021; 336:207-232. [PMID: 34102221 DOI: 10.1016/j.jconrel.2021.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Cancer is currently a major threat to public health, being among the principal causes of death to the global population. With carcinogenesis mechanisms, cancer invasion, and metastasis remaining blurred, cancer diagnosis and novel drug delivery approaches should be developed urgently to enable management and treatment. A dream break-through would be a non-invasive instantaneous monitoring of cancer initiation and progression to fast-track diagnosis for timely specialist treatment decisions. These innovations would enhance the established treatment protocols, unlimited by evasive biological complexities during tumorigenesis. It is therefore contingent that emerging and future scientific technologies be equally biased towards such innovations by exploiting the apparent properties of new developments and materials especially nanomaterials. CNCs as nanomaterials have undisputable physical and excellent biological properties that enhanced their interest as biomedical materials. This article therefore highlights CNCs utility in cancer diagnosis and therapy. Their extraction, properties, modification, in-vivo/in-vitro medical applications, biocompatibility, challenges and future perspectives are precisely discussed.
Collapse
Affiliation(s)
- Ishaq Lugoloobi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | - Hillary Maniriho
- Department of Biochemistry and Human Molecular Genetics, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liang Jia
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Tabbisa Namulinda
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yili Zhao
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
12
|
Colloidal stability of cellulose nanocrystals in aqueous solutions containing monovalent, divalent, and trivalent inorganic salts. J Colloid Interface Sci 2021; 584:456-463. [DOI: 10.1016/j.jcis.2020.09.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
|
13
|
Heteroaggregation and Homoaggregation of Latex Particles in the Presence of Alkyl Sulfate Surfactants. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4040052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heteroaggregation and homoaggregation is investigated with time-resolved multi-angle dynamic light scattering. The aggregation rates are measured in aqueous suspensions of amidine latex (AL) and sulfate latex (SL) particles in the presence of sodium octyl sulfate (SOS) and sodium dodecyl sulfate (SDS). As revealed by electrophoresis, the surfactants adsorb to both types of particles. For the AL particles, the adsorption of surfactants induces a charge reversal and triggers fast aggregation close to the isoelectric point (IEP). The negatively charged SL particles remain negatively charged and stable in the whole concentration range investigated. The heteroaggregation rates for AL and SL particles are fast at low surfactant concentrations, where the particles are oppositely charged. At higher concentrations, the heteroaggregation slows down above the IEP of the AL particles, where the particles become like-charged. The SDS has higher affinity to the surface compared to the SOS, which induces a shift of the IEP and of the fast aggregation regime to lower surfactant concentrations.
Collapse
|
14
|
Critical coagulation ionic strengths for heteroaggregation in the presence of multivalent ions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Trefalt G, Cao T, Sugimoto T, Borkovec M. Heteroaggregation between Charged and Neutral Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5303-5311. [PMID: 32324407 DOI: 10.1021/acs.langmuir.0c00667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Experimentally determined heteroaggregation rates between charged and neutral colloidal particles are reported for the first time. Different positively and negatively charged polystyrene latex particles are investigated. The neutral particles are obtained through adsorption of an appropriate amount of oppositely charged additives, such as aliphatic oligoamines, iron cyanide complexes, or alkyl sulfates. Heteroaggregation rates were measured with time-resolved multiangle light scattering. One observes that heteroaggregation between charged and neutral particles is always fast and diffusion controlled. These experimental values are compared with calculations of the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, whereby one finds that this heteroaggregation process is highly sensitive to charge regulation conditions. The comparison with experiments shows unambiguously that the surface of the neutral particles regulates strongly and probably behaves close to a constant potential surface. This observation is in line with direct force measurements on similar systems and further agrees with the fact that for neutral surfaces the capacitance of the diffuse layer is expected to be much smaller than the one of the inner layer.
Collapse
Affiliation(s)
- Gregor Trefalt
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| | - Tianchi Cao
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| | - Takuya Sugimoto
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyou-ku, Tokyo 113-8657, Japan
| | - Michal Borkovec
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| |
Collapse
|
16
|
|
17
|
A Simple Method to Determine Critical Coagulation Concentration from Electrophoretic Mobility. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4020020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Critical coagulation concentration (CCC) is a key parameter of particle dispersions, since it provides the threshold limit of electrolyte concentrations, above which the dispersions are destabilized due to rapid particle aggregation. A computational method is proposed to predict CCC values using solely electrophoretic mobility data without the need to measure aggregation rates of the particles. The model relies on the DLVO theory; contributions from repulsive double-layer forces and attractive van der Waals forces are included. Comparison between the calculated and previously reported experimental CCC data for the same particles shows that the method performs well in the presence of mono and multivalent electrolytes provided DLVO interparticle forces are dominant. The method is validated for particles of various compositions, shapes, and sizes.
Collapse
|
18
|
Cao T, Trefalt G, Borkovec M. Measuring slow heteroaggregation rates in the presence of fast homoaggregation. J Colloid Interface Sci 2020; 566:143-152. [DOI: 10.1016/j.jcis.2020.01.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 10/25/2022]
|
19
|
Li X, Zhai J, Xie X. The Hofmeister Anion Effect on Ionophore‐based Ion‐selective Nanospheres Containing Solvatochromic Dyes. ELECTROANAL 2019. [DOI: 10.1002/elan.201900654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoang Li
- Department of ChemistrySouthern University of Science and Technology Shenzhen China
| | - Jingying Zhai
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology Shenzhen China
| | - Xiaojiang Xie
- Department of ChemistrySouthern University of Science and Technology Shenzhen China
| |
Collapse
|
20
|
Sáringer S, Akula RA, Szerlauth A, Szilagyi I. Papain Adsorption on Latex Particles: Charging, Aggregation, and Enzymatic Activity. J Phys Chem B 2019; 123:9984-9991. [DOI: 10.1021/acs.jpcb.9b08799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Szilárd Sáringer
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, 1 Rerrich Béla tér, H-6720 Szeged, Hungary
| | - Rita Achieng Akula
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, 1 Rerrich Béla tér, H-6720 Szeged, Hungary
| | - Adél Szerlauth
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, 1 Rerrich Béla tér, H-6720 Szeged, Hungary
| | - Istvan Szilagyi
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, 1 Rerrich Béla tér, H-6720 Szeged, Hungary
| |
Collapse
|
21
|
González-Tovar E, Lozada-Cassou M. Long-range forces and charge inversions in model charged colloidal dispersions at finite concentration. Adv Colloid Interface Sci 2019; 270:54-72. [PMID: 31181349 DOI: 10.1016/j.cis.2019.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
In charged colloidal dispersion systems the interest is in finding their stability conditions, phase transitions, and transport properties, either in bulk or confinement, among other physicochemical quantities, for which the knowledge of the dispersions' molecular structure and the associated macroion-macroion forces is crucial. To investigate these phenomena simple models have been proposed. Most of the theoretical and simulation studies on charged particles suspensions are at infinite dilution conditions. Hence, these studies have been focused on the electrolyte structure around one or two isolated central particle(s), where phenomena as charge reversal, charge inversion and surface charge amplification have been shown to be relevant. However, experimental studies at finite volume fraction exhibit interesting phenomenology which imply very long-range correlations. A simple, yet useful, model is the Colloidal Primitive Model, in which the colloidal dispersion is modeled as a mixture of size (and charge) asymmetrical hard spheres, at finite volume fraction. In this paper we review recent integral equations solutions for this model, where very long-range attractive-repulsive forces, as well as new long-range, giant charge inversions are reported. The calculated macroions radial distribution functions, charge distributions, and macroion-macroion forces are qualitatively consistent with existing experimental results, and Monte Carlo and molecular dynamics simulations.
Collapse
|
22
|
Charge reversal of sulfate latex particles in the presence of lanthanum ion. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Zhao H, Xu Z, Zhao H. Population balance Monte Carlo simulation of self-assembly of core (micro-Al2O3)-shell (nano-TiO2) structure in aqueous suspensions. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.12.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Farrokhbin M, Stojimirović B, Galli M, Khajeh Aminian M, Hallez Y, Trefalt G. Surfactant mediated particle aggregation in nonpolar solvents. Phys Chem Chem Phys 2019; 21:18866-18876. [DOI: 10.1039/c9cp01985e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregation behavior of particles in nonpolar media is studied with time-resolved light scattering.
Collapse
Affiliation(s)
- Mojtaba Farrokhbin
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Biljana Stojimirović
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Marco Galli
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | | | - Yannick Hallez
- Laboratoire de Génie Chimique
- Université de Toulouse
- CNRS
- INPT
- UPS
| | - Gregor Trefalt
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| |
Collapse
|
25
|
Cao T, Trefalt G, Borkovec M. Aggregation of Colloidal Particles in the Presence of Hydrophobic Anions: Importance of Attractive Non-DLVO Forces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14368-14377. [PMID: 30383385 DOI: 10.1021/acs.langmuir.8b03191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aqueous suspensions of amidine latex (AL) and sulfate latex (SL) particles containing sodium tetraphenylborate and NaCl are studied with electrokinetic and time-resolved light-scattering techniques. In monovalent salt solutions, AL is positively charged, whereas SL is negatively charged. Electrophoretic mobility measurements demonstrate that adsorption of tetraphenylborate anions leads to a charge reversal of AL particles. At higher concentrations, both types of particles accumulate negative charge. For AL particles, the charge reversal leads to a narrow fast aggregation region and an intermediate regime of slow aggregation. For SL particles, the intermediate slow regime is also observed. These aspects can be explained with classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). Another regime of fast aggregation is observed at intermediate concentrations, and the existence of this regime can be rationalized by an additional attractive non-DLVO force. We suspect that this additional force is caused by surface charge heterogeneities.
Collapse
Affiliation(s)
- Tianchi Cao
- Department of Inorganic and Analytical Chemistry , University of Geneva , Sciences II, 30 Quai Ernest-Ansermet , 1205 Geneva , Switzerland
| | - Gregor Trefalt
- Department of Inorganic and Analytical Chemistry , University of Geneva , Sciences II, 30 Quai Ernest-Ansermet , 1205 Geneva , Switzerland
| | - Michal Borkovec
- Department of Inorganic and Analytical Chemistry , University of Geneva , Sciences II, 30 Quai Ernest-Ansermet , 1205 Geneva , Switzerland
| |
Collapse
|
26
|
Sugimoto T, Cao T, Szilagyi I, Borkovec M, Trefalt G. Aggregation and charging of sulfate and amidine latex particles in the presence of oxyanions. J Colloid Interface Sci 2018; 524:456-464. [DOI: 10.1016/j.jcis.2018.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
27
|
Colla T, Blaak R, Likos CN. Quenching of fully symmetric mixtures of oppositely charged microgels: the role of soft stiffness. SOFT MATTER 2018; 14:5106-5120. [PMID: 29876574 DOI: 10.1039/c8sm00441b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Using molecular dynamics simulations, we investigate the self-assembly of a coarse-grained binary system of oppositely charged microgels, symmetric in size and concentration. The microgel pair interactions are described by an effective pair potential which implicitly accounts for the averaged ionic contributions, in addition to a short-range elastic repulsion that accounts for the overlapping of the polymer chains, the latter being described by the Hertzian interaction. Particular emphasis is placed on the role played by the strength of the soft repulsive interaction on the resulting particle aggregation. It is found that the possibility of particle inter-penetration in oppositely charged soft particles results in a much wider variety of cluster morphologies in comparison with their hard-spheres counterparts. Specifically, the softness of the steric interactions enhances the competition between repulsive and attractive electrostatic interactions, leading to the formation of aggregates that are comprised of strongly bounded charged particles displaying a low degree of charge ordering.
Collapse
Affiliation(s)
- Thiago Colla
- Instituto de Física, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, MG, Brazil
| | | | | |
Collapse
|
28
|
Pentyala P, Shahid M, Ramamirtham S, Basavaraj MG. Porous materials from oppositely charged nanoparticle gel emulsions. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Hallett JE, Gillespie DAJ, Richardson RM, Bartlett P. Charge regulation of nonpolar colloids. SOFT MATTER 2018; 14:331-343. [PMID: 29164218 DOI: 10.1039/c7sm01825h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Individual colloids often carry a charge as a result of the dissociation (or adsorption) of weakly-ionized surface groups. The magnitude depends on the precise chemical environment surrounding a particle, which in a concentrated dispersion is a function of the colloid packing fraction η. Theoretical studies have suggested that the effective charge Zeff in regulated systems could, in general, decrease with increasing η. We test this hypothesis for nonpolar dispersions by determining Zeff(η) over a wide range of packing fractions (10-5 ≤ η ≤ 0.3) using a combination of small-angle X-ray scattering and electrophoretic mobility measurements. All dispersions remain entirely in the fluid phase regime. We find a complex dependence of the particle charge as a function of the packing fraction, with Zeff initially decreasing at low concentrations before finally increasing at high η. We attribute the non-monotonic density dependence to a crossover from concentration-independent screening at low η, to a high packing fraction regime in which counterions outnumber salt ions and electrostatic screening becomes η-dependent. The efficiency of charge stabilization at high concentrations may explain the unusually high stability of concentrated nanoparticle dispersions which has been reported.
Collapse
Affiliation(s)
- James E Hallett
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| | | | | | | |
Collapse
|
30
|
Jeżewski W. Aggregation and fragmentation in liquids with dispersed nanoparticles. Phys Chem Chem Phys 2018; 20:18879-18888. [DOI: 10.1039/c8cp01594e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nanoparticle-induced aggregation and fragmentation phenomena in liquid media are investigated by applying a model of preferential attachment of dispersing molecules to randomly chosen nanoparticles and larger particles, each containing a single nanoparticle.
Collapse
Affiliation(s)
- Wojciech Jeżewski
- Institute of Molecular Physics
- Polish Academy of Sciences
- 60-179 Poznań
- Poland
| |
Collapse
|
31
|
Electrophoretic mobility of carboxyl latex particles: effects of hydrophobic monovalent counter-ions. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4219-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|