1
|
Sasaki SI, Morioka Y, Maegawa K, Katsuragi Y, Nakamura T, Kamemura K, Tamiaki H. Pyrobacteriopheophorbide-a derivatives possessing various hydrophilic esterifying groups at the C17-propionate residues for photodynamic therapy. Photochem Photobiol 2025; 101:318-329. [PMID: 38953399 DOI: 10.1111/php.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Aiming at the application to photodynamic therapy, natural bacteriochlorophyll-a was converted to chemically stable free-base derivatives possessing different kinds of hydrophilic C17-propionate residues. These semi-synthetic bacteriochlorins were found to have self-assembling ability in an aqueous environment and formed stable J-type aggregates in a cell culture medium containing 0.2% DMSO. The electronic absorption spectra of all the sensitizers showed Qy absorption maxima at 754 nm in DMSO as their monomeric states, while a drastic shift of the red-most bands to ca. 880 nm was observed in the aqueous medium. The circular dichroism spectra in the medium showed much intense signals compared to those measured in DMSO, supporting the formation of well-ordered supramolecular structures. By introducing hydrophilic side chains, the bacteriochlorin sensitizers could be dispersed in the aqueous medium as their J-aggregates without the use of any surfactants. Cellular uptake efficiencies as well as photodynamic activities were evaluated using human cervical adenocarcinoma HeLa cells. Among the 11 photosensitizers investigated, the best result was obtained for a charged derivative possessing trimethylammonium terminal (17-CH2CH2COOCH2CH2N+(CH3)3I-) and photocytotoxicity of EC50 = 0.09 μM was achieved by far-red light illumination of 35 J/cm2 from an LED panel (730 nm).
Collapse
Affiliation(s)
- Shin-Ichi Sasaki
- Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yuto Morioka
- Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Kohta Maegawa
- Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yuya Katsuragi
- Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Takashi Nakamura
- Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Kazuo Kamemura
- Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
2
|
Gogde K, Kirar S, Pujari AK, Mohne D, Yadav AK, Bhaumik J. Near-IR nanolignin sensitizers based on pyrene-conjugated chlorin and bacteriochlorin for ROS generation, DNA intercalation and bioimaging. J Mater Chem B 2024; 13:288-304. [PMID: 39535256 DOI: 10.1039/d4tb01627k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Near-infrared (NIR) fluorescent agents are extensively used for biomedical imaging due to their ability for deep tissue penetration. Tetrapyrrole-based photosensitizers are promising candidates in this regard. Further, the extended conjugation of such macromolecules with chromophores can enhance their fluorescence efficiency and DNA intercalation ability. Herein, pyrene-conjugated NIR photosensitizers, such as chlorin (PyChl) and bacteriochlorin (PyBac), were synthesized from the corresponding pyrene-porphyrin (PyP). The correlation between the theoretical and experimental optical properties (absorption and fluorescence spectroscopy results) was determined using the DFT/TD-DFT computational approach. Next, studies on the photophysical properties, reactive oxygen species (ROS) production, and DNA binding were conducted on these macrocycles to study the effect of pyrene conjugation on the pyrrolic ring. Furthermore, each photosensitizer was loaded into lignin nanoparticles (LNPs) using the solvent-antisolvent method to accomplish fluorescence-guided imaging. The developed near-IR chlorin- and bacteriochlorin-doped lignin nanocarriers (PyChl-LNCs and PyBac-LNCs) exhibited significant in vitro singlet oxygen generation upon red LED light exposure. Moreover, these macrocycle-loaded nanolignin sensitizers showed good fluorescence-guided bioimaging with fungal cells (Candida albicans). Further, the nanoprobes exhibited pH-dependent release profiles for biological applications. These nanolignin sensitizers demonstrated promising potential to be utilized in near-IR image-guided photodynamic therapy.
Collapse
Affiliation(s)
- Kunal Gogde
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India.
- University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh 160306, India
| | - Seema Kirar
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India.
| | - Anil Kumar Pujari
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India.
- Indian Institute of Sciences Education and Research (IISER), Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India
| | - Devesh Mohne
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India.
- Indian Institute of Sciences Education and Research (IISER), Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh 160306, India
| | - Jayeeta Bhaumik
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India.
| |
Collapse
|
3
|
Pavlova MA, Panchenko PA, Alekhina EA, Ignatova AA, Plyutinskaya AD, Pankratov AA, Pritmov DA, Grin MA, Feofanov AV, Fedorova OA. A New Glutathione-Cleavable Theranostic for Photodynamic Therapy Based on Bacteriochlorin e and Styrylnaphthalimide Derivatives. BIOSENSORS 2022; 12:1149. [PMID: 36551116 PMCID: PMC9775103 DOI: 10.3390/bios12121149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Herein, we report a new conjugate BChl-S-S-NI based on the second-generation photosensitizer bacteriochlorin e6 (BChl) and a 4-styrylnaphthalimide fluorophore (NI), which is cleaved into individual functional fragments in the intracellular medium. The chromophores in the conjugate were cross-linked by click chemistry via a bis(azidoethyl)disulfide bridge which is reductively cleaved by the intracellular enzyme glutathione (GSH). A photophysical investigation of the conjugate in solution by using optical spectroscopy revealed that the energy transfer process is realized with high efficiency in the conjugated system, leading to the quenching of the emission of the fluorophore fragment. It was shown that the conjugate is cleaved by GSH in solution, which eliminates the possibility of energy transfer and restores the fluorescence of 4-styrylnaphthalimide. The photoinduced activity of the conjugate and its imaging properties were investigated on the mouse soft tissue sarcoma cell line S37. Phototoxicity studies in vitro show that the BChl-S-S-NI conjugate has insignificant dark cytotoxicity in the concentration range from 15 to 20,000 nM. At the same time, upon photoexcitation, it exhibits high photoinduced activity.
Collapse
Affiliation(s)
- Marina A. Pavlova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Pavel A. Panchenko
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Petroleum Chemistry and Polymeric Materials, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Ekaterina A. Alekhina
- Faculty of Petroleum Chemistry and Polymeric Materials, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Anastasia A. Ignatova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anna D. Plyutinskaya
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Andrey A. Pankratov
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Dmitriy A. Pritmov
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Mikhail A. Grin
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Alexey V. Feofanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia
| | - Olga A. Fedorova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Petroleum Chemistry and Polymeric Materials, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
4
|
Tin Carboxylate Complexes of Natural Bacteriochlorin for Combined Photodynamic and Chemotherapy of Cancer è. Int J Mol Sci 2021; 22:ijms222413563. [PMID: 34948372 PMCID: PMC8708526 DOI: 10.3390/ijms222413563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Photodynamic therapy (PDT) is currently one of the most promising methods of cancer treatment. However, this method has some limitations, including a small depth of penetration into biological tissues, the low selectivity of accumulation, and hypoxia of the tumor tissues. These disadvantages can be overcome by combining PDT with other methods of treatment, such as radiation therapy, neutron capture therapy, chemotherapy, etc. In this work, potential drugs were obtained for the first time, the molecules of which contain both photodynamic and chemotherapeutic pharmacophores. A derivative of natural bacteriochlorophyll a with a tin IV complex, which has chemotherapeutic activity, acts as an agent for PDT. This work presents an original method for obtaining agents of combined action, the structure of which is confirmed by various physicochemical methods of analysis. The method of molecular modeling was used to investigate the binding of the proposed drugs to DNA. In vitro biological tests were carried out on several lines of tumor cells: Hela, A549, S37, MCF7, and PC-3. It was shown that the proposed conjugates of binary action for some cell lines had a dark cytotoxicity that was significantly higher (8–10 times) than the corresponding metal complexes of amino acids, which was explained by the targeted chemotherapeutic action of the tin (IV) complex due to chlorin. The greatest increase in efficiency relative to the initial dipropoxy-BPI was found for the conjugate with lysine as a chelator of the tin cation relative to cell lines, with the following results: S-37 increased 3-fold, MCF-7 3-fold, and Hela 2.4-fold. The intracellular distribution of the obtained agents was also studied by confocal microscopy and showed a diffuse granular distribution with predominant accumulation in the near nuclear region.
Collapse
|
5
|
Fluorescent chemosensor for mercury(II) cations in an aqueous solution based on 4-acetylamino-1, 8-naphthalimide derivative containing the N-phenylazadithia-15-crown-5-ether receptor. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Photodiagnosis and photodynamic effects of bacteriochlorin-naphthalimide conjugates on tumor cells and mouse model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112294. [PMID: 34500215 DOI: 10.1016/j.jphotobiol.2021.112294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022]
Abstract
Photo-induced cytotoxicity and antitumor activity of a series of dual function agents for photodynamic therapy (PDT) and fluorescent imaging based on bacteriochlorin photosensitizer conjugated with various naphthalimide fluorophores was studied in vitro using murine tumor cells of S37 sarcoma and in vivo on mice bearing murine S37 sarcoma. Upon irradiation at the absorption maximum of the photosensitizer, the activity of conjugates was as high as in the case of individual bacteriochlorin, while an additional excitation of the naphthalimide fragment led to an increase in the PDT efficacy due to resonance energy transfer from the fluorophore to photosensitizer. The fluorescence contrast and specific cytotoxic activity measurements indicate that the conjugate of bacteriochlorin with 3,4-dimethoxestyrene-substituted naphthalimide is the most promising agent for the application as theranostic in PDT.
Collapse
|
7
|
Panchenko PA, Fedorov YV, Polyakova AS, Fedorova OA. Fluorimetric detection of Ag+ cations in aqueous solutions using a polyvinyl chloride sensor film doped with crown-containing 1,8-naphthalimide. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
|
9
|
Panchenko PA, Efremenko AV, Feofanov AV, Ustimova MA, Fedorov YV, Fedorova OA. Ratiometric Detection of Mercury (II) Ions in Living Cells Using Fluorescent Probe Based on Bis(styryl) Dye and Azadithia-15-Crown-5 Ether Receptor. SENSORS 2021; 21:s21020470. [PMID: 33440801 PMCID: PMC7826577 DOI: 10.3390/s21020470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 11/16/2022]
Abstract
Bis(styryl) dye 1 bearing N-phenylazadithia-15-crown-5 ether receptor has been evaluated as a ratiometric fluorescent chemosensor for mercury (II) ions in living cells. In aqueous solution, probe 1 selectively responds to the presence of Hg2+ via the changes in the emission intensity as well as in the emission band shape, which is a result of formation of the complex with 1:1 metal to ligand ratio (dissociation constant 0.56 ± 0.15 µM). The sensing mechanism is based on the interplay between the RET (resonance energy transfer) and ICT (intramolecular charge transfer) interactions occurring upon the UV/Vis (380 or 405 nm) photoexcitation of both styryl chromophores in probe 1. Bio-imaging studies revealed that the yellow (500-600 nm) to red (600-730 nm) fluorescence intensity ratio decreased from 4.4 ± 0.2 to 1.43 ± 0.10 when cells were exposed to increasing concentration of mercury (II) ions enabling ratiometric quantification of intracellular Hg2+ concentration in the 37 nM-1 μM range.
Collapse
Affiliation(s)
- Pavel A. Panchenko
- Laboratory of Photoactive Supramolecular systems, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Russia; (M.A.U.); (Y.V.F.); (O.A.F.)
- Department of Technology of Fine Organic Synthesis and Chemistry of Dyes, Dmitry Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
- Correspondence: ; Tel.: +7-905-525-07-93
| | - Anastasija V. Efremenko
- Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.V.E.); (A.V.F.)
- Laboratory of Optical Microscopy and Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey V. Feofanov
- Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.V.E.); (A.V.F.)
- Laboratory of Optical Microscopy and Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia
| | - Mariya A. Ustimova
- Laboratory of Photoactive Supramolecular systems, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Russia; (M.A.U.); (Y.V.F.); (O.A.F.)
| | - Yuri V. Fedorov
- Laboratory of Photoactive Supramolecular systems, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Russia; (M.A.U.); (Y.V.F.); (O.A.F.)
| | - Olga A. Fedorova
- Laboratory of Photoactive Supramolecular systems, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Russia; (M.A.U.); (Y.V.F.); (O.A.F.)
- Department of Technology of Fine Organic Synthesis and Chemistry of Dyes, Dmitry Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
10
|
Wu M, Liu Z, Zhang W. An ultra-stable bio-inspired bacteriochlorin analogue for hypoxia-tolerant photodynamic therapy. Chem Sci 2020; 12:1295-1301. [PMID: 34163892 PMCID: PMC8179026 DOI: 10.1039/d0sc05525e] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) greatly suffers from the weak NIR-absorption, oxygen dependence and poor stability of photosensitizers (PSs). Herein, inspired by natural bacteriochlorin, we develop a bacteriochlorin analogue, tetrafluorophenyl bacteriochlorin (FBC), by one-step reduction of tetrafluorophenyl porphyrin (TFPP). FBC can realize deep tissue penetration, benefitting from the strong NIR absorption. The reactive oxygen species (ROS) generation capacity of FBC can retain around 60% with a 1.0 cm-thick pork skin as the barrier. Besides, FBC could not only produce oxygen-dependent 1O2, but also generate less oxygen-dependent O2 -˙ and ˙OH to achieve excellent PDT even in hypoxic tumors. Moreover, FBC exhibits an ultra-high stability and it is almost unchanged even under visible light at room temperature for 15 months. Interestingly, the high reactivity of the fluorophenyl group makes it easy for FBC to produce FBC derivatives. A biocompatible FBC nanogel could be directly formed by blending FBC with SH-PEG-SH. The FBC nanogel displays excellent photodynamic efficacy in vitro and in vivo. Thus, FBC would be a promising PS for the clinical PDT of deep tumors.
Collapse
Affiliation(s)
- Mengsi Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Zhiyong Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
11
|
Sasaki S, Hashimoto Y, Kinoshita Y, Tamiaki H, Duan S, Wang X, Saga Y, Yamamoto H, Ikeuchi T, Shishioh N. Synthesis of C3/C13‐Substituted Semi‐Synthetic Bacteriochlorophyll‐
a
Derivatives and Their Properties as Functional Dyes. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shin‐ichi Sasaki
- Faculty of Bioscience Nagahama Institute of Bio-Science and Technology Nagahama Shiga 526-0829 Japan
- Graduate School of Life Sciences Ritsumeikan University Kusatsu Shiga 525-8577 Japan
| | - Yuki Hashimoto
- Graduate School of Life Sciences Ritsumeikan University Kusatsu Shiga 525-8577 Japan
| | - Yusuke Kinoshita
- Graduate School of Life Sciences Ritsumeikan University Kusatsu Shiga 525-8577 Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences Ritsumeikan University Kusatsu Shiga 525-8577 Japan
| | - Shengnan Duan
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics Jilin University Changchun 130012 PR China
| | - Xiao‐Feng Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics Jilin University Changchun 130012 PR China
| | - Yoshitaka Saga
- Faculty of Science and Engineering Kindai University Higashi-Osaka Osaka 577-8502 Japan
| | - Hiroaki Yamamoto
- Faculty of Bioscience Nagahama Institute of Bio-Science and Technology Nagahama Shiga 526-0829 Japan
| | - Toshitaka Ikeuchi
- Faculty of Bioscience Nagahama Institute of Bio-Science and Technology Nagahama Shiga 526-0829 Japan
| | - Nobue Shishioh
- Faculty of Bioscience Nagahama Institute of Bio-Science and Technology Nagahama Shiga 526-0829 Japan
| |
Collapse
|
12
|
Zakharko MA, Panchenko PA, Zarezin DP, Nenajdenko VG, Pritmov DA, Grin MA, Mironov AF, Fedorova OA. Conjugates of 3,4-dimethoxy-4-styrylnaphthalimide and bacteriochlorin for theranostics in photodynamic therapy. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2885-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Effect of linker length on the spectroscopic properties of bacteriochlorin – 1,8-naphthalimide conjugates for fluorescence-guided photodynamic therapy. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Panchenko PA, Ignatov PA, Zakharko MA, Fedorov YV, Fedorova OA. A fluorescent PET chemosensor for Zn2+ cations based on 4-methoxy-1,8-naphthalimide derivative containing salicylideneamino receptor group. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Grin MA, Tikhonov SI, Petrova AS, Pogorilyy VA, Noev АN, Tatarskiy VV, Shpakovsky DB, Milaeva ER, Kalinina EV, Chernov NN, Shtil АА, Mironov AF, Kaprin AD, Filonenko EV. New Derivatives of Bacteriopurpurin with Thiolated Au (I) Complexes: Dual Darkand Light Activated Antitumor Potency. Anticancer Agents Med Chem 2019; 20:49-58. [PMID: 31368879 DOI: 10.2174/1871520619666190801102617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Conventional antitumor Photosensitizers (PS) are normally low toxic in the dark whereas light activation triggers massive cell death (photodynamic therapy, PDT). OBJECTIVE To expand the therapeutic potential of PS to dual potency cytocidal agents, taking advantage of the use of bacteriopurpurin for a deeper tissue penetration of light, and suitability of the tetrapyrrolic macrocycle for chemical modifications at its periphery. METHODS Conjugation of a pro-oxidant thiolate Au (I) moiety to the bacteriopurpurin core and evaluation of cytotoxicity in cell culture and in vivo. RESULTS New water-soluble derivatives showed micromolar cytotoxicity for cultured human tumor cell lines in the dark, including the subline with an altered drug response due to p53 inactivation. Cellular PDT with the selected conjugate, thiolate Au (I)-dipropoxybacteriopurpurinimide (compound 6) with two triphenylphosphine Au fragments, triggered rapid (within minutes) cell death. Damage to the plasma membrane (necrosis) was a hallmark of cell death by compound 6 both in the dark and upon light activation. Furthermore, one single i.v. injection of compound 6 caused retardation of transplanted syngeneic tumors at the tolerable dose. Illumination of tumors that accumulated compound 6 significantly synergized with the effect of 6 in the dark. CONCLUSION Complexes of virtually non-toxic, photoactivatable bacteriopurpurin with the gold-containing organic moiety are considered the dual potency antitumor agents, tentatively applicable for intractable tumors.
Collapse
Affiliation(s)
- Mikhail A Grin
- MIREA - Russian Technological University, Moscow, Russian Federation
| | - Sergei I Tikhonov
- MIREA - Russian Technological University, Moscow, Russian Federation
| | | | | | - Аlexey N Noev
- MIREA - Russian Technological University, Moscow, Russian Federation
| | - Victor V Tatarskiy
- Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Dmitry B Shpakovsky
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Elena R Milaeva
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | | | | | - Аlexander А Shtil
- Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation.,Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Andrey F Mironov
- MIREA - Russian Technological University, Moscow, Russian Federation
| | - Andrey D Kaprin
- National Medical Research Center of Radiology of Ministry of Health of Russia, Moscow, Russian Federation
| | - Elena V Filonenko
- National Medical Research Center of Radiology of Ministry of Health of Russia, Moscow, Russian Federation
| |
Collapse
|
16
|
Zhdanova KA, Ezhov AV, Bragina NA, Mironov AF. Synthesis of new binary porphyrin–cyanine conjugates and their self-aggregation in organic-aqueous media. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Jiang J, Matula AJ, Swierk JR, Romano N, Wu Y, Batista VS, Crabtree RH, Lindsey JS, Wang H, Brudvig GW. Unusual Stability of a Bacteriochlorin Electrocatalyst under Reductive Conditions. A Case Study on CO2 Conversion to CO. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02991] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianbing Jiang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Adam J. Matula
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - John R. Swierk
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Neyen Romano
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Yueshen Wu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Robert H. Crabtree
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
18
|
Sandland J, Malatesti N, Boyle R. Porphyrins and related macrocycles: Combining photosensitization with radio- or optical-imaging for next generation theranostic agents. Photodiagnosis Photodyn Ther 2018; 23:281-294. [DOI: 10.1016/j.pdpdt.2018.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/22/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
|