1
|
Barretta P, Ponte F, Escudero D, Mazzone G. Computational Exploration of the Mechanism of Action of a Sorafenib-Containing Ruthenium Complex as an Anticancer Agent for Photoactivated Chemotherapy. Molecules 2024; 29:4298. [PMID: 39339293 PMCID: PMC11433670 DOI: 10.3390/molecules29184298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Ruthenium(II) polypyridyl complexes are being tested as potential anticancer agents in different therapies, which include conventional chemotherapy and light-activated approaches. A mechanistic study on a recently synthesized dual-action Ru(II) complex [Ru(bpy)2(sora)Cl]+ is described here. It is characterized by two mono-dentate leaving ligands, namely, chloride and sorafenib ligands, which make it possible to form a di-aquo complex able to bind DNA. At the same time, while the released sorafenib can induce ferroptosis, the complex is also able to act as a photosensitizer according to type II photodynamic therapy processes, thus generating one of the most harmful cytotoxic species, 1O2. In order to clarify the mechanism of action of the drug, computational strategies based on density functional theory are exploited. The photophysical properties of the complex, which include the absorption spectrum, the kinetics of ISC, and the character of all the excited states potentially involved in 1O2 generation, as well as the pathway providing the di-aquo complex, are fully explored. Interestingly, the outcomes show that light is needed to form the mono-aquo complex, after releasing both chloride and sorafenib ligands, while the second solvent molecule enters the coordination sphere of the metal once the system has come back to the ground-state potential energy surface. In order to simulate the interaction with canonical DNA, the di-aquo complex interaction with a guanine nucleobase as a model has also been studied. The whole study aims to elucidate the intricate details of the photodissociation process, which could help with designing tailored metal complexes as potential anticancer agents.
Collapse
Affiliation(s)
- Pierraffaele Barretta
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy
| | - Daniel Escudero
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy
| |
Collapse
|
2
|
Patra R, Das M. Designing an Efficient Singlet Fission Material with B-N Substitution in Pyrene: A Model Exact Study. J Phys Chem A 2024; 128:7375-7383. [PMID: 39167053 DOI: 10.1021/acs.jpca.4c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The electronic structure of boron (B)-nitrogen (N)-substituted pyrene molecules is the center of attraction in designing an efficient intermolecular singlet fission (x-SF) material. Thermodynamic energy criteria required for x-SF are obtained by captodative substitution with B and N in pristine pyrene to increase the lowest singlet-triplet energy gap. We computed low-lying excited states of BN-embedded pyrene molecules by exactly solving the Pariser-Parr-Pople (PPP) model Hamiltonian and compared these results with the TDDFT and EOM-CCSD values. Exact diagonalization of the PPP model Hamiltonian suggests that pristine pyrene, which is endothermic for x-SF, becomes isoergic with certain (BN)2 substitution. The low-lying excited state energies calculated using the model Hamiltonian match very well with experimental values over EOM-CCSD and TDDFT. Moreover, the low value of the spin-orbit coupling constant calculated for BN-substituted pyrene strengthens its applicability as an SF material.
Collapse
Affiliation(s)
- Ramen Patra
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| | - Mousumi Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| |
Collapse
|
3
|
Kim C, Mai DK, Kim WJ, Badon IW, Jo J, Kang D, Kim SJ, Kim HJ, Yang J. Red fluorescent BODIPY-based nanoparticles for targeted cancer imaging-guided photodynamic therapy. Biomater Sci 2024; 12:1536-1548. [PMID: 38299265 DOI: 10.1039/d3bm01520c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Imaging-guided diagnosis and treatment of cancer hold potential to significantly improve therapeutic accuracies and efficacies. Central to this theragnostic approach has been the use of multicomponent-based multimodal nanoparticles (NPs). Apart from this conventional approach, here we propose a design strategy for the simple and straightforward formulation of NPs based on boron dipyrromethene (BODIPY) derivatives, LaB-X (X = H, Et, and Br). Specifically, the conjugation of lactose to the inherently hydrophobic BODIPY promoted the formation of LaB-X NPs in water. Furthermore, the BODIPY backbone was subjected to distyrylation, dibromination, and diethylation to tailor the optical window and the balance between fluorescence and singlet oxygen generation capabilities. We demonstrate that while the photoinduced anticancer activities of LaB-H and LaB-Et NPs were trivial, LaB-Br NPs effectively induced the apoptotic death of hepatocellular carcinoma cells under red light irradiation while allowing fluorescence cell imaging in the phototherapeutic window. This dual fluorescence photosensitizing activity of LaB-Br NPs could be switched off and on, so that both fluorescence and singlet oxygen generation were paused during NP formation in an aqueous solution, while both processes resumed after cellular uptake, likely due to NP disassembly.
Collapse
Affiliation(s)
- Chanwoo Kim
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, Korea.
| | - Duy Khuong Mai
- Department of Chemistry, Chosun University, Gwangju 61452, Korea.
| | - Won-Jin Kim
- Department of Integrative Biological Sciences, BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
- Institute of Well-Aging Medicare, Chosun University, Gwangju 61452, Korea
| | - Isabel Wen Badon
- Department of Chemistry, Chosun University, Gwangju 61452, Korea.
| | - Jinwoong Jo
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, Korea.
| | - Dongho Kang
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, Korea.
| | - Seok-Jun Kim
- Department of Integrative Biological Sciences, BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea.
- Institute of Well-Aging Medicare, Chosun University, Gwangju 61452, Korea
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Korea.
| | - Jaesung Yang
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, Korea.
| |
Collapse
|
4
|
Gu X, Yuan H, Li C, Xu L, Li S, Yu D. Toluidine blue O photosensitizer combined with caffeic acid improves antibacterial performance by increasing the permeability of cell membrane. Colloids Surf B Biointerfaces 2024; 233:113657. [PMID: 38000122 DOI: 10.1016/j.colsurfb.2023.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Photodynamic therapy has always been an antibacterial tool for solving multi-drug resistant bacteria problem, but the side effects and the low efficiency due to the high aggregation and low solubility of photosensitizers limit its application. Due to the anti-inflammatory effect of caffeic acid, two novel photosensitizers (CA-1-TBO, CA-TBO) were synthesized by conjugating caffeic acid with toluidine blue O (TBO). The structures have been characterized by 1HNMR and high-resolution mass spectrometry. The UV-vis absorption, fluorescence spectra and the octanol-water partition coefficient of two photosensitizers were measured to evaluate their photophysical properties and hydrophilic/hydrophobic properties. Compared with parent TBO, the two modified photosensitizers have shown a higher quantum yield and kinetics constants of singlet oxygen, which has been supported by the simulation results of density functional theory. As drug-resistant representatives of gram-positive and gram-negative bacteria, respectively, S. aureus and P. aeruginosa have been used for in vitro antibacterial experiments. The sterilization efficiencies of the two modified photosensitizers far exceed that of parent TBO. The results of the octanol-water partition coefficient and fluorescence quantification showed that modified photosensitizers CA-1-TBO and CA-TBO could be more accumulated than parent TBO. Based on scanning electron microscopy images, protein gel electrophoresis, and the conductivity of the bacterial solution, the possible mechanism of improved antibacterial photodynamic efficiencies could be induced by membrane permeability due to the caffeic acid effect. The findings demonstrate the significant potential of natural phenolic compounds in the development of photosensitizer molecules with characteristics such as more efficient, biocompatible and less side effects.
Collapse
Affiliation(s)
- Xiaoxiao Gu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Haoyang Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Cailing Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Lixian Xu
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, No.121 Jiangjiayuan Road, Nanjing 210000, PR China
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Dinghua Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
5
|
Ponte F, Scoditti S, Barretta P, Mazzone G. Computational Assessment of a Dual-Action Ru(II)-Based Complex: Photosensitizer in Photodynamic Therapy and Intercalating Agent for Inducing DNA Damage. Inorg Chem 2023. [PMID: 37248070 DOI: 10.1021/acs.inorgchem.3c00592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A combined quantum-mechanical and classical molecular dynamics study of a recent Ru(II) complex with potential dual anticancer action is reported here. The main basis for the multiple action relies on the merocyanine ligand, whose electronic structure allows the drug to be able to absorb within the therapeutic window and in turn efficiently generate 1O2 for photodynamic therapy application and to intercalate within two nucleobases couples establishing reversible electrostatic interactions with DNA. TDDFT outcomes, which include the absorption spectrum, triplet states energy, and spin-orbit matrix elements, evidence that the photosensitizing activity is ensured by an MLCT state at around 660 nm, involving the merocyanine-based ligand, and by an efficient ISC from such state to triplet states with different characters. On the other hand, the MD exploration of all the possible intercalation sites within the dodecamer B-DNA evidences the ability of the complex to establish several electrostatic interactions with the nucleobases, thus potentially inducing DNA damage, though the simulation of the absorption spectra for models extracted by each MD trajectory shows that the photosensitizing properties of the complex remain unaltered. The computational results support that the anti-tumor effect may be related to multiple mechanisms of action.
Collapse
Affiliation(s)
- Fortuna Ponte
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Stefano Scoditti
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Pierraffaele Barretta
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
6
|
Pang E, Zhao S, Wang B, Niu G, Song X, Lan M. Strategies to construct efficient singlet oxygen-generating photosensitizers. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Sokkar P, Babu A, Kolandaswamy A, Daison FA, Ramachandran M. Effect of Substituents on the Photodynamic Action of Anthraquinones: EPR, Computational and In Vitro Studies. Photochem Photobiol 2022; 98:1426-1433. [PMID: 35290674 DOI: 10.1111/php.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
Anthraquinone class of compounds possesses a broad spectrum of therapeutic applications. Cancer cell targeting ability, together with photogeneration of reactive oxygen species, renders anthraquinones an interesting class of photosensitizers for photodynamic therapy (PDT). Screening of newer compounds for better singlet oxygen generation is of current interest to improve the practical usability in PDT. In this study, we investigate the photodynamic activity of nine commercially available anthraquinones, using EPR spectroscopy and computational techniques, to identify the role of substituents on singlet oxygen yield. Three anthraquinone derivatives, 1,5-diaminoanthraquinone, 15-dihydroxyanthraquinone and 1,2,7-trihydroxyanthraquinone, showed highest singlet oxygen quantum yield (0.21, 0.18 and 0.15, respectively) relative to Rose Bengal. Time-dependent density functional theory calculations indicate the singlet oxygen quantum yield of anthraquinones inversely correlate well with the excited singlet-triplet (S1-T1) energy gap. Electron-donating substituents present at positions 1, 2 and 5 of anthraquinone seem to reduce the S1-T1 energy gap, facilitating inter-system crossing and the production of singlet oxygen. This would greatly aid in the design of newer anthraquinone-based photosensitizers. This study also highlights the suitability of 1,5-diaminoanthraquinone for PDT applications as demonstrated by in vitro experiments of photoinduced DNA cleavage and photocytotoxicity in Dalton's lymphoma ascites.
Collapse
Affiliation(s)
- Pandian Sokkar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India.,School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Anish Babu
- School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India.,Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Anbazhagan Kolandaswamy
- School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India.,Department of Molecular Medicine, Rajarajeswari Medical College and Hospital, Kambipira, Bangalore, India
| | - Felsis Angelene Daison
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Murugesan Ramachandran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India.,School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India.,Karpaga Vinayaga Institute of Medical Sciences and Research Center, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
8
|
Butera V, Mazzone G, Detz H. Dinuclear Ruthenium(II)‐Pyrrolide Complexes Linked by Different Organic Units as PDT Photosensitizers: Computational Study of the Linker Influence on the Photophysical Properties*. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Valeria Butera
- CEITEC – Central European Institute of Technology Brno University of Technology Purkyňova 123 Brno 612 00 Czech Republic
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies Università della Calabria 87036 Arcavacata di Rende, CS Italy
| | - Hermann Detz
- CEITEC – Central European Institute of Technology Brno University of Technology Purkyňova 123 Brno 612 00 Czech Republic
- Center for Micro- and Nanostructures & Institute of Solid State Electronics TU Wien 1040 Vienna Austria
| |
Collapse
|
9
|
Jiao F, Wei M, Leng J, Song Z, Hu W, Zhang Y. Theoretical Investigation of Switch Effect on the Efficiency and Adaptivity of Molecular Optoelectronic Conversion Devices. Chem Asian J 2022; 17:e202200463. [PMID: 35723224 DOI: 10.1002/asia.202200463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Indexed: 11/12/2022]
Abstract
Molecular photoswitch can effectively regulate charge separation (CS) and charge recombination (CR) in donor-acceptor (D-A) systems. However, deformation of the donor-switch-acceptor (D-S-A) systems caused by the switch isomerization will destroy the geometrical stability of the battery. Here we take the planar platinum(II) terpyridyl complex of [Pt(t Bu3 tpy)(-C≡C-Ph)n ]+ as the typical D-A model, designed six D-S-A systems using different photoswitches (dimethyldihydropyrene, fulgimide, arylazopyrazole, N-salicylideneaniline, spiropyran, and dithienylethene, denoted as D-S-A 1-6 hereafter). Our investigations show that the D-S-A 1-6 can absorb visible light of 799 nm, 673 nm, 527 nm, 568 nm, 616 nm, and 629 nm, facilitating electrons transfer from the donor and the switch to the acceptor through the Switch-on channel. Then cationic character of the photoswitch can undergo much more rapid isomerization than the neutral form due to the lower energy barrier. The Switch-off isomer breaks the conjugation of the D-S-A system, effectively turning off the CT channel and forming the CS state. Based on the evaluated conjugated backbone twist (CBT) angle, we found that D-S-A 1, 2, 4, 6 exhibit little configurational change and can be good candidates as the organic solar cell. The proposed D-S-A design controlled by the molecular switch may help to develop a solution for solar-harvesting practical applications.
Collapse
Affiliation(s)
- Fangfang Jiao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology-Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Mingzhi Wei
- School of Materials Science & Engineering, Qilu University of Technology-Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Jiancai Leng
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology-Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Ziyue Song
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, BC, Canada, V6T 1Z3
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology-Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Yujin Zhang
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology-Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| |
Collapse
|
10
|
Murali AC, Nayak P, Venkatasubbaiah K. Recent advances in the synthesis of luminescent tetra-coordinated boron compounds. Dalton Trans 2022; 51:5751-5771. [PMID: 35343524 DOI: 10.1039/d2dt00160h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tetra-coordinated boron compounds offer a plethora of luminescent materials. Different chelation around the boron center (O,O-, N,C-, N,O-, and N,N-) has been explored to tune the electronic and photophysical properties of tetra-coordinated boron compounds. A number of fascinating molecules with interesting properties such as aggregation induced emission, mechanochromism and tunable emission by changing the solvent polarity were realised. Owing to their rich and unique properties, some of the molecules have shown applications in making optoelectronic devices, probes and so on. This perspective provides an overview of the recent developments of tetra-coordinated boron compounds and their potential applications.
Collapse
Affiliation(s)
- Anna Chandrasekar Murali
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Prakash Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| |
Collapse
|
11
|
Dong Y, Zhou L, Shen Z, Ma Q, Zhao Y, Sun Y, Cao J. Iodinated cyanine dye-based nanosystem for synergistic phototherapy and hypoxia-activated bioreductive therapy. Drug Deliv 2022; 29:238-253. [PMID: 35001784 PMCID: PMC8745379 DOI: 10.1080/10717544.2021.2023701] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Photodynamic therapy (PDT) has been applied in cancer treatment by utilizing reactive oxygen species (ROS) to kill cancer cells. However, the effectiveness of PDT is greatly reduced due to local hypoxia. Hypoxic activated chemotherapy combined with PDT is expected to be a novel strategy to enhance anti-cancer therapy. Herein, a novel liposome (LCT) incorporated with photosensitizer (PS) and bioreductive prodrugs was developed for PDT-activated chemotherapy. In the design, CyI, an iodinated cyanine dye, which could simultaneously generate enhanced ROS and heat than other commonly used cyanine dyes, was loaded into the lipid bilayer; while tirapazamine (TPZ), a hypoxia-activated prodrug was encapsulated in the hydrophilic nucleus. Upon appropriate near-infrared (NIR) irradiation, CyI could simultaneously produce ROS and heat for synergistic PDT and photothermal therapy (PTT), as well as provide fluorescence signals for precise real-time imaging. Meanwhile, the continuous consumption of oxygen would result in a hypoxia microenvironment, further activating TPZ free radicals for chemotherapy, which could induce DNA double-strand breakage and chromosome aberration. Moreover, the prepared LCT could stimulate acute immune response through PDT activation, leading to synergistic PDT/PTT/chemo/immunotherapy to kill cancer cells and reduce tumor metastasis. Both in vitro and in vivo results demonstrated improved anticancer efficacy of LCT compared with traditional PDT or chemotherapy. It is expected that these iodinated cyanine dyes-based liposomes will provide a powerful and versatile theranostic strategy for tumor target phototherapy and PDT-induced chemotherapy.
Collapse
Affiliation(s)
- Yunxia Dong
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zijun Shen
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yifan Zhao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Jin ZY, Fatima H, Zhang Y, Shao Z, Chen XJ. Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Yang Jin
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Hira Fatima
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
| | - Yue Zhang
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Zongping Shao
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing Jiangsu 211816 P. R. China
| | - Xiang Jian Chen
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| |
Collapse
|
13
|
Freese T, Patalag LJ, Merz JL, Jones PG, Werz DB. One-Pot Strategy for Symmetrical and Unsymmetrical BOIMPY Fluorophores. J Org Chem 2021; 86:3089-3095. [DOI: 10.1021/acs.joc.0c02860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tyll Freese
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Lukas J. Patalag
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - J. Luca Merz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Peter G. Jones
- Technische Universität Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
14
|
Shamova LI, Zatsikha YV, Nemykin VN. Synthesis pathways for the preparation of the BODIPY analogues: aza-BODIPYs, BOPHYs and some other pyrrole-based acyclic chromophores. Dalton Trans 2021; 50:1569-1593. [DOI: 10.1039/d0dt03964k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This mini-review summarizes the synthesis strategies for the preparation and post-functionalization of aza-BODIPYs, BOPHYs, “half-Pcs”, biliazines, MB-DIPYs, semihemiporphyrazines, BOIMPYs, BOPPYs, BOPYPYs, BOAHYs, and BOAPYs.
Collapse
Affiliation(s)
| | | | - Victor N. Nemykin
- Department of Chemistry
- University of Manitoba
- Winnipeg
- Canada
- Department of Chemistry
| |
Collapse
|
15
|
Effect of degree of β-chlorination on photocatalytic activity of meso-tetraphenylporphyrin under homogeneous and nanoscale heterogeneous conditions: Chlorination vs. bromination. J Catal 2020. [DOI: 10.1016/j.jcat.2020.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Alejandro VC, Mónica FP, Xelha AP, Mario R, Gabriel RO, Norberto F, Eva RG. Brominated BODIPYs as potential photosensitizers for photodynamic therapy using a low irradiance excitation. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Suarez ED, Lima FCDA, Dias PM, Constantino VRL, Petrilli HM. Theoretical UV-Vis spectra of tetracationic porphyrin: effects of environment on electronic spectral properties. J Mol Model 2019; 25:264. [PMID: 31432261 DOI: 10.1007/s00894-019-4149-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023]
Abstract
Electronic and spectroscopic properties of tetracationic 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphyrin (TMPyP) were investigated in the framework of the density functional theory (DFT). Modeling of implicit solvent, charge effects, and medium acidity were performed and compared with experimental results. Various hybrid exchange correlation functionals in the Kohn-Sham Scheme of the DFT were employed and various porphyrin models were constructed, simulating different environmental conditions. Since porphyrins present several technological applications with a plethora of interacting systems and the optical spectra profiles are often used to characterize these macrocyclic compounds, the study performed here aims to stablish a correct description of the UV-Vis spectrum. These results allowed to reproduce, both qualitatively as well as quantitatively, the Soret band of the TMPyP.
Collapse
Affiliation(s)
- Eduardo Diaz Suarez
- Instituto de Física, Universidade de São Paulo, C. P. 66318, São Paulo, SP, 05508-090, Brazil
| | | | - Patrícia Moura Dias
- Fundacentro-Fundação Jorge Duprat Figueiredo de Segurança e Medicina do Trabalho, São Paulo, SP, 05409-002, Brazil
| | - Vera R L Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Helena Maria Petrilli
- Instituto de Física, Universidade de São Paulo, C. P. 66318, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
18
|
Cao J, Chi J, Xia J, Zhang Y, Han S, Sun Y. Iodinated Cyanine Dyes for Fast Near-Infrared-Guided Deep Tissue Synergistic Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25720-25729. [PMID: 31246000 DOI: 10.1021/acsami.9b07694] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phototheranostics, which combines deep tissue imaging and phototherapy [photodynamic therapy (PDT) and/or photothermal therapy (PTT)] via light irradiation, is a promising strategy to treat tumors. Near-infrared (NIR) cyanine dyes are researched as potential phototheranostics reagents for their excellent photophysical properties. However, the low singlet oxygen generation efficiency of cyanine dyes often leads to inadequate therapeutic efficacy for tumors. Herein, we modified an indocyanine green derivative Cy7 with heavy atom iodine to form a novel NIR dye CyI to improve the reactive oxygen species (ROS) production and heat generation while, at the same time, maintain their fluorescence characteristics for in vivo noninvasive imaging. More importantly, in vitro and in vivo therapeutic results illustrated that CyI could quickly and simultaneously generate enhanced ROS and heat to induce more cancer cell apoptosis and higher inhibition rates in deep HepG2 tumors than other noniodinated NIR dyes upon NIR irradiation. Besides, low toxicity of the resulted iodinated NIR dyes was confirmed by in vivo biodistribution and acute toxicity. Results indicate that this low toxic NIR dye could be an ideal phototheranostics agent for deep tumor treatments. Our study presents a novel approach to achieve the fast-synergistic PDT/PTT treatment in deep tissues.
Collapse
Affiliation(s)
| | | | - Junfei Xia
- Department of Bioengineering , Northeastern University , Boston , Massachusetts 02115 , United States
| | | | | | | |
Collapse
|
19
|
Alberto ME, De Simone BC, Sicilia E, Toscano M, Russo N. Rational Design of Modified Oxobacteriochlorins as Potential Photodynamic Therapy Photosensitizers. Int J Mol Sci 2019; 20:ijms20082002. [PMID: 31022831 PMCID: PMC6514987 DOI: 10.3390/ijms20082002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 12/31/2022] Open
Abstract
The modulation of the photophysical properties of a series of recently synthetized oxobacteriochlorins with the introduction of heavy atoms in the macrocycles, was investigated at density functional level of theory and by means of the time-dependent TDDFT formulation. Absorption frequencies, singlet-triplet energy gaps and spin-orbit coupling (SOC) constants values were computed for all the investigated compounds. Results show how the sulfur- selenium- and iodine-substituted compounds possess improved properties that make them suitable for application in photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Marta Erminia Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, Italy.
| | - Bruna Clara De Simone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, Italy.
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, Italy.
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, Italy.
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, Italy.
| |
Collapse
|
20
|
De Simone BC, Mazzone G, Sang-aroon W, Marino T, Russo N, Sicilia E. Theoretical insight into joint photodynamic action of a gold(i) complex and a BODIPY chromophore for singlet oxygen generation. Phys Chem Chem Phys 2019; 21:3446-3452. [DOI: 10.1039/c8cp04848g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inclusion of a heavy gold atom in a peripheral position of BODIPY is enough to promote ISC.
Collapse
Affiliation(s)
- Bruna C. De Simone
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Rende
- Italy
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Rende
- Italy
| | - Wichien Sang-aroon
- Department of Chemistry
- Faculty of Engineering
- Rajamangala University of Technology Isan
- Khon Kaen
- Thailand
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Rende
- Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Rende
- Italy
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Rende
- Italy
| |
Collapse
|
21
|
Alberto ME, De Simone BC, Mazzone G, Russo N, Toscano M. Photophysical Properties of Nitrated and Halogenated Phosphorus Tritolylcorrole Complexes: Insights from Theory. Molecules 2018; 23:molecules23112779. [PMID: 30373179 PMCID: PMC6278441 DOI: 10.3390/molecules23112779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 12/29/2022] Open
Abstract
The photophysical properties of a series of nitrated and halogenated phosphorus tritolylcorrole complexes were studied in dichloromethane solvent by using the density functional theory. Particular emphasis was given to the absorption spectra, the energy gap between the excited singlet and triplet states, and the magnitude of the spin-orbit couplings for a series of possible intersystem crossing channels between those excited states. The proposed study provides a better description of the photophysical properties of these systems while giving insights into their possible use as photosensitizers in photodynamic therapy.
Collapse
Affiliation(s)
- Marta Erminia Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Cubo 14C, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy.
| | - Bruna Clara De Simone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Cubo 14C, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy.
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Cubo 14C, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy.
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Cubo 14C, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy.
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Cubo 14C, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy.
| |
Collapse
|
22
|
Ponte F, Mazzone G, Russo N, Sicilia E. BODIPY for photodynamic therapy applications: computational study of the effect of bromine substitution on 1O 2 photosensitization. J Mol Model 2018; 24:183. [PMID: 29959590 DOI: 10.1007/s00894-018-3727-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/18/2018] [Indexed: 12/11/2022]
Abstract
Density functional theory and its time-dependent extension (DFT, TDDFT) were employed to establish the feasibility of using a series of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPYs) in photodynamic therapy. Their absorption electronic spectra, singlet-triplet energy gaps, and spin-orbit matrix elements were computed and are discussed here. The effects of bromine substitution on the photophysical properties of BODIPY were elucidated. The investigated compounds were found to possess different excited triplet states that lie below the energy of the bright excited singlet state (S1 or S2), depending on the positions occupied by the bromine atoms. The computed spin-orbit matrix elements for the radiationless intersystem crossing Sn → Tm and the relative singlet-triplet energy gaps allowed the prediction of plausible nonradiative decay pathways for the production of singlet excited molecular oxygen, the key cytotoxic agent in photodynamic therapy. Graphical Abstract The photophysical properties affected by the presence of bromine atoms in different positions of a BODIPY core have been here elucidated. In particular it has been found that SOC values strongly depend on the position of heavy atoms into the BODIPY core, suggesting positions 1 and 7 as the best ones to enhance the ISC kinetics.
Collapse
Affiliation(s)
- Fortuna Ponte
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Rende, CS, Italy
| | - Gloria Mazzone
- Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della Calabria, 87036, Rende, CS, Italy.
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Rende, CS, Italy
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Rende, CS, Italy
| |
Collapse
|