1
|
Rocío Hernández A, Bogdanova E, Campos Pacheco JE, Kocherbitov V, Ekström M, Pilkington G, Valetti S. Disordered mesoporous silica particles: an emerging platform to deliver proteins to the lungs. Drug Deliv 2024; 31:2381340. [PMID: 39041383 PMCID: PMC11268259 DOI: 10.1080/10717544.2024.2381340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Pulmonary delivery and formulation of biologics are among the more complex and growing scientific topics in drug delivery. We herein developed a dry powder formulation using disordered mesoporous silica particles (MSP) as the sole excipient and lysozyme, the most abundant antimicrobial proteins in the airways, as model protein. The MSP had the optimal size for lung deposition (2.43 ± 0.13 µm). A maximum lysozyme loading capacity (0.35 mg/mg) was achieved in 150 mM PBS, which was seven times greater than that in water. After washing and freeze-drying, we obtained a dry powder consisting of spherical, non-aggregated particles, free from residual buffer, or unabsorbed lysozyme. The presence of lysozyme was confirmed by TGA and FT-IR, while N2 adsorption/desorption and SAXS analysis indicate that the protein is confined within the internal mesoporous structure. The dry powder exhibited excellent aerodynamic performance (fine particle fraction <5 µm of 70.32%). Lysozyme was released in simulated lung fluid in a sustained kinetics and maintaining high enzymatic activity (71-91%), whereas LYS-MSP were shown to degrade into aggregated nanoparticulate microstructures, reaching almost complete dissolution (93%) within 24 h. MSPs were nontoxic to in vitro lung epithelium. The study demonstrates disordered MSP as viable carriers to successfully deliver protein to the lungs, with high deposition and retained activity.
Collapse
Affiliation(s)
- Aura Rocío Hernández
- Biofilms – Research Center for Biointerfaces (BRCB), Malmö, Sweden
- Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Ekaterina Bogdanova
- Biofilms – Research Center for Biointerfaces (BRCB), Malmö, Sweden
- Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Jesus E. Campos Pacheco
- Biofilms – Research Center for Biointerfaces (BRCB), Malmö, Sweden
- Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Vitaly Kocherbitov
- Biofilms – Research Center for Biointerfaces (BRCB), Malmö, Sweden
- Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | | | | | - Sabrina Valetti
- Biofilms – Research Center for Biointerfaces (BRCB), Malmö, Sweden
- Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| |
Collapse
|
2
|
Campos Pacheco JE, Yalovenko T, Riaz A, Kotov N, Davids C, Persson A, Falkman P, Feiler A, Godaly G, Johnson CM, Ekström M, Pilkington GA, Valetti S. Inhalable porous particles as dual micro-nano carriers demonstrating efficient lung drug delivery for treatment of tuberculosis. J Control Release 2024; 369:231-250. [PMID: 38479444 DOI: 10.1016/j.jconrel.2024.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/24/2024]
Abstract
Inhalation therapy treating severe infectious disease is among the more complex and emerging topics in controlled drug release. Micron-sized carriers are needed to deposit drugs into the lower airways, while nano-sized carriers are of preference for cell targeting. Here, we present a novel and versatile strategy using micron-sized spherical particles with an excellent aerodynamic profile that dissolve in the lung fluid to ultimately generate nanoparticles enabling to enhance both extra- and intra-cellular drug delivery (i.e., dual micro-nano inhalation strategy). The spherical particles are synthesised through the condensation of nano-sized amorphous silicon dioxide resulting in high surface area, disordered mesoporous silica particles (MSPs) with monodispersed size of 2.43 μm. Clofazimine (CLZ), a drug shown to be effective against multidrug-resistant tuberculosis, was encapsulated in the MSPs obtaining a dry powder formulation with high respirable fraction (F.P.F. <5 μm of 50%) without the need of additional excipients. DSC, XRPD, and Nitrogen adsorption-desorption indicate that the drug was fully amorphous when confined in the nano-sized pores (9-10 nm) of the MSPs (shelf-life of 20 months at 4 °C). Once deposited in the lung, the CLZ-MSPs exhibited a dual action. Firstly, the nanoconfinement within the MSPs enabled a drastic dissolution enhancement of CLZ in simulated lung fluid (i.e., 16-fold higher than the free drug), increasing mycobacterial killing than CLZ alone (p = 0.0262) and reaching concentrations above the minimum bactericidal concentration (MBC) against biofilms of M. tuberculosis (i.e., targeting extracellular bacteria). The released CLZ permeated but was highly retained in a Calu-3 respiratory epithelium model, suggesting a high local drug concentration within the lung tissue minimizing risk for systemic side effects. Secondly, the micron-sized drug carriers spontaneously dissolve in simulated lung fluid into nano-sized drug carriers (shown by Nano-FTIR), delivering high CLZ cargo inside macrophages and drastically decreasing the mycobacterial burden inside macrophages (i.e., targeting intracellular bacteria). Safety studies showed neither measurable toxicity on macrophages nor Calu-3 cells, nor impaired epithelial integrity. The dissolved MSPs also did not show haemolytic effect on human erythrocytes. In a nutshell, this study presents a low-cost, stable and non-invasive dried powder formulation based on a dual micro-nano carrier to efficiently deliver drug to the lungs overcoming technological and practical challenges for global healthcare.
Collapse
Affiliation(s)
- Jesús E Campos Pacheco
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Tetiana Yalovenko
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Azra Riaz
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Nikolay Kotov
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Camilla Davids
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alva Persson
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Peter Falkman
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Adam Feiler
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Nanologica AB (publ), Forskargatan 20G, 151 36 Södertälje, Sweden
| | - Gabriela Godaly
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - C Magnus Johnson
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | | | - Georgia A Pilkington
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Nanologica AB (publ), Forskargatan 20G, 151 36 Södertälje, Sweden.
| | - Sabrina Valetti
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden.
| |
Collapse
|
3
|
da Rocha NP, Barbosa EJ, Barros de Araujo GL, Bou-Chacra NA. Innovative drug delivery systems for leprosy treatment. Indian J Dermatol Venereol Leprol 2022; 88:1-6. [PMID: 35434984 DOI: 10.25259/ijdvl_1119_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/01/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Nataly Paredes da Rocha
- Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| | - Eduardo José Barbosa
- Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| | | | - Nádia Araci Bou-Chacra
- Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| |
Collapse
|
4
|
A novel versatile flow-donor chamber as biorelevant ex-vivo test assessing oral mucoadhesive formulations. Eur J Pharm Sci 2021; 166:105983. [PMID: 34461276 DOI: 10.1016/j.ejps.2021.105983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Oral transmucosal drug delivery is a non-invasive administration route for rapid therapeutic onset and greater bioavailability avoiding the first-pass metabolism. Mucoadhesive formulations are advantageous as they may retain the drug at the administration site. Proper equipment to assess mucoadhesive properties and corresponding drug absorption is fundamental for the development of novel drug delivery systems. Here we developed a new flow-through donor chamber for well-established diffusion cells, and we tested the effects on drug and formulation retention in situ of adding mucoadhesive polymers or mesoporous silica particles to a reference formulation. Mesoporous silica particles are of particular interest as they may be used to encapsulate and retain drug molecules. Compared to other ex-vivo methods described in literature for assessing mucoadhesive performance and transmucosal drug delivery, this new donor chamber provides several advantages: i) it reflects physiological conditions better as a realistic saliva flow can be provided over the administration site, ii) it is versatile since it can be mounted on any kind of vertical diffusion cell allowing simultaneous detection of drug retention at the administration site and drug permeation through the tissue, and iii) it enables optical quantification of formulations residence time aided by image processing. This new flow-through donor diffusion cell set-up proved sensitive to differentiate a reference formulation from one where 20 %(w/w) Carbomer was added (to further improve the mucoadhesive properties), with respect to both drug and formulation residence times. We also found that mesoporous silica particles, investigated as particles only and mixed together with the reference formulation, gave very similar drug and formulation retention to what we observed with the mucoadhesive Carbomer. However, after some time (>30 min) it became obvious that the tablet excipients in the reference formulation promote particle retention on the mucosa. This work provides a new simple and versatile biorelevant test for the evaluation of oral mucoadhesive formulations and paves the way for further studies on mesoporous silica particles as valuable excipients for enhancing oral mucoadhesion.
Collapse
|
5
|
Synthesis and Photobehavior of a NewDehydrobenzoannulene-Based HOF with Fluorine Atoms: From Solution to Single Crystals Observation. Int J Mol Sci 2021; 22:ijms22094803. [PMID: 33946609 PMCID: PMC8124357 DOI: 10.3390/ijms22094803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Hydrogen-bonded organic frameworks (HOFs) are the focus of intense scientific research due their potential applications in science and technology. Here, we report on the synthesis, characterization, and photobehavior of a new HOF (T12F-1(124TCB)) based on a dehydrobenzoannulene derivative containing fluorine atoms (T12F-COOH). This HOF exhibits a 2D porous sheet, which is hexagonally networked via H-bonds between the carboxylic groups, and has an interlayers distance (4.3 Å) that is longer than that of a typical π–π interaction. The presence of the fluorine atoms in the DBA molecular units largely increases the emission quantum yield in DMF (0.33, T12F-COOH) when compared to the parent compound (0.02, T12-COOH). The time-resolved dynamics of T12F-COOH in DMF is governed by the emission from a locally excited state (S1, ~0.4 ns), a charge-transfer state (S1(CT), ~2 ns), and a room temperature emissive triplet state (T1, ~20 ns), in addition to a non-emissive triplet structure with a charge-transfer character (T1(CT), τ = 0.75 µs). We also report on the results using T12F-ester. Interestingly, FLIM experiments on single crystals unravel that the emission lifetimes of the crystalline HOF are almost twice those of the amorphous ones or the solid T12F-ester sample. This shows the relevance of the H-bonds in the photodynamics of the HOF and provides a strong basis for further development and study of HOFs based on DBAs for potential applications in photonics.
Collapse
|
6
|
Valetti S, Thomsen H, Wankar J, Falkman P, Manet I, Feiler A, Ericson MB, Engblom J. Can mesoporous nanoparticles promote bioavailability of topical pharmaceutics? Int J Pharm 2021; 602:120609. [PMID: 33901597 DOI: 10.1016/j.ijpharm.2021.120609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/27/2022]
Abstract
When applied to skin, particulate matter has been shown to accumulate in hair follicles. In addition to follicles, the skin topography also incorporates trench-like furrows where particles potentially can accumulate; however, the furrows have not been as thoroughly investigated in a drug delivery perspective. Depending on body site, the combined follicle orifices cover up to 10% of the skin surface, while furrows can easily cover 20%, reaching depths exceeding 25 µm. Hence, porous particles of appropriate size and porosity could serve as carriers for drugs to be released in the follicles prior to local or systemic absorption. In this paper, we combine multiphoton microscopy, scanning electron microscopy, and Franz cell diffusion technology to investigate ex-vivo skin accumulation of mesoporous silica particles (average size of 400-600 nm, 2, and 7 µm, respectively), and the potential of which as vehicles for topical delivery of the broad-spectrum antibiotic metronidazole. We detected smaller particles (400-600 nm) in furrows at depths of about 25 µm, also after rinsing, while larger particles (7 µm) where located more superficially on the skin. This implies that appropriately sized porous particles may serve as valuable excipients in optimizing bioavailability of topical formulations. This work highlights the potential of skin furrows for topical drug delivery.
Collapse
Affiliation(s)
- Sabrina Valetti
- Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, SE-205 06 Malmö, Sweden; Nanologica AB, Södertälje, Sweden.
| | - Hanna Thomsen
- Biomedical Photonics Group, Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Jitendra Wankar
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy; Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Peter Falkman
- Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, SE-205 06 Malmö, Sweden
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Adam Feiler
- Nanologica AB, Södertälje, Sweden; KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Marica B Ericson
- Biomedical Photonics Group, Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Johan Engblom
- Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, SE-205 06 Malmö, Sweden
| |
Collapse
|
7
|
Deciphering the photobehaviour of ensemble and single crystals of Zr-based ITQ MOF composites. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Zou Y, Huang B, Cao L, Deng Y, Su J. Tailored Mesoporous Inorganic Biomaterials: Assembly, Functionalization, and Drug Delivery Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005215. [PMID: 33251635 DOI: 10.1002/adma.202005215] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Indexed: 05/06/2023]
Abstract
Infectious or immune diseases have caused serious threat to human health due to their complexity and specificity, and emerging drug delivery systems (DDSs) have evolved into the most promising therapeutic strategy for drug-targeted therapy. Various mesoporous biomaterials are exploited and applied as efficient nanocarriers to loading drugs by virtue of their large surface area, high porosity, and prominent biocompatibility. Nanosized mesoporous nanocarriers show great potential in biomedical research, and it has become the research hotspot in the interdisciplinary field. Herein, recent progress and assembly mechanisms on mesoporous inorganic biomaterials (e.g., silica, carbon, metal oxide) are summarized systematically, and typical functionalization methods (i.e., hybridization, polymerization, and doping) for nanocarriers are also discussed in depth. Particularly, structure-activity relationship and the effect of physicochemical parameters of mesoporous biomaterials, including morphologies (e.g., hollow, core-shell), pore textures (e.g., pore size, pore volume), and surface features (e.g., roughness and hydrophilic/hydrophobic) in DDS application are overviewed and elucidated in detail. As one of the important development directions, advanced stimuli-responsive DDSs (e.g., pH, temperature, redox, ultrasound, light, magnetic field) are highlighted. Finally, the prospect of mesoporous biomaterials in disease therapeutics is stated, and it will open a new spring for the development of mesoporous nanocarriers.
Collapse
Affiliation(s)
- Yidong Zou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
- Department of Orthopedics Trauma, Shanghai Luodian Hospital, Baoshan District, Shanghai, 201908, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
9
|
Mesoporous Silica Platforms with Potential Applications in Release and Adsorption of Active Agents. Molecules 2020; 25:molecules25173814. [PMID: 32825791 PMCID: PMC7503268 DOI: 10.3390/molecules25173814] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 01/01/2023] Open
Abstract
In recent years, researchers focused their attention on mesoporous silica nanoparticles (MSNs) owing to the considerable advancements of the characterization methods, especially electron microscopy methods, which allowed for a clear visualization of the pore structure and the materials encapsulated within the pores, along with the X-ray diffraction (small angles) methods and specific surface area determination by Brunauer–Emmett–Teller (BET) technique. Mesoporous silica gained important consideration in biomedical applications thanks to its tunable pore size, high surface area, surface functionalization possibility, chemical stability, and pore nature. Specifically, the nature of the pores allows for the encapsulation and release of anti-cancer drugs into tumor tissues, which makes MSN ideal candidates as drug delivery carriers in cancer treatment. Moreover, the inner and outer surfaces of the MSN provide a platform for further functionalization approaches that could enhance the adsorption of the drug within the silica network and the selective targeting and controlled release to the desired site. Additionally, stimuli-responsive mesoporous silica systems are being used as mediators in cancer therapy, and through the release of the therapeutic agents hosted inside the pores under the action of specific triggering factors, it can selectively deliver them into tumor tissues. Another important application of the mesoporous silica nanomaterials is related to its ability to extract different hazardous species from aqueous media, some of these agents being antibiotics, pesticides, or anti-tumor agents. The purpose of this paper is to analyze the methods of MSN synthesis and related characteristics, the available surface functionalization strategies, and the most important applications of MSN in adsorption as well as release studies. Owing to the increasing antibiotic resistance, the need for developing materials for antibiotic removal from wastewaters is important and mesoporous materials already proved remarkable performances in environmental applications, including removal or even degradation of hazardous agents such as antibiotics and pesticides.
Collapse
|
10
|
Angiolini L, Cohen B, Douhal A. Single Crystal FLIM Characterization of Clofazimine Loaded in Silica-Based Mesoporous Materials and Zeolites. Int J Mol Sci 2019; 20:E2859. [PMID: 31212750 PMCID: PMC6627708 DOI: 10.3390/ijms20122859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 01/19/2023] Open
Abstract
Clofazimine (CLZ) is an effective antibiotic used against a wide spectrum of Gram-positive bacteria and leprosy. One of its main drawbacks is its poor solubility in water. Silica based materials are used as drug delivery carriers that can increase the solubility of different hydrophobic drugs. Here, we studied how the properties of the silica framework of the mesoporous materials SBA-15, MCM-41, Al-MCM-41, and zeolites NaX, NaY, and HY affect the loading, stability, and distribution of encapsulated CLZ. Time-correlated single-photon counting (TCSPC) and fluorescence lifetime imaging microscopy (FLIM) experiments show the presence of neutral and protonated CLZ (1.3-3.8 ns) and weakly interacting aggregates (0.4-0.9 ns), along with H- and J-type aggregates (<0.1 ns). For the mesoporous and HY zeolite composites, the relative contribution to the overall emission spectra from H-type aggregates is low (<10%), while for the J-type aggregates it becomes higher (~30%). For NaX and NaY the former increased whereas the latter decreased. Although the CLZ@mesoporous composites show higher loading compared to the CLZ@zeolites ones, the behavior of CLZ is not uniform and its dynamics are more heterogeneous across different single mesoporous particles. These results may have implication in the design of silica-based drug carriers for better loading and release mechanisms of hydrophobic drugs.
Collapse
Affiliation(s)
- Lorenzo Angiolini
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| |
Collapse
|
11
|
Desai D, Åkerfelt M, Prabhakar N, Toriseva M, Näreoja T, Zhang J, Nees M, Rosenholm JM. Factors Affecting Intracellular Delivery and Release of Hydrophilic Versus Hydrophobic Cargo from Mesoporous Silica Nanoparticles on 2D and 3D Cell Cultures. Pharmaceutics 2018; 10:E237. [PMID: 30453596 PMCID: PMC6320991 DOI: 10.3390/pharmaceutics10040237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022] Open
Abstract
Intracellular drug delivery by mesoporous silica nanoparticles (MSNs) carrying hydrophilic and hydrophobic fluorophores as model drug cargo is demonstrated on 2D cellular and 3D tumor organoid level. Two different MSN designs, chosen on the basis of the characteristics of the loaded cargo, were used: MSNs with a surface-grown poly(ethylene imine), PEI, coating only for hydrophobic cargo and MSNs with lipid bilayers covalently coupled to the PEI layer as a diffusion barrier for hydrophilic cargo. First, the effect of hydrophobicity corresponding to loading degree (hydrophobic cargo) as well as surface charge (hydrophilic cargo) on intracellular drug release was studied on the cellular level. All incorporated agents were able to release to varying degrees from the endosomes into the cytoplasm in a loading degree (hydrophobic) or surface charge (hydrophilic) dependent manner as detected by live cell imaging. When administered to organotypic 3D tumor models, the hydrophilic versus hydrophobic cargo-carrying MSNs showed remarkable differences in labeling efficiency, which in this case also corresponds to drug delivery efficacy in 3D. The obtained results could thus indicate design aspects to be taken into account for the development of efficacious intracellular drug delivery systems, especially in the translation from standard 2D culture to more biologically relevant organotypic 3D cultures.
Collapse
Affiliation(s)
- Diti Desai
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20521 Turku, Finland.
| | - Malin Åkerfelt
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
| | - Neeraj Prabhakar
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20521 Turku, Finland.
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, 20521 Turku, Finland.
| | - Mervi Toriseva
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
| | - Tuomas Näreoja
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, 14186 Stockholm, Sweden.
| | - Jixi Zhang
- College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Matthias Nees
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20521 Turku, Finland.
| |
Collapse
|