1
|
Hu J, Ni W, Han M, Zhan Y, Li F, Huang H, Han J. Machine learning-assisted pattern recognition and imaging of multiplexed cancer cells via a porphyrin-embedded dendrimer array. J Mater Chem B 2024; 13:207-217. [PMID: 39545798 DOI: 10.1039/d4tb01861c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Early cancer detection plays a vital role in improving the survival rate of cancer patients, underscoring the importance of developing cancer detection methods. However, it is a great challenge to achieve simple, rapid, and accurate methods for simultaneously discerning various cancers. Herein we developed a 5-element porphyrin-embedded dendrimer-based sensor array, targeting the parallel discrimination of multiple cancers. The porphyrin-embedded dendrimers were modified with various functional groups to generate differentiated interactions with diverse cancer cells, which has been validated by fluorescence responses and laser confocal microscopy imaging. The dual-channel, five-element array, featuring ten signal outputs, achieved 100% accuracy in distinguishing between one human normal cell and six human cancerous cells, as well as in differentiating among mixed cells. Moreover, the screen 6-channel array can accurately distinguish 9 cells from mice and humans in minutes through optimization by multiple machine learning algorithms, including two normal cells and 7 cancerous cells with only 1000 cells, highlighting the significant potential of a porphyrin-embedded dendrimer-based parallel discriminating platform in early cancer diagnosis.
Collapse
Affiliation(s)
- Jiabao Hu
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, 210009, China.
| | - Weiwei Ni
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, 210009, China.
| | - Mengting Han
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, 210009, China.
| | - Yunzhen Zhan
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, 210009, China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, 210009, China.
| | - Hui Huang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, 210009, China.
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, 210009, China.
| |
Collapse
|
2
|
Zhang Y, Luo Z, Zhang Y, Guo F. Simulation study on electroporation of cancer cells in multicellular system. Bioelectrochemistry 2024; 160:108789. [PMID: 39128409 DOI: 10.1016/j.bioelechem.2024.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Electroporation (EP) of the normal cell and cancer cell both in single-cell and multicellular models was investigated by the meshed transport network method (MTNM) in this paper. The simulation results suggest that the cancer cell undergoes faster and more significant local EP than that of the corresponding normal cell induced by nanosecond pulsed electric fields (nsPEFs) both in single-cell and multicellular models. Furthermore, the results of the multicellular model indicate that there is a unidirectional neighboring effect in the multicellular model, meaning that cells at the center are affected and their pore formation is significantly reduced, but this effect is very weak for cells at the edges of the system. This means that the electric field selectively kills cells in different distribution locations. This work can provide guidance for the selection of parameters for the cancer cell EP process.
Collapse
Affiliation(s)
- Yu Zhang
- Department of gynecology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China.
| | - Zhijun Luo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yapeng Zhang
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Fei Guo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| |
Collapse
|
3
|
Song Q, Li Y, Ma L, Li Y, Lv Y. A High-Throughput Screening Strategy for Synthesizing Molecularly Imprinted Polymer Nanoparticles Selectively Targeting Tumors. Adv Healthc Mater 2024; 13:e2400290. [PMID: 39021323 DOI: 10.1002/adhm.202400290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/04/2024] [Indexed: 07/20/2024]
Abstract
Molecularly imprinted polymers (MIPs) show significant promise as effective alternatives to antibodies in disease diagnosis and therapy. However, the challenging process of screening extensive libraries of monomer combinations and synthesis conditions to identify formulations with enhanced selectivity and affinity presents a notable time constraint. The need for expedient methods becomes clear in accelerating the strategic development of MIPs tailored for precise molecular recognition purposes. In this study, an innovative high-throughput screening methodology designed to identify the optimal MIP formulation for targeting tumors is presented. Employing a microtiter plate format, over 100 polymer syntheses are conducted, incorporating diverse combinations of functional monomers. Evaluation of binding performance utilizes fluorescence-based assays, focusing on an epitope of the epidermal growth factor receptor (EGFR). Through this meticulously structured screening process, synthesis conditions that produced MIP nanoparticles exhibiting substantial specificity for EGFR targeting (KD = 10-12 m) are identified. These "bionic antibodies" demonstrate selective recognition of cancer cells in whole blood samples, even at concentrations as low as 5 cells mL-1. Further validation through fluorescent imaging confirms the tumor-specific localization of the MIPs in vivo. This highly efficient screening approach facilitates the strategic synthesis of imprinted polymers functioning as precision bioprobes.
Collapse
Affiliation(s)
- Qingmei Song
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Li
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liang Ma
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuan Li
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongqin Lv
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Hu M, Yingyu Z, Zhang M, Wang Q, Cheng W, Hou L, Yuan J, Yu Z, Li L, Zhang X, Zhang W. Functionalizing tetrahedral framework nucleic acids-based nanostructures for tumor in situ imaging and treatment. Colloids Surf B Biointerfaces 2024; 240:113982. [PMID: 38788473 DOI: 10.1016/j.colsurfb.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Timely in situ imaging and effective treatment are efficient strategies in improving the therapeutic effect and survival rate of tumor patients. In recent years, there has been rapid progress in the development of DNA nanomaterials for tumor in situ imaging and treatment, due to their unsurpassed structural stability, excellent material editability, excellent biocompatibility and individual endocytic pathway. Tetrahedral framework nucleic acids (tFNAs), are a typical example of DNA nanostructures demonstrating superior stability, biocompatibility, cell-entry performance, and flexible drug-loading ability. tFNAs have been shown to be effective in achieving timely tumor in situ imaging and precise treatment. Therefore, the progress in the fabrication, characterization, modification and cellular internalization pathway of tFNAs-based functional systems and their potential in tumor in situ imaging and treatment applications were systematically reviewed in this article. In addition, challenges and future prospects of tFNAs in tumor in situ imaging and treatment as well as potential clinical applications were discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Zhang Yingyu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Ligong Hou
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Jingya Yuan
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhidan Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Lifeng Li
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
5
|
Guan G, Chen Y, Wang H, Ouyang Q, Tang C. Characterizing Cellular Physiological States with Three-Dimensional Shape Descriptors for Cell Membranes. MEMBRANES 2024; 14:137. [PMID: 38921504 PMCID: PMC11205511 DOI: 10.3390/membranes14060137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The shape of a cell as defined by its membrane can be closely associated with its physiological state. For example, the irregular shapes of cancerous cells and elongated shapes of neuron cells often reflect specific functions, such as cell motility and cell communication. However, it remains unclear whether and which cell shape descriptors can characterize different cellular physiological states. In this study, 12 geometric shape descriptors for a three-dimensional (3D) object were collected from the previous literature and tested with a public dataset of ~400,000 independent 3D cell regions segmented based on fluorescent labeling of the cell membranes in Caenorhabditis elegans embryos. It is revealed that those shape descriptors can faithfully characterize cellular physiological states, including (1) cell division (cytokinesis), along with an abrupt increase in the elongation ratio; (2) a negative correlation of cell migration speed with cell sphericity; (3) cell lineage specification with symmetrically patterned cell shape changes; and (4) cell fate specification with differential gene expression and differential cell shapes. The descriptors established may be used to identify and predict the diverse physiological states in numerous cells, which could be used for not only studying developmental morphogenesis but also diagnosing human disease (e.g., the rapid detection of abnormal cells).
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
| | - Yixuan Chen
- School of Physics, Peking University, Beijing 100871, China;
| | - Hongli Wang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
- School of Physics, Peking University, Beijing 100871, China;
| | - Qi Ouyang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
- School of Physics, Peking University, Beijing 100871, China;
- School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
- School of Physics, Peking University, Beijing 100871, China;
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Li J, Ni Y, Wang J, Zhu Y, Wang A, Zhu X, Sun X, Wang S, Li D, Zhou H. Precisely modulating the chromatin tracker via substituent engineering: reporting pathological oxidative stress during mitosis. Chem Sci 2024; 15:3949-3956. [PMID: 38487223 PMCID: PMC10935666 DOI: 10.1039/d3sc06342a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 03/17/2024] Open
Abstract
An in-depth understanding of cancer-cell mitosis presents unprecedented advantages for solving metastasis and proliferation of tumors, which has aroused great interest in visualizing the behavior via a luminescence tool. We developed a fluorescent molecule CBTZ-yne based on substituent engineering to acquire befitting lipophilicity and electrophilicity for anchoring lipid droplets and the nucleus, in which the low polarity environment and nucleic acids triggered a "weak-strong" fluorescence and "short-long" fluorescence-lifetime response. Meaningfully, CBTZ-yne visualized chromatin condensation, alignment, pull-push, and separation as well as lipid droplet dynamics, for the first time, precisely unveiling the asynchronous cellular mitosis processes affected by photo-generation reactive oxygen species according to the subtle change of fluorescence-lifetime. Our work suggested a new guideline for tracking the issue of the proliferation of malignant tumors in photodynamic therapy.
Collapse
Affiliation(s)
- Jinsong Li
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Yingyong Ni
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Junjun Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Yicai Zhu
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Aidong Wang
- Key Laboratory of Drug Design, Huangshan University Huangshan 245021 P. R. China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Xianshun Sun
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Dandan Li
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| |
Collapse
|
7
|
Zhang Y, Wang Q, Zhao X, Ma Y, Zhang H, Pan G. Molecularly Imprinted Nanomaterials with Stimuli Responsiveness for Applications in Biomedicine. Molecules 2023; 28:molecules28030918. [PMID: 36770595 PMCID: PMC9919331 DOI: 10.3390/molecules28030918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The review aims to summarize recent reports of stimuli-responsive nanomaterials based on molecularly imprinted polymers (MIPs) and discuss their applications in biomedicine. In the past few decades, MIPs have been proven to show widespread applications as new molecular recognition materials. The development of stimuli-responsive nanomaterials has successfully endowed MIPs with not only affinity properties comparable to those of natural antibodies but also the ability to respond to external stimuli (stimuli-responsive MIPs). In this review, we will discuss the synthesis of MIPs, the classification of stimuli-responsive MIP nanomaterials (MIP-NMs), their dynamic mechanisms, and their applications in biomedicine, including bioanalysis and diagnosis, biological imaging, drug delivery, disease intervention, and others. This review mainly focuses on studies of smart MIP-NMs with biomedical perspectives after 2015. We believe that this review will be helpful for the further exploration of stimuli-responsive MIP-NMs and contribute to expanding their practical applications especially in biomedicine in the near future.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qinghe Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiao Zhao
- College of Life Sciences, Northwest Normal University, Lanzhou 730071, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland
- Correspondence: (Y.M.); (G.P.)
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Correspondence: (Y.M.); (G.P.)
| |
Collapse
|
8
|
Recent advances of magnetic molecularly imprinted materials: From materials design to complex sample pretreatment. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Nazbar A, Samani S, Yazdian Kashani S, Amanzadeh A, Shoeibi S, Bonakdar S. Molecular imprinting as a simple way for the long-term maintenance of the stemness and proliferation potential of adipose-derived stem cells: an in vitro study. J Mater Chem B 2022; 10:6816-6830. [DOI: 10.1039/d2tb00279e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Culturing adipose-derived stem cells (ADSCs) on the biomimetic ADSC-imprinted substrate is a simple way for long-term maintenance of their stemness and proliferation potential.
Collapse
Affiliation(s)
- Abolfazl Nazbar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Samani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Shahram Shoeibi
- Food and Drug Laboratory Research Center (FDLRC), Iran Food and Drug Administration (IFDA), MOH & ME, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Yazdian Kashani S, Keshavarz Moraveji M, Bonakdar S. Computational and experimental studies of a cell-imprinted-based integrated microfluidic device for biomedical applications. Sci Rep 2021; 11:12130. [PMID: 34108580 PMCID: PMC8190060 DOI: 10.1038/s41598-021-91616-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
It has been proved that cell-imprinted substrates molded from template cells can be used for the re-culture of that cell while preserving its normal behavior or to differentiate the cultured stem cells into the template cell. In this study, a microfluidic device was presented to modify the previous irregular cell-imprinted substrate and increase imprinting efficiency by regular and objective cell culture. First, a cell-imprinted substrate from template cells was prepared using a microfluidic chip in a regular pattern. Another microfluidic chip with the same pattern was then aligned on the cell-imprinted substrate to create a chondrocyte-imprinted-based integrated microfluidic device. Computational fluid dynamics (CFD) simulations were used to obtain suitable conditions for injecting cells into the microfluidic chip before performing experimental evaluations. In this simulation, the effect of input flow rate, number per unit volume, and size of injected cells in two different chip sizes were examined on exerted shear stress and cell trajectories. This numerical simulation was first validated with experiments with cell lines. Finally, chondrocyte was used as template cell to evaluate the chondrogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs) in the chondrocyte-imprinted-based integrated microfluidic device. ADSCs were positioned precisely on the chondrocyte patterns, and without using any chemical growth factor, their fibroblast-like morphology was modified to the spherical morphology of chondrocytes after 14 days of culture. Both immunostaining and gene expression analysis showed improvement in chondrogenic differentiation compared to traditional imprinting methods. This study demonstrated the effectiveness of cell-imprinted-based integrated microfluidic devices for biomedical applications.
Collapse
Affiliation(s)
- Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 1591634311, Iran
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 1591634311, Iran.
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, P.O. Box 13169-43551, Tehran, Iran.
| |
Collapse
|
11
|
Fu X, Li Y, Gao S, Lv Y. Selective recognition of tumor cells by molecularly imprinted polymers. J Sep Sci 2021; 44:2483-2495. [PMID: 33835702 DOI: 10.1002/jssc.202100137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022]
Abstract
Molecularly imprinted polymers, developed 50 years ago, have garnered enormous attention as receptor-like materials. Lately, molecularly imprinted polymers have been employed as a specific target tool in favor of cancer diagnosis and therapy by the selective recognition of tumor cells. Although the molecular imprinting technology has been well-innovated recently, the cell still remains the most challenging target for imprinting. In this review, we summarize the advances in the synthesis of molecularly imprinted polymers suitable for the selective recognition of tumor cells. Through a sustained effort, three strategies have been developed including peptide-imprinting, polysaccharide-imprinting, and whole-cell imprinting, which have resulted in inspiring applications in effective cancer diagnosis and therapy. The major challenges and perspectives on the further directions related to the synthesis of molecularly imprinted polymers were also outlined.
Collapse
Affiliation(s)
- Xiaopeng Fu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yan Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Shuang Gao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
12
|
Ren Y, Zhang Y, Liu J, Liu P, Yang J, Guo D, Tang A, Tao J. Matrix hardness regulates the cancer cell malignant progression through cytoskeletal network. Biochem Biophys Res Commun 2021; 541:95-101. [PMID: 33493685 DOI: 10.1016/j.bbrc.2021.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment is a complex microenvironment that combines the biochemical and biophysical factors. When the cells are exposed to the microenvironment, the direct biophysical factor is the matrix hardness. As an auxiliary indicator of clinical disease diagnosis, it is still not clear how the matrix hardness induces cell malignant changes and the regulation mechanisms. In this study, we identified that hard matrix significantly promoted cancer cell migratory behaviors. Cell shape was closely associated with cancer cell malignancy, the high malignant cells were associated with high ratios of length/width and low circularity. F-actin networks were also linked with extracellular matrix, it was not regularly distributed when cells were in non-malignant tumor phases or under F-actin inhibition. F-actin might play the key role that transmitted the signal from extracellular matrix to the intracellular organelles. Further study confirmed that active YAP was translocated to nucleus on hard matrix. Cells on hard matrix with cytochalasin D reversed the cancer cell malignancy, meanwhile F-actin re-distributed to the membrane and YAP nucleus translocations were hindered. This work confirmed that F-actin and YAP were upstream-downstream cascade for the cellular and nucleus outside-in signal transductions. The above results demonstrated that hard matrix promoted breast cancer cell malignant behaviors through F-actin network and YAP activation. These results not only described the signal transductions from extracellular to intracellular that was initiated by the biophysical tumor microenvironment, but provided clinical intervention ideas for cancer treatments.
Collapse
Affiliation(s)
- Yonggang Ren
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, PR China; School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Yi Zhang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Jialing Liu
- Department of Medical Imageology, North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Peiru Liu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Jing Yang
- School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Dongmei Guo
- School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Aifa Tang
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, PR China.
| | - Jia Tao
- School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, PR China; Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, PR China.
| |
Collapse
|
13
|
Yazdian Kashani S, Keshavarz Moraveji M, Taghipoor M, Kowsari-Esfahan R, Hosseini AA, Montazeri L, Dehghan MM, Gholami H, Farzad-Mohajeri S, Mehrjoo M, Majidi M, Renaud P, Bonakdar S. An integrated microfluidic device for stem cell differentiation based on cell-imprinted substrate designed for cartilage regeneration in a rabbit model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111794. [PMID: 33579444 DOI: 10.1016/j.msec.2020.111794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/30/2020] [Accepted: 12/02/2020] [Indexed: 01/12/2023]
Abstract
Separating cells from the body and cultivating them in vitro will alter the function of cells. Therefore, for optimal cell culture in the laboratory, conditions similar to those of their natural growth should be provided. In previous studies, it has been shown that the use of cellular shape at the culture surface can regulate cellular function. In this work, the efficiency of the imprinting method increased by using microfluidic chip design and fabrication. In this method, first, a cell-imprinted substrate of chondrocytes was made using a microfluidic chip. Afterwards, stem cells were cultured on a cell-imprinted substrate using a second microfluidic chip aligned with the substrate. Therefore, stem cells were precisely placed on the chondrocyte patterns on the substrate and their fibroblast-like morphology was changed to chondrocyte's spherical morphology after 14-days culture in the chip without using any chemical growth factor. After chondrogenic differentiation and in vitro assessments (real-time PCR and immunocytotoxicity), differentiated stem cells were transferred on a collagen-hyaluronic acid scaffold and transplanted in articular cartilage defect of the rabbit. After 6 months, the post-transplantation analysis showed that the articular cartilage defect had been successfully regenerated in differentiated stem cell groups in comparison with the controls. In conclusion, this study showed the potency of the imprinting method for inducing chondrogenicity in stem cells, which can be used in clinical trials due to the safety of the procedure.
Collapse
Affiliation(s)
- Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 1591634311 Tehran, Iran
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 1591634311 Tehran, Iran.
| | - Mojtaba Taghipoor
- School of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran
| | - Reza Kowsari-Esfahan
- National Cell Bank Department, Pasteur Institute of Iran, P.O. Box 13169-43551, Tehran, Iran
| | | | - Leila Montazeri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Institute of Biomedical Research, University of Tehran, Tehran, Iran; Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hossein Gholami
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Institute of Biomedical Research, University of Tehran, Tehran, Iran; Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Morteza Mehrjoo
- National Cell Bank Department, Pasteur Institute of Iran, P.O. Box 13169-43551, Tehran, Iran
| | - Mohammad Majidi
- National Cell Bank Department, Pasteur Institute of Iran, P.O. Box 13169-43551, Tehran, Iran
| | - Philippe Renaud
- Laboratory of Microsystems (LMIS4), École Polytechnique FÉdÉrale de Lausanne, Station 17, CH-1015 Lausanne, Switzerland
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, P.O. Box 13169-43551, Tehran, Iran.
| |
Collapse
|
14
|
Filby BW, Hardman MJ, Paunov VN. Antibody‐free bioimprint aided sandwich ELISA technique for cell recognition and rapid screening for bacteria. NANO SELECT 2020. [DOI: 10.1002/nano.202000113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Benjamin W. Filby
- Department of Chemistry and Biochemistry University of Hull Hull HU6 7RX UK
| | - Matthew J. Hardman
- Department of Chemistry and Biochemistry University of Hull Hull HU6 7RX UK
| | - Vesselin N. Paunov
- Department of Chemistry and Biochemistry University of Hull Hull HU6 7RX UK
| |
Collapse
|
15
|
Pelle M, Das AAK, Madden LA, Paunov VN. Bioimprint Mediated Label-Free Isolation of Pancreatic Tumor Cells from a Healthy Peripheral Blood Cell Population. ADVANCED BIOSYSTEMS 2020; 4:e2000054. [PMID: 33016004 DOI: 10.1002/adbi.202000054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/22/2020] [Indexed: 11/11/2022]
Abstract
New techniques are required for earlier diagnosis and response to treatment of pancreatic cancer. Here, a label-free approach is reported in which circulating pancreatic tumor cells are isolated from healthy peripheral blood cells via cell bioimprinting technology. The method involves pre-fabrication of pancreatic cell layers and sequential casting of cell surfaces with a series of custom-made resins to produce negative cell imprints. The imprint is functionalized with a combination of polymers to engineer weak attraction to the cells which is further amplified by the increased area of contact with the matching cells. A flow-through bioimprint chip is designed and tested for selectivity toward two pancreatic tumor cell lines, ASPC-1 and Mia-PaCa-2. Healthy human peripheral blood mononuclear cells (PBMCs) are spiked with pancreatic tumor cells at various concentrations. Bioimprints are designed for preferential retention of the matching pancreatic tumor cells and with respect to PBMCs. Tumor bioimprints are capable of capturing and concentrating pancreatic tumor cells from a mixed cell population with increased retention observed with the number of seedings. ASPC-1 bioimprints preferentially retain both types of pancreatic tumor cells. This technology could be relevant for the collection and interrogation of liquid biopsies, early detection, and relapse monitoring of pancreatic cancer patients.
Collapse
Affiliation(s)
- Marie Pelle
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| | - Anupam A K Das
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| | - Leigh A Madden
- Department of Biomedical Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Vesselin N Paunov
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
16
|
Pidenko PS, Pidenko SA, Skibina YS, Zacharevich AM, Drozd DD, Goryacheva IY, Burmistrova NA. Molecularly imprinted polyaniline for detection of horseradish peroxidase. Anal Bioanal Chem 2020; 412:6509-6517. [PMID: 32388579 DOI: 10.1007/s00216-020-02689-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
A new facile and fast approach to the synthesis of polyaniline (PANi) molecularly imprinted polymers (MIPs) based on aniline oxidative chemical polymerization was proposed for protein recognition. For the first time, a surface imprinting strategy was implemented for the synthesis of PANi MIPs on the inner surface of soft glass polycapillaries (PC) with a large (2237) number of individual microcapillaries. Two different PANi layers-(i) PANi film and (ii) protein imprinted PANi nanowires-were synthesized sequentially. Uniform and highly stable PANi film was synthesized by oxidative polymerization at pH< 1. The synthesis of PANi MIPs on the PANi film pre-coated surface improved the reproducibility of PANi MIP formation. PANi MIP nanowires were synthesized at "mild" conditions (pH > 4.5) to preserve the protein template activity. The binding of horseradish peroxidase (HRP) molecules on the PANi MIP selective sites was confirmed by photometry (TMB chromogenic reaction), SEM images, and FTIR spectroscopy. The developed PANi MIPs enable HRP determination with a limit of detection (LOD) as low as 1.00 and 0.07 ng mL-1 on the glass slips and PC, respectively. The PANi MIPs are characterized by high stability; they are reversible and selective to HRP. The proposed approach allows PANi MIPs to be obtained for proteins on different supports and to create new materials for separation and sensing. Graphical abstract.
Collapse
Affiliation(s)
- Pavel S Pidenko
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Sergei A Pidenko
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Yulia S Skibina
- SPE LLC Nanostructured Glass Technology, Saratov, 410033, Russia
| | - Andrey M Zacharevich
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Daniil D Drozd
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Irina Yu Goryacheva
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Natalia A Burmistrova
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012.
| |
Collapse
|
17
|
Tang SW, Tong WY, Pang SW, Voelcker NH, Lam YW. Deconstructing, Replicating, and Engineering Tissue Microenvironment for Stem Cell Differentiation. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:540-554. [PMID: 32242476 DOI: 10.1089/ten.teb.2020.0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the most crucial components of regenerative medicine is the controlled differentiation of embryonic or adult stem cells into the desired cell lineage. Although most of the reported protocols of stem cell differentiation involve the use of soluble growth factors, it is increasingly evident that stem cells also undergo differentiation when cultured in the appropriate microenvironment. When cultured in decellularized tissues, for instance, stem cells can recapitulate the morphogenesis and functional specialization of differentiated cell types with speed and efficiency that often surpass the traditional growth factor-driven protocols. This suggests that the tissue microenvironment (TME) provides stem cells with a holistic "instructive niche" that harbors signals for cellular reprogramming. The translation of this into medical applications requires the decoding of these signals, but this has been hampered by the complexity of TME. This problem is often addressed by a reductionist approach, in which cells are exposed to substrates decorated with simple, empirically designed geometries, textures, and chemical compositions ("bottom-up" approach). Although these studies are invaluable in revealing the basic principles of mechanotransduction mechanisms, their physiological relevance is often uncertain. This review examines the recent progress of an alternative, "top-down" approach, in which the TME is treated as a holistic biological entity. This approach is made possible by recent advances in systems biology and fabrication technologies that enable the isolation, characterization, and reconstitution of TME. It is hoped that these new techniques will elucidate the nature of niche signals so that they can be extracted, replicated, and controlled. This review summarizes these emerging techniques and how the data they generated are changing our view on TME. Impact statement This review summarizes the current state of art of the understanding of instructive niche in the field of tissue microenvironment. Not only did we survey the use of different biochemical preparations as stimuli of stem cell differentiation and summarize the recent effort in dissecting the biochemical composition of these preparations, through the application of extracellular matrix (ECM) arrays and proteomics, but we also introduce the use of open-source, high-content immunohistochemistry projects in contributing to the understanding of tissue-specific composition of ECM. We believe this review would be highly useful for our peer researching in the same field. "Mr. Tulkinghorn is always the same… so oddly out of place and yet so perfectly at home." -Charles Dickens, Bleak House.
Collapse
Affiliation(s)
- Sze Wing Tang
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong
| | - Wing Yin Tong
- Melbourne Center for Nanofabrication, Victorian Node of the Australian National Fabrication, Clayton, Australia.,Drug Delivery Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Stella W Pang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong
| | - Nicolas H Voelcker
- Melbourne Center for Nanofabrication, Victorian Node of the Australian National Fabrication, Clayton, Australia.,Drug Delivery Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
18
|
Chester R, Das AAK, Medlock J, Nees D, Allsup DJ, Madden LA, Paunov VN. Removal of Human Leukemic Cells from Peripheral Blood Mononuclear Cells by Cell Recognition Chromatography with Size Matched Particle Imprints. ACS APPLIED BIO MATERIALS 2020; 3:789-800. [DOI: 10.1021/acsabm.9b00770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rosie Chester
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| | - Anupam A. K. Das
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| | - Jevan Medlock
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| | - Dieter Nees
- Joanneum Research FmbH, Leonhardstrasse 59, 8010 Graz, Austria
| | - David J. Allsup
- Hull York Medical School, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| | - Leigh A. Madden
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| | - Vesselin N. Paunov
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| |
Collapse
|
19
|
Jeevanandam J, Tan KX, Danquah MK, Guo H, Turgeson A. Advancing Aptamers as Molecular Probes for Cancer Theranostic Applications-The Role of Molecular Dynamics Simulation. Biotechnol J 2020; 15:e1900368. [PMID: 31840436 DOI: 10.1002/biot.201900368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/06/2019] [Indexed: 12/24/2022]
Abstract
Theranostics cover emerging technologies for cell biomarking for disease diagnosis and targeted introduction of drug ingredients to specific malignant sites. Theranostics development has become a significant biomedical research endeavor for effective diagnosis and treatment of diseases, especially cancer. An efficient biomarking and targeted delivery strategy for theranostic applications requires effective molecular coupling of binding ligands with high affinities to specific receptors on the cancer cell surface. Bioaffinity offers a unique mechanism to bind specific target and receptor molecules from a range of non-targets. The binding efficacy depends on the specificity of the affinity ligand toward the target molecule even at low concentrations. Aptamers are fragments of genetic materials, peptides, or oligonucleotides which possess enhanced specificity in targeting desired cell surface receptor molecules. Aptamer-target binding results from several inter-molecular interactions including hydrogen bond formation, aromatic stacking of flat moieties, hydrophobic interaction, electrostatic, and van der Waals interactions. Advancements in Systematic Evolution of Ligands by Exponential Enrichment (SELEX) assay has created the opportunity to artificially generate aptamers that specifically bind to desired cancer and tumor surface receptors with high affinities. This article discusses the potential application of molecular dynamics (MD) simulation to advance aptamer-mediated receptor targeting in targeted cancer therapy. MD simulation offers real-time analysis of the molecular drivers of the aptamer-receptor binding and generate optimal receptor binding conditions for theranostic applications. The article also provides an overview of different cancer types with focus on receptor biomarking and targeted treatment approaches, conventional molecular probes, and aptamers that have been explored for cancer cells targeting.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, Miri, Sarawak, 98009, Malaysia
| | - Kei Xian Tan
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798
| | | | - Haobo Guo
- Department of Computer Science and Engineering, University of Tennessee, Chattanooga, TN, 37403, USA.,SimCenter, University of Tennessee, Chattanooga, TN, 37403, USA
| | - Andrew Turgeson
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, 37403, USA
| |
Collapse
|
20
|
Zhang N, Zhang N, Xu Y, Li Z, Yan C, Mei K, Ding M, Ding S, Guan P, Qian L, Du C, Hu X. Molecularly Imprinted Materials for Selective Biological Recognition. Macromol Rapid Commun 2019; 40:e1900096. [PMID: 31111979 DOI: 10.1002/marc.201900096] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/16/2019] [Indexed: 12/11/2022]
Abstract
Molecular imprinting is an approach of generating imprinting cavities in polymer structures that are compatible with the target molecules. The cavities have memory for shape and chemical recognition, similar to the recognition mechanism of antigen-antibody in organisms. Their structures are also called biomimetic receptors or synthetic receptors. Owing to the excellent selectivity and unique structural predictability of molecularly imprinted materials (MIMs), practical MIMs have become a rapidly evolving research area providing key factors for understanding separation, recognition, and regenerative properties toward biological small molecules to biomacromolecules, even cell and microorganism. In this review, the characteristics, morphologies, and applicability of currently popular carrier materials for molecular imprinting, especially the fundamental role of hydrogels, porous materials, hierarchical nanoparticles, and 2D materials in the separation and recognition of biological templates are discussed. Moreover, through a series of case studies, emphasis is given on introducing imprinting strategies for biological templates with different molecular scales. In particular, the differences and connections between small molecular imprinting (bulk imprinting, "dummy" template imprinting, etc.), large molecular imprinting (surface imprinting, interfacial imprinting, etc.), and cell imprinting strategies are demonstrated in detail. Finally, future research directions are provided.
Collapse
Affiliation(s)
- Nan Zhang
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.,Department of Mechanical Engineering, National University of Singapore 9 Engineering Drive 1, 117575, Singapore
| | - Nan Zhang
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yarong Xu
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zhiling Li
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Chaoren Yan
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Kun Mei
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Minling Ding
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Ping Guan
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Liwei Qian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Chunbao Du
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Xiaoling Hu
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
21
|
Das AA, Medlock J, Liang H, Nees D, Allsup DJ, Madden LA, Paunov VN. Bioimprint aided cell recognition and depletion of human leukemic HL60 cells from peripheral blood. J Mater Chem B 2019. [DOI: 10.1039/c9tb00679f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report a large scale preparation of bioimprints of layers of cultured leukemic HL60 cells which can perform cell shape and size recognition from a mixture with peripheral blood mononuclear cells (PBMCs).
Collapse
Affiliation(s)
- Anupam A.K. Das
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
| | - Jevan Medlock
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
| | - He Liang
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
| | | | | | | | | |
Collapse
|
22
|
Cheng Y, Ji Y. RGD-modified polymer and liposome nanovehicles: Recent research progress for drug delivery in cancer therapeutics. Eur J Pharm Sci 2018; 128:8-17. [PMID: 30471410 DOI: 10.1016/j.ejps.2018.11.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Over the past few decades, as the demand for cancer treatment has increased, more rational treatment options (considering size, mode of administration, biocompatibility, efficacy, etc.) and plenty of specifically active targeted nanovehicles have been developed. Integrin receptors targeting are one of the most frequently used approaches because of its highly expressed in cancer cells. In particular, the arginine-glycine-aspartic acid (RGD) peptide and its derivatives have been widely used as ligands for integrin to increase direct targeting capabilies. Polymers as well as liposomes are commonly used as nanovehicles for drug delivery. A variety of work is focused on the RGD-modified polymer and liposome nanovehicles for cancer therapeutics. The goal of this article is to review the published literature in recent years concerning the RGD-modified liposome and polymer nanovehicles to highlight its successful designs for improving cancer therapy and discuss the current challenges as well as the possible development prospects.
Collapse
Affiliation(s)
- Yu Cheng
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
23
|
Kim BJ, Park M, Park JH, Joo S, Kim MH, Kang K, Choi IS. Pioneering Effects and Enhanced Neurite Complexity of Primary Hippocampal Neurons on Hierarchical Neurotemplated Scaffolds. Adv Healthc Mater 2018; 7:e1800289. [PMID: 30088694 DOI: 10.1002/adhm.201800289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/27/2018] [Indexed: 12/14/2022]
Abstract
In this work, the use of scaffolds is reported, templated from live neurons as an advanced culture platform for primary neurons. Hippocampal neurons cultured on neurotemplated scaffolds exhibit an affinity for templated somas, revealing a preference for micrometric structures amidst nanotopographical features. It is also reported, for the first time, that neurite complexity can be topographically controlled by increasing the density of nanometric features on neurotemplated scaffolds. Neurotemplated scaffolds are versatile, hierarchical topographies that feature biologically relevant structures, in both form and scale, and capture the true complexity of an in vivo environment. The introduction and implementation of neurotemplated scaffolds is sure to advance research in the fields of neurodevelopment, network development, and neuroregeneration.
Collapse
Affiliation(s)
- Beom Jin Kim
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Republic of Korea
| | - Matthew Park
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Republic of Korea
| | - Ji Hun Park
- Department of Science Education; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Sunghoon Joo
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Republic of Korea
| | - Mi-Hee Kim
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Republic of Korea
| | - Kyungtae Kang
- Department of Applied Chemistry; Kyung Hee University; Yongin Gyeonggi 17104 Republic of Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Republic of Korea
| |
Collapse
|
24
|
Afzal A, Dickert FL. Imprinted Oxide and MIP/Oxide Hybrid Nanomaterials for Chemical Sensors †. NANOMATERIALS 2018; 8:nano8040257. [PMID: 29677107 PMCID: PMC5923587 DOI: 10.3390/nano8040257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/24/2022]
Abstract
The oxides of transition, post-transition and rare-earth metals have a long history of robust and fast responsive recognition elements for electronic, optical, and gravimetric devices. A wide range of applications successfully utilized pristine or doped metal oxides and polymer-oxide hybrids as nanostructured recognition elements for the detection of biologically relevant molecules, harmful organic substances, and drugs as well as for the investigative process control applications. An overview of the selected recognition applications of molecularly imprinted sol-gel phases, metal oxides and hybrid nanomaterials composed of molecularly imprinted polymers (MIP) and metal oxides is presented herein. The formation and fabrication processes for imprinted sol-gel layers, metal oxides, MIP-coated oxide nanoparticles and other MIP/oxide nanohybrids are discussed along with their applications in monitoring bioorganic analytes and processes. The sensor characteristics such as dynamic detection range and limit of detection are compared as the performance criterion and the miniaturization and commercialization possibilities are critically discussed.
Collapse
Affiliation(s)
- Adeel Afzal
- Department of Chemistry, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 31991, Saudi Arabia.
- Department of Analytical Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria.
| | - Franz L Dickert
- Department of Analytical Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria.
| |
Collapse
|
25
|
Iskierko Z, Noworyta K, Sharma PS. Molecular recognition by synthetic receptors: Application in field-effect transistor based chemosensing. Biosens Bioelectron 2018. [PMID: 29525669 DOI: 10.1016/j.bios.2018.02.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Molecular recognition, i.e., ability of one molecule to recognize another through weak bonding interactions, is one of the bases of life. It is often implemented to sensing systems of high merits. Preferential recognition of the analyte (guest) by the receptor (host) induces changes in physicochemical properties of the sensing system. These changes are measured by using suitable signal transducers. Because of possibility of miniaturization, fast response, and high sensitivity, field-effect transistors (FETs) are more frequently being used for that purpose. A FET combined with a biological material offers the potential to overcome many challenges approached in sensing. However, low stability of biological materials under measurement conditions is a serious problem. To circumvent this problem, synthetic receptors were integrated with the gate surface of FETs to provide robust performance. In the present critical review, the approach utilized to devise chemosensors integrating synthetic receptors and FET transduction is discussed in detail. The progress in this field was summarized and important outcome was provided.
Collapse
Affiliation(s)
- Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Piyush Sindhu Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
26
|
Mescia L, Chiapperino MA, Bia P, Gielis J, Caratelli D. Modeling of Electroporation Induced by Pulsed Electric Fields in Irregularly Shaped Cells. IEEE Trans Biomed Eng 2018; 65:414-423. [DOI: 10.1109/tbme.2017.2771943] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Zheng H, Hong H, Zhang L, Cai X, Hu M, Cai Y, Zhou B, Lin J, Zhao C, Hu W. Nifuratel, a novel STAT3 inhibitor with potent activity against human gastric cancer cells. Cancer Manag Res 2017; 9:565-572. [PMID: 29138596 PMCID: PMC5677376 DOI: 10.2147/cmar.s146173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activation of the signal transducer and activator of transcription 3 (STAT3) is observed in multiple cancer types, including gastric cancer, and represents a potential drug target for chemotherapy. Currently, clinically available small-molecule inhibitors targeting STAT3 are lacking. Here, we report that nifuratel, an antiprotozoal and antifungal drug, is a potent inhibitor of STAT3. We found that nifuratel significantly suppressed proliferation and induced apoptosis of gastric cancer cells. Studies of the mechanism of action of nifuratel indicated that it acts by inhibiting the constitutive and interleukin-6-induced STAT3 activation. Taken together, our findings demonstrate that nifuratel may be a novel, clinically accessible STAT3 inhibitor in gastric cancer cells.
Collapse
Affiliation(s)
- Hailun Zheng
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Huang Hong
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
| | - Lulu Zhang
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiong Cai
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Meng Hu
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yuepiao Cai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Bin Zhou
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MA, USA
| | - Chengguang Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wanle Hu
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
| |
Collapse
|