1
|
Yue F, Li M, Li J, Song H, Liu Y, Wang Q. Energy-Transfer-Enabled Truce-Smiles Rearrangement Using Sulfonamides as Sulfonyl Radical Precursors. Org Lett 2025. [PMID: 40387192 DOI: 10.1021/acs.orglett.5c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
We have developed a method for visible-light-induced radical Smiles-Truce rearrangement reactions that use sulfonamide-derived imines as sulfonyl radical precursors. This method enables efficient functionalization of alkenes and has the advantages of having a wide substrate scope and not emitting sulfur dioxide, thereby constituting an environmentally friendly approach for the synthesis of structurally complex sulfones, alcohols, and amines.
Collapse
Affiliation(s)
- Fuyang Yue
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Mingxing Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Jiayi Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
2
|
Wang QZ, Zheng Y, Wu WT, Huang HM. Oxa-π, σ-Methane Rearrangement Approach for Epoxide Synthesis. J Am Chem Soc 2025; 147:16248-16254. [PMID: 40159637 DOI: 10.1021/jacs.5c01400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Epoxides are significant chemicals that are utilized across various fields. Here, we describe an unprecedented photochemical rearrangement approach for synthesizing a diverse collection of epoxides enabled by energy transfer catalysis under visible light conditions. The process enables the easy preparation of α-amino-substituted epoxide derivatives with a broad substrate scope, functional group tolerance, and mild reaction conditions. Furthermore, this photorearrangement has also been applied in complex architectures, and the epoxides could be easily transferred to amino alcohol derivatives. Overall, this oxa-π, σ-methane rearrangement provides a complementary strategy to the existing methods of photochemical rearrangement through energy transfer catalysis.
Collapse
Affiliation(s)
- Qiu-Zhu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wen-Tao Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Zhou P, Guo M, Li J, Li X, Xie D, Qin B, Xia Y. Remote radical alkynylation of unactivated C(sp 3)-H bonds of ethynesulfonamides. Chem Commun (Camb) 2025; 61:7109-7112. [PMID: 40241668 DOI: 10.1039/d5cc01215e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
We report an efficient protocol for the construction of δ-alkynyl amides via 1,5-hydrogen atom transfer and alkynyl group transfer of ethynesulfonamides. The readily installed ethynesulfonamides serve as both an amidyl radical precursor and an alkyne source. This reaction features excellent site selectivity for tertiary, secondary, primary, and benzylic C(sp3)-H bonds.
Collapse
Affiliation(s)
- Pan Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Mengru Guo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Jiawei Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Xu Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Danyang Xie
- School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, China.
| | - Bo Qin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Yong Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Yang S, Chen Y, Zhu C. Access to spirocyclic vinyl sulfones via radical cyclization and functional group migration. Chem Sci 2025:d5sc02555a. [PMID: 40321185 PMCID: PMC12044546 DOI: 10.1039/d5sc02555a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Accepted: 04/26/2025] [Indexed: 05/08/2025] Open
Abstract
Spirocyclic vinyl sulfones, which incorporate the three-dimensional structure inherent to spiro compounds and the Michael acceptor reactivity associated with vinyl sulfones, hold promise for novel biological activities. The lack of efficient synthetic methods, however, hinders their extensive investigations in drug discovery and development. In this work, we describe a practical and versatile approach for the synthesis of multi-functionalized spirocyclic vinyl sulfones from easily available materials. The reaction proceeds efficiently through a cascade of radical cyclization followed by (hetero)aryl migration. The protocol features mild photocatalytic conditions and provides access to a diverse range of products, enabling the construction of complex scaffolds, including medium-sized ring-fused spirocyclic vinyl sulfones.
Collapse
Affiliation(s)
- Shan Yang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, State Key Laboratory of Synergistic Chem-Bio Synthesis, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yasu Chen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, State Key Laboratory of Synergistic Chem-Bio Synthesis, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chen Zhu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, State Key Laboratory of Synergistic Chem-Bio Synthesis, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
5
|
Chen SS, Zheng Y, Xing ZX, Huang HM. Borylated strain rings synthesis via photorearrangements enabled by energy transfer catalysis. Nat Commun 2025; 16:3724. [PMID: 40253362 PMCID: PMC12009410 DOI: 10.1038/s41467-025-58353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/20/2025] [Indexed: 04/21/2025] Open
Abstract
Borylated carbocycles occupy a pivotal position as essential components in synthetic chemistry, drug discovery, and materials science. Herein, we present a photorearrangement that uniquely involves a boron atom enabled by energy transfer catalysis under visible light conditions. The boron functional group could be translocated through energy transfer mechanism and valuable borylated cyclopropane scaffolds could be generated smoothly. Furthermore, we showcase a 1,5-HAT (hydrogen atom transfer)/cyclization reaction, which is also enhanced by energy transfer catalysis excited by visible light. This method enables the synthesis of borylated cyclobutane frameworks. These boron-involved photorearrangement and cyclization reactions represent two techniques for synthesizing highly desirable borylated strained ring structures, which offering avenues for the synthesis of complex organic molecules with medicinal and material science applications.
Collapse
Affiliation(s)
- Shu-Sheng Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yu Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhi-Xi Xing
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
6
|
Jiang QX, Xiao BY, Huang W, Zhang FH. Radical Rearrangement Reaction of Propargyl Ethers to α,β-Unsaturated Aldehydes via Photoredox and Ni Catalysis. Org Lett 2025; 27:3970-3976. [PMID: 40189836 DOI: 10.1021/acs.orglett.5c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Aryl migration, especially 1,4-aryl migration, is one of the most important reactions in radical rearrangement. Over the past decades, 1,4-aryl migration by the addition of a radical to alkynes has become a simple and efficient method in the difunctionalization reactions of alkynes. Radical-based 1,4-aryl migration of aryl alkynoates has been well-explored; however, the 1,4-aryl migration of aryl propynyl ethers is rarely studied. Herein, we first described radical 1,4-aryl migration of propargyl ether to valuable α,β-unsaturated aldehydes via photoredox and Ni catalysis. This method features redox-neutral conditions, readily available starting materials, broad substrate scope, good functional group compatibility, and diverse transformations. Mechanistic studies suggest that this reaction proceeds through a radical-involved pathway.
Collapse
Affiliation(s)
- Qi-Xuan Jiang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bi-Yin Xiao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Feng-Hua Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
7
|
Zhang M, Liu T, Chen XQ, Jin H, Lv JJ, Wang S, Yu X, Yang C, Wang ZJ. Recent advances in electrochemical 1,2-difunctionalization of alkenes: mechanisms and perspectives. Org Biomol Chem 2025; 23:2323-2357. [PMID: 39932496 DOI: 10.1039/d4ob01673d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In recent years, significant achievements have been made in the field of electroorganic chemistry regarding the difunctionalization of alkenes. Researchers have developed innovative strategies utilizing the unique reactivity of electrochemical processes to synthesize complex molecules with high regioselectivity and stereoselectivity. This technology is widely applied in the total synthesis of natural products and in the pharmaceutical industry. This article reviews the research progress in the electrochemical difunctionalization of alkenes through three different radical-mediated pathways over the past five years. It includes discussions on 1,2-stereoselective and non-diastereoselective difunctionalization reactions, rearrangements, intramolecular migrations, and cyclization processes. The summary emphasizes innovative electrode designs, reaction mechanisms, and the integration with other emerging technologies, highlighting the potential of this method in modern organic chemistry. Additionally, it aims to address current challenges and propose possible solutions, providing a promising direction for electrochemically mediated difunctionalization reactions of alkenes.
Collapse
Affiliation(s)
- Mingming Zhang
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Ting Liu
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xue-Qiu Chen
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Huile Jin
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Jing-Jing Lv
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Shun Wang
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xiaochun Yu
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Chuntian Yang
- Wenzhou Institute of Industry & Science, Wenzhou, 325035, P. R. China
| | - Zheng-Jun Wang
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
An B, Sun L, Sun T, Li Y. Radical Homopolymerization of Arylsulfonylated α-Olefins to Synthesize Polysulfones - a "SO 2-free" Approach. Angew Chem Int Ed Engl 2025; 64:e202421906. [PMID: 39875324 DOI: 10.1002/anie.202421906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
Traditionally, α-olefins have been regarded as non-homopolymerizable substrates in textbook examples. However, they have the ability to copolymerize with sulfur dioxide, leading to the creation of alternating copolymers. These commodity poly(olefin sulfone)s exhibit a wide array of applications. Nevertheless, the synthesis process involving sulfur dioxide pose considerable hazards and practical difficulties. In this study, we report on the "SO2-free" radical homopolymerization of sulfonyl α-olefin monomers, resulting in the production of ABC sequence-controlled poly(vinylbenzothiazole-olefin-sulfone)s. This unique radical polymerization process is enhanced by 1,4/1,5-aryl migration, facilitated by the sulfonyl radicals involved in propagation. This demonstrated aryl group migration radical polymerization opens up new possibilities for synthesizing polysulfones with unprecedented main chain sequences and structures, which hold great promise as candidates for innovative polymeric materials.
Collapse
Affiliation(s)
- Bang An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lixing Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tingting Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yifan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
9
|
Sun Y, Wang Z, Wang J, Guo K. Copper-Catalyzed 1,5-Trifluoromethyl-thio(seleno)cyanation of 5-Hexenenitriles with an Intramolecular Cyano Migration. Chem Asian J 2025:e202500241. [PMID: 40008747 DOI: 10.1002/asia.202500241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 02/27/2025]
Abstract
A copper-catalyzed remote 1,5-trifluoromethyl thio(seleno)cyanation of 5-hexenenitriles with an intramolecular cyano migration has been established, affording a variety of CF3/CN-containing thiocyanates and selenocyanates under mild conditions. The reaction features high chemo- and regioselectivities and illustrates potential value in synthetic chemistry.
Collapse
Affiliation(s)
- Yining Sun
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Zhixian Wang
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Jiaqi Wang
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Kang Guo
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| |
Collapse
|
10
|
Zhang Y, Zhou G, Liu S, Shen X. Radical Brook rearrangement: past, present, and future. Chem Soc Rev 2025; 54:1870-1904. [PMID: 39835385 DOI: 10.1039/d4cs01275e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The Brook rearrangement has emerged as one of the most pivotal transformations in organic chemistry, with broad applications spanning organic synthesis, drug design, and materials science. Since its discovery in the 1950s, the anion-mediated Brook rearrangement has been extensively studied, laying the groundwork for the development of numerous innovative reactions. In contrast, the radical Brook rearrangement has garnered comparatively less attention, primarily due to the challenges associated with the controlled generation of alkoxyl radicals under mild conditions. However, recent advancements in visible-light catalysis and transition-metal catalysis have positioned the radical Brook rearrangement as a promising alternative synthetic strategy in organic synthesis. Despite these developments, significant limitations and challenges remain, warranting further investigation. This review provides an overview of the radical Brook rearrangement, tracing its development from past to present, and offers perspectives on future directions in the field to inspire the creation of novel synthetic tools based on this transformation.
Collapse
Affiliation(s)
- Yunxiao Zhang
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| | - Gang Zhou
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| | - Shanshan Liu
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| | - Xiao Shen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| |
Collapse
|
11
|
Hou M, Wang Y, Yang H, Zhang J, Wu XF. Carbon Monoxide and Alkoxycarbonyl Radical Enabled Migration Strategy for the Carbonylative Functionalization of Unactivated Alkenes. Chemistry 2025; 31:e202404113. [PMID: 39628124 DOI: 10.1002/chem.202404113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Herein we report a "carbonylative migration" strategy for the acylation-esterification type double functionalization of unactivated alkenes using alkyloxalkyl chlorides and CO as the reagents. The transformation is proceeded by the alkoxycarbonyl radical addition to unactivated alkenes, followed by the insertion of carbon monoxide to induce intramolecular migration of heteroaryl groups, which is different from the traditional reaction modes. The reaction conditions were mild and well tolerated with varieties of functional groups. A variety of 1,4-dicarbonyl compounds with different ester groups were produced easily which has high potential applications in biology, medicine, and other fields.
Collapse
Affiliation(s)
- Ming Hou
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Yuanrui Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| | - Hefei Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Jiajun Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| |
Collapse
|
12
|
Guo K, Sun Y, Sun Y, Shang J, Lu Y, Wu Q. Copper-Catalyzed Trifunctionalization of Heteroaryl-Substituted 1-Hexenes via Remote Heteroaryl Migration. Chem Asian J 2024; 19:e202400988. [PMID: 39267120 DOI: 10.1002/asia.202400988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
A copper-catalyzed trifunctionalization (trifluoromethylation, heteroarylation, and cyanation) of heteroaryl-substituted 1-hexenes via remote heteroaryl migration is reported. A variety of CF3 and heteroaryl-containing nitriles were readily constructed under mild conditions. The reaction features high chemo- and regioselectivities and represents a convenient method for the synthesis of multifunctionalized molecules in organic synthesis.
Collapse
Affiliation(s)
- Kang Guo
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Yanwen Sun
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Yining Sun
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Jiayi Shang
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Yongchao Lu
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Qiong Wu
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| |
Collapse
|
13
|
Li H, Hu K, Zhang J, Jiang H. Cu 0-Promoted Truce-Smiles Rearrangement for Aryl-Difluoromethylenation of C═C Bonds via a Reductive Radical-Polar Crossover Process. J Org Chem 2024; 89:13947-13952. [PMID: 39279455 DOI: 10.1021/acs.joc.4c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
An efficient Cu0-promoted Truce-Smiles rearrangement for the aryl-difluoromethylenation of C═C bonds by the reaction of N-alkyl-N-(arylsulfonyl)methacrylamide and 2-bromodifluoromethyl-1,3-benzodiazole via a reductive radical-polar crossover process under mild reaction conditions is presented. The protocol enables practical access to a variety of single regioisomer α-aryl-β-difluoromethylene amides in good to excellent yields through consecutive difluoromethylenation, radical-polar crossover, 1,4-aryl migration, SO2 extrusion, and N-H bond formation cascade reaction.
Collapse
Affiliation(s)
- Hongxiao Li
- Department of Chemistry, Shanghai University, Shanghai 200444, PR China
| | - Kaiji Hu
- Department of Chemistry, Shanghai University, Shanghai 200444, PR China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200072, PR China
| | - Haizhen Jiang
- Department of Chemistry, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
14
|
Xie H, Duan J, Cao Y, Fu K, Yu Y, Kong W, Li T. Mn-Catalyzed Electrooxidative Radical Cascade Cyclization for the Synthesis of 6-Phosphorylated Quinoxalino[2,1- b]quinazolin-12-ones. J Org Chem 2024; 89:14418-14427. [PMID: 39265979 DOI: 10.1021/acs.joc.4c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Due to their important potential medicinal value, chemists are pursuing mild and efficient methods to synthesize structurally diverse quinazolinone derivatives. In this paper, a series of isocyano-tethered N-aryl quinazolinones were designed and synthesized to conduct electrocatalytic radical cascade cyclization reactions with phosphine oxides by utilizing inexpensive MnII salt as the catalyst. The desired 6-phosphorylated quinoxalino[2,1-b]quinazolin-12-ones were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Huanping Xie
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Jiongjiong Duan
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Yi Cao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Kaifang Fu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Yongqi Yu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Weiguang Kong
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| |
Collapse
|
15
|
Wang S, Luo X, Wang Y, Liu Z, Yu Y, Wang X, Ren D, Wang P, Chen YH, Qi X, Yi H, Lei A. Radical-triggered translocation of C-C double bond and functional group. Nat Chem 2024; 16:1621-1629. [PMID: 39251841 DOI: 10.1038/s41557-024-01633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Multi-site functionalization of molecules provides a potent approach to accessing intricate compounds. However, simultaneous functionalization of the reactive site and the inert remote C(sp3)-H poses a formidable challenge, as chemical reactions conventionally occur at the most active site. In addition, achieving precise control over site selectivity for remote C(sp3)-H activation presents an additional hurdle. Here we report an alternative modular method for alkene difunctionalization, encompassing radical-triggered translocation of functional groups and remote C(sp3)-H desaturation via photo/cobalt dual catalysis. By systematically combining radical addition, functional group migration and cobalt-promoted hydrogen atom transfer, we successfully effectuate the translocation of the carbon-carbon double bond and another functional group with precise site selectivity and remarkable E/Z selectivity. This redox-neutral approach shows good compatibility with diverse fluoroalkyl and sulfonyl radical precursors, enabling the migration of benzoyloxy, acetoxy, formyl, cyano and heteroaryl groups. This protocol offers a resolution for the simultaneous transformation of manifold sites.
Collapse
Affiliation(s)
- Shengchun Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Xu Luo
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Yuan Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Zhao Liu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Yi Yu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Xuejie Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Demin Ren
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Pengjie Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Yi-Hung Chen
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Xiaotian Qi
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China.
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, P. R. China.
| | - Hong Yi
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China.
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China.
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, P. R. China.
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, P. R. China.
| |
Collapse
|
16
|
Ma WY, Leone M, Derat E, Retailleau P, Reddy CR, Neuville L, Masson G. Photocatalytic Asymmetric Acyl Radical Truce-Smiles Rearrangement for the Synthesis of Enantioenriched α-Aryl Amides. Angew Chem Int Ed Engl 2024; 63:e202408154. [PMID: 38887967 DOI: 10.1002/anie.202408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The radical Truce-Smiles rearrangement is a straightforward strategy for incorporating aryl groups into organic molecules for which asymmetric processes remains rare. By employing a readily available and non-expensive chiral auxiliary, we developed a highly efficient asymmetric photocatalytic acyl and alkyl radical Truce-Smiles rearrangement of α-substituted acrylamides using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom-transfer photocatalyst, along with aldehydes or C-H containing precursors. The rearranged products exhibited excellent diastereoselectivities (7 : 1 to >98 : 2 d.r.) and chiral auxiliary was easily removed. Mechanistic studies allowed understanding the transformation in which density functional theory (DFT) calculations provided insights into the stereochemistry-determining step.
Collapse
Affiliation(s)
- Wei-Yang Ma
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Matteo Leone
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Etienne Derat
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005, Paris, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry CSIR-, Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| |
Collapse
|
17
|
Xu J, Li R, Ma Y, Zhu J, Shen C, Jiang H. Site-selective α-C(sp 3)-H arylation of dialkylamines via hydrogen atom transfer catalysis-enabled radical aryl migration. Nat Commun 2024; 15:6791. [PMID: 39117735 PMCID: PMC11310330 DOI: 10.1038/s41467-024-51239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Site-selective C(sp3)-H arylation is an appealing strategy to synthesize complex arene structures but remains a challenge facing synthetic chemists. Here we report the use of photoredox-mediated hydrogen atom transfer (HAT) catalysis to accomplish the site-selective α-C(sp3)-H arylation of dialkylamine-derived ureas through 1,4-radical aryl migration, by which a wide array of benzylamine motifs can be incorporated to the medicinally relevant systems in the late-stage installation steps. In contrast to previous efforts, this C-H arylation protocol exhibits specific site-selectivity, proforming predominantly on sterically more-hindered secondary and tertiary α-amino carbon centers, while the C-H functionalization of sterically less-hindered N-methyl group can be effectively circumvented in most cases. Moreover, a diverse range of multi-substituted piperidine derivatives can be obtained with excellent diastereoselectivity. Mechanistic and computational studies demonstrate that the rate-determining step for methylene C-H arylation is the initial H atom abstraction, whereas the radical ipso cyclization step bears the highest energy barrier for N-methyl functionalization. The relatively lower activation free energies for secondary and tertiary α-amino C-H arylation compared with the functionalization of methylic C-H bond lead to the exceptional site-selectivity.
Collapse
Affiliation(s)
- Jie Xu
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Ruihan Li
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yijian Ma
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jie Zhu
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Heng Jiang
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
18
|
Zhou Y, Wu Z, Xu J, Zhang Z, Zheng H, Zhu G. Fluorine-Effect-Enabled Photocatalytic 4-Exo-Trig Cyclization Cascade to Access Fluoroalkylated Cyclobutanes. Angew Chem Int Ed Engl 2024; 63:e202405678. [PMID: 38739309 DOI: 10.1002/anie.202405678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
Cyclobutanes are popular structural units in bioactive compounds and versatile intermediates in synthetic chemistry, but their synthesis is challenging owing to high ring strain. In this study, a novel method for highly regio- and diastereoselective synthesis of fluoroalkylcyclobutanes bearing vicinal quaternary and tertiary stereocenters is realized by a photocatalytic 4-exo-trig cyclization cascade of thioalkynes or trifluoromethylalkenes. Density functional theory calculations reveal that a unique fluorine effect, arising from hyperconjugative π→σ*C-F interactions, accounts for the regio-reversed radical addition at the sterically hindered alkene carbon, which facilitates an unprecedented 4-exo-trig ring closure. This chemistry enables the direct and controllable construction of medicinally valuable quaternary-carbon-containing cyclobutanes from readily available raw materials, nicely complementing the existing methods.
Collapse
Affiliation(s)
- Yulu Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Zhenzhen Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Jinming Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| |
Collapse
|
19
|
Zheng Y, Dong QX, Wen SY, Ran H, Huang HM. Di-π-ethane Rearrangement of Cyano Groups via Energy-Transfer Catalysis. J Am Chem Soc 2024; 146:18210-18217. [PMID: 38788197 DOI: 10.1021/jacs.4c04370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Molecular rearrangement occupies a pivotal position among fundamental transformations in synthetic chemistry. Radical translocation has emerged as a prevalent synthetic tool, efficiently facilitating the migration of diverse functional groups. In contrast, the development of di-π-methane rearrangement remains limited, particularly in terms of the translocation of cyano functional groups. This is primarily attributed to the energetically unfavorable three-membered-ring transition state. Herein, we introduce an unprecedented di-π-ethane rearrangement enabled by energy-transfer catalysis under visible light conditions. This innovative open-shell rearrangement boasts broad tolerance toward a range of functional groups, encompassing even complex drug and natural product derivatives. Overall, the reported di-π-ethane rearrangement represents a complementary strategy to the development of radical translocation enabled by energy-transfer catalysis.
Collapse
Affiliation(s)
- Yu Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qi-Xin Dong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shu-Ya Wen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hui Ran
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
20
|
Liu J, Ma J, Wang T, Xue XS, Zhu C. Radical-Mediated α- tert-Alkylation of Aldehydes by Consecutive 1,4- and 1,3-(Benzo)thiazolyl Migrations. JACS AU 2024; 4:2108-2114. [PMID: 38938795 PMCID: PMC11200231 DOI: 10.1021/jacsau.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
The direct alkylation of the α-position of aldehydes is an effective method for accessing a wide range of structurally diverse aldehydes, yet tert-alkylation has proven to be a challenging task. In this study, we present a novel radical-mediated tert-alkylation approach targeting the α-position of aldehydes, enabling the synthesis of complex aliphatic aldehydes. The transformation is initiated by the interaction between an in situ generated enamine intermediate and α-bromo sulfone, forming an electron donor-acceptor (EDA) complex, followed by consecutive 1,4- and 1,3-functional group migrations. This protocol operates under metal-free and mild photochemical conditions, delivering a broad scope of products and providing new mechanistic insights into radical rearrangement reactions.
Collapse
Affiliation(s)
- Jige Liu
- Frontiers
Science Center for Transformative Molecules, Zhangjiang Institute
for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering
of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Jiangshan Ma
- Frontiers
Science Center for Transformative Molecules, Zhangjiang Institute
for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering
of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tongkun Wang
- Key
Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiao-Song Xue
- Key
Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chen Zhu
- Frontiers
Science Center for Transformative Molecules, Zhangjiang Institute
for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering
of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
21
|
Wang T, Chen L, Liu YY, Zhang ZB, Han P, Jing LH. Silylation and (Hetero)aryl/alkenylation of Unactivated Alkenes via Radical-Mediated Distal 1,4-Migration with Hydrosilanes under Organophotocatalysis. Org Lett 2024; 26:4526-4531. [PMID: 38761124 DOI: 10.1021/acs.orglett.4c01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
We report a novel organic photoredox catalysis to achieve unprecedented γ-(hetero)aryl/alkenyl-δ-silyl aliphatic amines via silyl-mediated distal (hetero)aryl/alkenyl migration of aromatic/alkenyl amines bearing unactivated alkenes with hydrosilanes. This protocol features mild and metal-free reaction conditions, high atom economy, excellent selectivity, and functional group compatibility. Mechanistic studies suggest that silylation and (hetero)aryl/alkenylation involve photoredox hydrogen atom transfer catalysis and subsequent 1,4-migration of a remote (hetero)aryl/alkenyl group from nitrogen to carbon.
Collapse
Affiliation(s)
- Ting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Lu Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Yuan-Yuan Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Zheng-Bing Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| |
Collapse
|
22
|
Xu S, Mi R, Zheng G, Li X. Cobalt- or rhodium-catalyzed synthesis of 1,2-dihydrophosphete oxides via C-H activation and formal phosphoryl migration. Chem Sci 2024; 15:6012-6021. [PMID: 38665527 PMCID: PMC11040647 DOI: 10.1039/d4sc00649f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
A highly stereo- and chemoselective intermolecular coupling of diverse heterocycles with dialkynylphosphine oxides has been realized via cobalt/rhodium-catalyzed C-H bond activation. This protocol provides an efficient synthetic entry to functionalized 1,2-dihydrophosphete oxides in excellent yields via the merger of C-H bond activation and formal 1,2-migration of the phosphoryl group. Compared with traditional methods of synthesis of 1,2-dihydrophosphetes that predominantly relied on stoichiometric metal reagents, this catalytic system features high efficiency, a relatively short reaction time, atom-economy, and operational simplicity. Photophysical properties of selected 1,2-dihydrophosphete oxides are also disclosed.
Collapse
Affiliation(s)
- Shengbo Xu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710062 P. R. China
| | - Ruijie Mi
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 266237 P. R. China
| | - Guangfan Zheng
- Department of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710062 P. R. China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 266237 P. R. China
| |
Collapse
|
23
|
Hu Y, Hervieu C, Merino E, Nevado C. Asymmetric, Remote C(sp 3)-H Arylation via Sulfinyl-Smiles Rearrangement. Angew Chem Int Ed Engl 2024; 63:e202319158. [PMID: 38506603 DOI: 10.1002/anie.202319158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 03/21/2024]
Abstract
An efficient asymmetric remote arylation of C(sp3)-H bonds under photoredox conditions is described here. The reaction features the addition radicals to a double bond followed by a site-selective radical translocation (1,n-hydrogen atom transfer) as well as a stereocontrolled aryl migration via sulfinyl-Smiles rearrangement furnishing a wide range of chiral α-arylated amides with up to >99 : 1 er. Mechanistic studies indicate that the sulfinamide group governs the stereochemistry of the product with the aryl migration being the rate determining step preceded by a kinetically favored 1,n-HAT process.
Collapse
Affiliation(s)
- Yawen Hu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057, Zurich, Switzerland
| | - Cédric Hervieu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057, Zurich, Switzerland
| | - Estíbaliz Merino
- Departamento de Química Orgánica y Química Inorgánica Instituto de Investigación Química "Andrés M. del Río" (IQAR). Facultad de Farmacia, Universidad de Alcalá Alcalá de Henares, 28805, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. de Colmenar Viejo, Km. 9.100, 28034, Madrid, Spain
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057, Zurich, Switzerland
| |
Collapse
|
24
|
Wang J, Wu X, Cao Z, Zhang X, Wang X, Li J, Zhu C. E-Selective Radical Difunctionalization of Unactivated Alkynes: Preparation of Functionalized Allyl Alcohols from Aliphatic Alkynes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309022. [PMID: 38348551 DOI: 10.1002/advs.202309022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Radical difunctionalization of aliphatic alkynes provides direct access to valuable multi-substituted alkenes, but achieving a high level of chemo- and stereo-control remains a formidable challenge. Herein a novel photoredox neutral alkyne di-functionalization is reported through functional group migration followed by a radical-polar crossover and energy transfer-enabled stereoconvergent isomerization of alkenes. In this sequence, a hydroxyalkyl and an aryl group are incorporated concomitantly into an alkyne, leading to diversely functionalized E-allyl alcohols. The scope of alkynes is noteworthy, and the reaction tolerates aliphatic alkynes containing hydrogen donating C─H bonds that are prone to intramolecular hydrogen atom transfer. The protocol features broad functional group compatibility, high product diversity, and exclusive chemo- and stereoselectivity, thus providing a practical strategy for the elusive radical di-functionalization of unactivated alkynes.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Zhu Cao
- Frontiers Science Center for Transformative Molecules and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xu Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Xinxin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Jie Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
- Frontiers Science Center for Transformative Molecules and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
25
|
Shi Z, Dong S, Liu T, Wang WZ, Li N, Yuan Y, Zhu J, Ye KY. Electrochemical cascade migratory versus ortho-cyclization of 2-alkynylbenzenesulfonamides. Chem Sci 2024; 15:2827-2832. [PMID: 38404399 PMCID: PMC10882495 DOI: 10.1039/d3sc05229j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024] Open
Abstract
Efficient control over several possible reaction pathways of free radicals is the chemical basis of their highly selective transformations. Among various competing reaction pathways, sulfonimidyl radicals generated from the electrolysis of 2-alkynylbenzenesulfonamides undergo cascade migratory or ortho-cyclization cyclization selectively. It is found that the incorporation of an extra 2-methyl substituent biases the selective migration of the acyl- over vinyl-linker of the key spirocyclic cation intermediate and thus serves as an enabling handle to achieve the synthetically interesting yet under-investigated cascade migratory cyclization of spirocyclic cations.
Collapse
Affiliation(s)
- Zhaojiang Shi
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ting Liu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Wei-Zhen Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Nan Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Yaofeng Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Jun Zhu
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| |
Collapse
|
26
|
Chen J, Liu S, Su S, Fan R, Zhang R, Meng W, Tan J. Sulfonium-based precise alkyl transposition reactions. SCIENCE ADVANCES 2023; 9:eadi1370. [PMID: 37713480 PMCID: PMC10881050 DOI: 10.1126/sciadv.adi1370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
S-adenosyl-L-methionine (SAM), a sulfonium-based cofactor, plays an important role in numerous biological processes as methyl donor. Inspired by the function of sulfonium motif in this nature's synthetic toolkit, we here present an aryne-activation strategy that the sulfonium intermediates in situ generated from thioethers display unique reactivity toward alkyl group transposition. Experimental and theoretical studies indicate that the reaction occurs in an intermolecular fashion where the TfO--incorporated [K(18-crown-6)] complex acts as a key promoter for this thermodynamically favored process. Next, a series of robust, easy-to-prepare sulfonium salts are designed and developed as electrophilic alkylation reagents accordingly. Both systems feature for broad scope, excellent selectivity, and simple operation. Moreover, we highlight the synthetic value through molecular editing and late-stage modification of complex scaffolds or even active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Jian Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Shilu Liu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Shuaisong Su
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Rong Fan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Ruirui Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajing Tan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| |
Collapse
|
27
|
Li B, Xing D, Li X, Chang S, Jiang H, Huang L. Chemo-divergent Cyano Group Migration: Involving Elimination and Substitution of the Key α-Thianthrenium Cyano Species. Org Lett 2023; 25:6633-6637. [PMID: 37672391 DOI: 10.1021/acs.orglett.3c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Herein, we report a light-driven, radical-type cyano migration in the absence of a photocatalyst, enabling a chemo-divergent synthesis of (Z)-alkenyl nitriles and ketones. Trifluoromethyl thianthrenium salt (TT-CF3+OTf-) plays multiple roles: (a) absorbing light to generate trifluoromethyl radicals to initiate the reaction and (b) forming α-thianthrenium cyano species by in situ capture of TT• +. (Z)-Alkenyl nitriles were formed through the elimination of thianthrenium salts, and aryl ketones were obtained via the nucleophilic substitution of thianthrenium salts.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Donghui Xing
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Xiaohong Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Shunqin Chang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People's Republic of China
| | - Liangbin Huang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People's Republic of China
| |
Collapse
|
28
|
Mondal S, Chatterjee N, Maity S. Recent Developments on Photochemical Synthesis of 1,n-Dicarbonyls. Chemistry 2023; 29:e202301147. [PMID: 37335758 DOI: 10.1002/chem.202301147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
1,n-dicarbonyls are one of the most fascinating chemical feedstocks finding abundant usage in the field of pharmaceuticals. Besides, they are utilized in a plethora of synthesis in general synthetic organic chemistry. A number of 'conventional' methods are available for their synthesis, such as the Stetter reaction, Baker-Venkatraman rearrangement, oxidation of vicinal diols, and oxidation of deoxybenzoins, synonymous with unfriendly reagents and conditions. In the last 15 years or so, photocatalysis has taken the world of synthetic organic chemistry by a remarkable renaissance. It is fair to say now that everybody loves the light and photoredox chemistry has opened a new gateway to organic chemists towards milder, more simpler alternatives to the previously available methods, allowing access to many sensitive reactions and products. In this review, we present the readers with the photochemical synthesis of a variety of 1,n-dicarbonyls. Diverse photocatalytic pathways to these fascinating molecules have been discussed, placing special emphasis on the mechanisms, giving the reader an opportunity to find all these significant developments in one place.
Collapse
Affiliation(s)
- Subhashis Mondal
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Nirbhik Chatterjee
- Department of Chemistry, Kanchrapara College, North 24 Parganas, 743145, West Bengal, India
| | - Soumitra Maity
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| |
Collapse
|
29
|
Chen K, Zeng Q, Xie L, Xue Z, Wang J, Xu Y. Functional-group translocation of cyano groups by reversible C-H sampling. Nature 2023; 620:1007-1012. [PMID: 37364765 DOI: 10.1038/s41586-023-06347-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Chemical transformations that introduce, remove or manipulate functional groups are ubiquitous in synthetic chemistry1. Unlike conventional functional-group interconversion reactions that swap one functionality for another, transformations that alter solely the location of functional groups are far less explored. Here, by photocatalytic, reversible C-H sampling, we report a functional-group translocation reaction of cyano (CN) groups in common nitriles, allowing for the direct positional exchange between a CN group and an unactivated C-H bond. The reaction shows high fidelity for 1,4-CN translocation, frequently contrary to inherent site selectivity in conventional C-H functionalizations. We also report the direct transannular CN translocation of cyclic systems, providing access to valuable structures that are non-trivial to obtain by other methods. Making use of the synthetic versatility of CN and a key CN translocation step, we showcase concise syntheses of building blocks of bioactive molecules. Furthermore, the combination of C-H cyanation and CN translocation allows access to unconventional C-H derivatives. Overall, the reported reaction represents a way to achieve site-selective C-H transformation reactions without requiring a site-selective C-H cleavage step.
Collapse
Affiliation(s)
- Ken Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qingrui Zeng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Longhuan Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zisheng Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jianbo Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yan Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
30
|
Zhang W, Chen Z, Jiang YX, Liao LL, Wang W, Ye JH, Yu DG. Arylcarboxylation of unactivated alkenes with CO 2 via visible-light photoredox catalysis. Nat Commun 2023; 14:3529. [PMID: 37316537 DOI: 10.1038/s41467-023-39240-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Photocatalytic carboxylation of alkenes with CO2 is a promising and sustainable strategy to synthesize high value-added carboxylic acids. However, it is challenging and rarely investigated for unactivated alkenes due to their low reactivities. Herein, we report a visible-light photoredox-catalyzed arylcarboxylation of unactivated alkenes with CO2, delivering a variety of tetrahydronaphthalen-1-ylacetic acids, indan-1-ylacetic acids, indolin-3-ylacetic acids, chroman-4-ylacetic acids and thiochroman-4-ylacetic acids in moderate-to-good yields. This reaction features high chemo- and regio-selectivities, mild reaction conditions (1 atm, room temperature), broad substrate scope, good functional group compatibility, easy scalability and facile derivatization of products. Mechanistic studies indicate that in situ generation of carbon dioxide radical anion and following radical addition to unactivated alkenes might be involved in the process.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuan-Xu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Li-Li Liao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, P. R. China
| | - Wei Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| |
Collapse
|
31
|
Ma X, Zhang Q, Zhang W. Remote Radical 1,3-, 1,4-, 1,5-, 1,6- and 1,7-Difunctionalization Reactions. Molecules 2023; 28:molecules28073027. [PMID: 37049790 PMCID: PMC10095731 DOI: 10.3390/molecules28073027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/25/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Radical transformations are powerful in organic synthesis for the construction of molecular scaffolds and introduction of functional groups. In radical difunctionalization reactions, the radicals in the first functionalized intermediates can be relocated through resonance, hydrogen atom or group transfer, and ring opening. The resulting radical intermediates can undertake the following paths for the second functionalization: (1) couple with other radical groups, (2) oxidize to cations and then react with nucleophiles, (3) reduce to anions and then react with electrophiles, (4) couple with metal-complexes. The rearrangements of radicals provide the opportunity for the synthesis of 1,3-, 1,4-, 1,5-, 1,6-, and 1,7-difunctionalization products. Multiple ways to initiate the radical reaction coupling with intermediate radical rearrangements make the radical reactions good for difunctionalization at the remote positions. These reactions offer the advantages of synthetic efficiency, operation simplicity, and product diversity.
Collapse
Affiliation(s)
- Xiaoming Ma
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China;
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou 215009, China;
| | - Wei Zhang
- Department of Chemistry and Center for Green Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA
- Correspondence: ; Tel.: +1-617-287-6147
| |
Collapse
|
32
|
Zheng Y, Liao Z, Xie Z, Chen H, Chen K, Xiang H, Yang H. Photochemical Alkene Trifluoromethylimination Enabled by Trifluoromethylsulfonylamide as a Bifunctional Reagent. Org Lett 2023; 25:2129-2133. [PMID: 36943094 DOI: 10.1021/acs.orglett.3c00577] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Herein, we disclose a facile and versatile trifluoromethylimination of alkene with a rationally designed N-(diphenylmethylene)-1,1,1-trifluoromethanesulfonamide as a bench-stable and readily accessible carboamination reagent. Enabled by an energy transfer (EnT) process, an array of alkenes were able to be facilely CF3-iminated under metal-free photocatalytic conditions. The mild reaction conditions and good functional group compatibility render this protocol highly valuable for the difunctionalization of olefins with structural complexity and diversity.
Collapse
Affiliation(s)
- Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zihao Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhenzhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hongbin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Haoyue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
33
|
Wang C, Ge Q, Xu C, Xing Z, Xiong J, Zheng Y, Duan WL. Photoinduced Copper-Catalyzed C(sp 3)-P Bond Formation by Coupling of Secondary Phosphines with N-(Acyloxy)phthalimides and N-Fluorocarboxamides. Org Lett 2023; 25:1583-1588. [PMID: 36826372 DOI: 10.1021/acs.orglett.3c00475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A photoinduced copper-catalyzed C(sp3)-P bond formation has been developed by using N-(acyloxy)phthalimides as radical precursors and secondary phosphine boranes as coupling partners. A variety of alkyl carboxylic acid derivatives can be readily transformed into the corresponding phosphines with high reaction efficiency and structural diversity. Besides, utilizing the 1,5-HAT of the N-centered radical process, the δ C(sp3)-H bond can be coupled with secondary phosphines, which provides a novel method for the regioselective formation of C(sp3)-P bonds.
Collapse
Affiliation(s)
- Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Qiangqiang Ge
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Cheng Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Zhongqiu Xing
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Jianqi Xiong
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an 710119, China
| |
Collapse
|
34
|
Visible-light-induced selective alkylsulfonylation of unactivated alkenes via remote heteroaryl migrations. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
35
|
Wu Z, Zhang X, Xu N, Liu X, Feng X. Asymmetric Catalytic Aerobic Oxidative Radical Addition/Hydroxylation/1,4-Aryl Migration Reaction of Olefins. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhikun Wu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiying Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Nian Xu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
36
|
Xu M, Wang Z, Sun Z, Ouyang Y, Ding Z, Yu T, Xu L, Li P. Diboron(4)-Catalyzed Remote [3+2] Cycloaddition of Cyclopropanes via Dearomative/Rearomative Radical Transmission through Pyridine. Angew Chem Int Ed Engl 2022; 61:e202214507. [PMID: 36344444 DOI: 10.1002/anie.202214507] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 11/09/2022]
Abstract
Ring structures such as pyridine, cyclopentane or their combinations are important motifs in bioactive molecules. In contrast to previous cycloaddition reactions that necessitated a directly bonded initiating functional group, this work demonstrated a novel through-(hetero)arene radical transmission concept for selective activation of a remote bond. An efficient, metal-free and atom-economical [3+2] cycloaddition between 4-pyridinyl cyclopropanes and alkenes or alkynes has been developed for modular synthesis of pyridine-substituted cyclopentanes, cyclopentenes and bicyclo[2.1.1]hexanes that are difficult to access using known methods. This complexity-building reaction was catalyzed by a very simple and inexpensive diboron(4) compound and took place via dearomative/rearomative processes. The substrate scope was broad and more than 100 new compounds were prepared in generally high yields. Mechanistic experiments and density function theory (DFT) investigation supported a radical relay catalytic cycle involving alkylidene dihydropyridine radical intermediates and boronyl radical transfer.
Collapse
Affiliation(s)
- Ming Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Zhaohui Sun
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhengwei Ding
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
37
|
Wang Z, Chang C, Chen Y, Wu X, Li J, Zhu C. Remote desaturation of hexenenitriles by radical-mediated cyano migration. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Radical addition-triggered remote functionalization of C–H bond via 1, n-hydrogen atom transfer process. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Jue Z, Huang Y, Qian J, Hu P. Visible Light-Induced Unactivated δ-C(sp 3 )-H Amination of Alcohols Catalyzed by Iron. CHEMSUSCHEM 2022; 15:e202201241. [PMID: 35916215 DOI: 10.1002/cssc.202201241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/30/2022] [Indexed: 06/15/2023]
Abstract
An iron-catalyzed remote C(sp3 )-H amination of alcohols through 1,5-hydrogen atom transfer is developed. This protocol provides a method to generate δ-C(sp3 )-N bonds from primary, secondary, and tertiary alcohols under mild conditions. A wide substrate scope and a good functional group tolerance are presented. Mechanistic studies show that a LMCT course of an Fe-OR species and a chlorine radical-induced hydrogen abstraction of an alcohol are possible to generate the alkoxy radical intermediate.
Collapse
Affiliation(s)
- Zhaofan Jue
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yahao Huang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jiahui Qian
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Peng Hu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
40
|
Zhang C, Yang M, Qiu Y, Song M, Wang H, Yang M, Xie W, Wu J, Ye S. Alkoxysulfonyl radical species: acquisition and transformation towards sulfonate esters through electrochemistry. Chem Sci 2022; 13:11785-11791. [PMID: 36320920 PMCID: PMC9580505 DOI: 10.1039/d2sc04027a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/28/2022] [Indexed: 09/01/2023] Open
Abstract
Sulfonyl radical mediated processes have been considered as a powerful strategy for the construction of sulfonyl compounds. However, an efficient and high atom-economical radical approach to the synthesis of sulfonate esters is still rare, owing to the limited tactics to achieve alkoxysulfonyl radicals. Herein, an electrochemical anodic oxidation of inorganic sulfites with alcohols is developed to afford alkoxysulfonyl radical species, which are utilized in subsequent alkene difunctionalization to provide various sulfonate esters. This transformation features excellent chemoselectivity and broad functional group tolerance. This new discovery presents the potential prospect for the construction of sulfonate esters, and enriches the electrochemical reaction type.
Collapse
Affiliation(s)
- Chun Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Man Yang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Yanjie Qiu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Meijun Song
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Hongyan Wang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Min Yang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 411201 China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Shengqing Ye
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| |
Collapse
|
41
|
Yang Z, Yu JT, Pan C. Recent advances in C-H functionalization of 2 H-indazoles. Org Biomol Chem 2022; 20:7746-7764. [PMID: 36178474 DOI: 10.1039/d2ob01463g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2H-Indazoles are one class of the most important nitrogen-containing heterocyclic compounds. The 2H-indazole motif is widely present in bioactive natural products and drug molecules that exhibit distinctive bioactivities. Therefore, much attention has been paid to access diverse 2H-indazole derivatives. Among them, the late-stage functionalization of 2H-indazoles via C-H activation is recognized as an efficient approach for increasing the complexity and diversity of 2H-indazole derivatives. In this review, we summarized recent achievements in the late-stage functionalization of 2H-indazoles, including the C3-functionalization of 2H-indazoles through transition metal-catalyzed C-H activation or a radical pathway, transition metal-catalyzed ortho C2'-H functionalization of 2H-indazoles and remote C-H functionalization at the benzene ring in 2H-indazoles.
Collapse
Affiliation(s)
- Zixian Yang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
42
|
Song L, Wang W, Yue JP, Jiang YX, Wei MK, Zhang HP, Yan SS, Liao LL, Yu DG. Visible-light photocatalytic di- and hydro-carboxylation of unactivated alkenes with CO2. Nat Catal 2022. [DOI: 10.1038/s41929-022-00841-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Zhang Y, Chen J, Huang H. Radical Brook Rearrangements: Concept and Recent Developments. Angew Chem Int Ed Engl 2022; 61:e202205671. [DOI: 10.1002/anie.202205671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Zhang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Jun‐Jie Chen
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Huan‐Ming Huang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| |
Collapse
|
44
|
Gu XT, Li LH, Wei Y, Shi M. Selective C(sp 2)-H bond functionalization of olefins via visible-light-induced photoredox-quinuclidine dual catalysis. Chem Commun (Camb) 2022; 58:9954-9957. [PMID: 35983765 DOI: 10.1039/d2cc03694k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The site selective C(sp2)-H bond functionalization of olefins has been achieved through a visible-light-induced photoredox-quinuclidine dual catalysis upon merging the quinuclidinium radical cation addition to alkene strategy and the distal heteroaryl ipso-migration strategy. This synthetic protocol features a simple operation with readily available starting materials in good step-economy to access alkenylheteroaromatic products in moderate to good yields under mild conditions. A plausible cascade catalytic reaction mechanism is also proposed.
Collapse
Affiliation(s)
- Xin-Tao Gu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China.
| | - Long-Hai Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China.
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China.
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China.
| |
Collapse
|
45
|
Sohail M, Bilal M, Maqbool T, Rasool N, Ammar M, Mahmood S, Malik A, Zubair M, Abbas Ashraf G. Iron-catalyzed synthesis of N-heterocycles via intermolecular and intramolecular cyclization reactions: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
46
|
Fang Z, Zhang Y, Zhang Z, Song Q, Wu Y, Liu Z, Ning Y. Synthesis of gem-Disulfonyl Enamines via an Iminyl-Radical-Mediated Formal 1,3-HAT/Radical Coupling Cascade. Org Lett 2022; 24:6374-6379. [PMID: 36018352 DOI: 10.1021/acs.orglett.2c02277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We herein report the first example of an iminyl-radical-mediated formal 1,3-HAT/radical coupling cascade of vinyl azides leading to the synthesis of tetrasubstituted gem-disulfonyl enamines. It is possible to employ a variety of vinyl azides and sulfinate salt coupling elements without sacrificing effectiveness and scalability. The combination of experimental studies and DFT calculations showed that this reaction proceeds via a radical addition/formal 1,3-HAT/radical coupling mechanism.
Collapse
Affiliation(s)
- Zhongxue Fang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Yujie Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Zhansong Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Qingming Song
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yong Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zhaohong Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
47
|
Lv H, Xu X, Li J, Huang X, Fang G, Zheng L. Mechanochemical Divergent Syntheses of Oxindoles and α‐Arylacylamides via Controllable Construction of C−C and C−N Bonds by Copper and Piezoelectric Materials. Angew Chem Int Ed Engl 2022; 61:e202206420. [DOI: 10.1002/anie.202206420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Honggui Lv
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou 325001 China
- Oujiang Laboratory of ZheJiang Lab for Regenerative Medicine Vision and Brain Health Wenzhou 325001 China
| | - Xinyue Xu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou 325001 China
- Wenzhou University College of Chemistry and Materials Engineering Wenzhou 325035 China
| | - Jing Li
- Wenzhou University College of Chemistry and Materials Engineering Wenzhou 325035 China
| | - Xiaobo Huang
- Wenzhou University College of Chemistry and Materials Engineering Wenzhou 325035 China
| | - Guoyong Fang
- Wenzhou University College of Chemistry and Materials Engineering Wenzhou 325035 China
| | - Lifei Zheng
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou 325001 China
- Oujiang Laboratory of ZheJiang Lab for Regenerative Medicine Vision and Brain Health Wenzhou 325001 China
| |
Collapse
|
48
|
Qin Q, Wang D, Shao Z, Zhang Y, Zhang Q, Li X, Huang C, Mi L. Sequentially Regulating the Structural Transformation of Copper Metal-Organic Frameworks (Cu-MOFs) for Controlling Site-Selective Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36845-36854. [PMID: 35938901 DOI: 10.1021/acsami.2c09290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Regulating atomically precise sites in catalysts to achieve site-selective reactions is remarkable but challenging. In this work, a convenient and facile solid-gas/liquid reaction strategy was used to construct controllable active sites in metal-organic frameworks (MOFs) to guide an orientation site-selective reaction. A flexible CuI-MOF-1 with dynamics originating from an anionic and tailorable framework could undergo a reversible structural transformation to engineer a topologically equivalent mixed-valent CuICuII-MOF-2 via a solid-gas/liquid oxidation/reduction process. More importantly, CuI-MOF-1 and CuICuII-MOF-2 could further execute the solid-gas/liquid reaction under ammonia vapor/solution to generate CuII-MOF-3. Furthermore, the transformation from CuI-MOF-1 to CuICuII-MOF-2 and CuII-MOF-3 served as controllable catalysts to facilitate site-selective reactions to realize direct C-N bond arylations. The results demonstrated that CuI-MOF-1 and CuII-MOF-3 possessed well-defined platforms with uniformly and accurately active sites to attain a "turn-on/off" process via different reaction routes, providing the desired site-selective ring-opening products.
Collapse
Affiliation(s)
- Qi Qin
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Di Wang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Zhichao Shao
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yingying Zhang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Qiang Zhang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Xinyue Li
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Chao Huang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Liwei Mi
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
49
|
[3+2] Cycloaddition of alkyl aldehydes and alkynes enabled by photoinduced hydrogen atom transfer. Nat Commun 2022; 13:4734. [PMID: 35961987 PMCID: PMC9374768 DOI: 10.1038/s41467-022-32467-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
[3+2] Cycloaddition is a step- and atom-economic method for the synthesis of five-membered rings. Despite the great success of 1,3-dipolar cycloadditions, the radical [3+2] annulation of alkynes remains a formidable challenge. Herein, a photoinduced decatungstate-catalyzed [3+2] cycloaddition of various internal alkynes using abundant aliphatic aldehydes as a three-carbon synthon is developed, producing elaborate cyclopentanones in 100% atom economy with excellent site-, regio-, and diastereoselectivity under mild conditions. The catalytic cycle consists of hydrogen atom abstraction from aldehydes, radical addition, 1,5-hydrogen atom transfer, anti-Baldwin 5-endo-trig cyclization, and back hydrogen abstraction. The power of this method is showcased by the late-stage elaboration of medicinally relevant molecules and total or formal synthesis of (±)-β-cuparenone, (±)-laurokamurene B, and (±)-cuparene. In contrast to the prevalence of 1,3-dipolar cycloadditions, radical [3+2] annulations of alkynes are underexplored. Here, the authors describe [3+2] cycloadditions of various internal alkynes with readily accessible aliphatic aldehydes via photoinduced decatungstate catalysis.
Collapse
|
50
|
Zhou C, Shatskiy A, Temerdashev AZ, Kärkäs MD, Dinér P. Highly congested spiro-compounds via photoredox-mediated dearomative annulation cascade. Commun Chem 2022; 5:92. [PMID: 36697909 PMCID: PMC9814605 DOI: 10.1038/s42004-022-00706-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/15/2022] [Indexed: 01/28/2023] Open
Abstract
Photo-mediated radical dearomatization involving 5-exo-trig cyclizations has proven to be an important route to accessing spirocyclic compounds, whereas 6-exo-trig spirocyclization has been much less explored. In this work, a dearomative annulation cascade is realized through photoredox-mediated C-O bond activation of aromatic carboxylic acids to produce two kinds of spirocyclic frameworks. Mechanistically, the acyl radical is formed through oxidation of triphenylphosphine and subsequent C-O bond cleavage, followed by a 6-exo-trig cyclization/SET/protonation sequence to generate the spiro-chromanone products in an intramolecular manner. Furthermore, the protocol was extended to more challenging intermolecular tandem sequences consisting of C-O bond cleavage, radical addition to an alkene substrate, and 5-exo-trig cyclization to yield complex spirocyclic lactams.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Chemistry, Division of Organic Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 10044, Stockholm, Sweden
| | - Andrey Shatskiy
- Department of Chemistry, Division of Organic Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 10044, Stockholm, Sweden
| | - Azamat Z Temerdashev
- Department of Analytical Chemistry, Kuban State University, Stavropolskaya St. 149, 350040, Krasnodar, Russia
| | - Markus D Kärkäs
- Department of Chemistry, Division of Organic Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 10044, Stockholm, Sweden
| | - Peter Dinér
- Department of Chemistry, Division of Organic Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 10044, Stockholm, Sweden.
| |
Collapse
|