1
|
Gao M, Zhang S, Yan Y, Qian Z, Qin L, Liu X, Ding QR, Li Q, Wu X, Zhang J. Precisely tailoring Lewis pairs in polyoxotitanium clusters for efficient photocatalytic production of hydrogen peroxide. Dalton Trans 2025. [PMID: 40372114 DOI: 10.1039/d5dt00085h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Hydrogen peroxide (H2O2) is a vital chemical with promising potential as an energy carrier. Photocatalytic H2O2 production has emerged as a sustainable and environmentally friendly approach. However, current photocatalysts often exhibit low catalytic efficiency and limited tunability of their electronic structures. Herein, we demonstrate a Lewis pair-dependent strategy for photocatalytic H2O2 generation using two N-based polyoxotitanium clusters. Photocatalytic experiments reveal that the Ti3Co cluster achieves an exceptional H2O2 production rate of 1140 μmol g-1 h-1, exceeding that of the Ti3Mn cluster by more than threefold. Theoretical investigations confirm that functional modifications of the metal-nitrogen Lewis pair in polyoxotitanium clusters induce asymmetric charge distribution and narrow band gap structures. These effects significantly enhance surface charge separation and transfer, leading to improved H2O2 yields. This work underscores the potential of atomic-level catalyst design and offers a promising pathway for advancing polyoxotitanium cluster-based photocatalysis.
Collapse
Affiliation(s)
- Mengke Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, China.
- Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Shiming Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, China.
| | - Yayu Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, China.
| | - Zehao Qian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, China.
| | - Liyang Qin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, China.
| | - Xiaoyu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, China.
- Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qing-Rong Ding
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, China.
| | - Qiaohong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, China.
| | - Xin Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, China.
| |
Collapse
|
2
|
Fan L, Zhang X, Zhao S, Sun H, Zhang W, Jian Y, Gao Z. The Inhibited Dehydration Polycondensation Tendency of a Titanocene Aqua Complex Attributed to the Formation of Hydrogen Bonds Between the Ligand Water and Py-NO: Mechanism and Application. Inorg Chem 2025; 64:8992-9001. [PMID: 40279149 DOI: 10.1021/acs.inorgchem.5c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Titanocene aqua complexes (TACs) demonstrate versatile activities that critically depend on maintaining their molecular integrity in aqueous media. However, the strong oxophilicity of Ti(IV) centers renders these complexes prone to undesirable dehydration-condensation reactions, which severely compromise their structural stability. To address this challenge, we developed a simple yet effective strategy for dramatically stabilizing TACs in aqueous environments through the introduction of pyridine-N-oxides (Py-NOs) as auxiliary ligands. Comprehensive mechanistic investigations, including spectroscopic analyses and DFT calculations, reveal that the enhanced stability originates primarily from the formation of intermolecular hydrogen bonds between TACs and Py-NOs. These interactions effectively suppress Ti(IV)-mediated hydrolysis pathways while preserving the complexes' functionality.
Collapse
Affiliation(s)
- Lei Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Xiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Shunan Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Yajun Jian
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
- School of Chemistry & Chemical Engineering, Xinjiang Normal University, Urumqi 830054, P.R. China
- College of Chemistry & Chemical Engineering, Research Institute of Comprehensive Energy Industry Technology, Yan'an University, Yan'an 716000, P. R. China
| |
Collapse
|
3
|
Wang J, Gao F, Wang D, Li Y, Liu L, Zhang G, Wang G, Tung CH, Wang Y. Electronic State Modulation of a Single-Cu Site on a Bimetallically Doped Titanium-Oxo Cluster to Enhance CO 2 Storage. Angew Chem Int Ed Engl 2025:e202505584. [PMID: 40351233 DOI: 10.1002/anie.202505584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/14/2025]
Abstract
While atomically monodisperse nanostructured materials with controllable heterometal dopants are highly desirable to unravel the structure-catalysis relationships, their controlled synthesis and atomic-level structural determination remain significant challenges. Here, we report on nanosized titanium-oxo clusters featuring two heterometallic sites, Ti10M2O8Sal6(HSal)2(OCH3)16(CH3OH)4 (denoted as TiM2; M2 = MnCu, CaCu, Cu2, Mn2, Ca2; Sal and HSal represent salicylate and 2-hydroxybenzoate, respectively), which were used for catalyzing and photocatalyzing the CO2/epoxide cycloaddition to synthesize cyclic carbonates. Notably, the valence state of Cu is modulated by Mn in the TiMnCu cluster as Cu exists in the δ+ valence (1 < δ < 2), whereas in TiCu2 and TiCaCu, Cu is + 2 valence. TiMnCu exhibited the highest catalytic activity and selectivity with 1 atm CO2, and also effective activity using simulated flue gas. Experiments and density functional theory simulations revealed that CO₂ activation is the rate-determining step, with the reduced valence of Cu promoting CO₂ activation and positioning the adsorbed CO₂ closer to the epoxide, thereby facilitating the cyclization process. Our study underscores that in metal-oxide supports with heterometal centers, the modulation of electronic states by the different heterometals can significantly enhance catalytic performance.
Collapse
Affiliation(s)
- Juan Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yuting Li
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Linping Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
4
|
Li RY, Ai JF, Tao JY, Zhu ZH, Zou HH, Wang HL. In Situ Coordination-Catalyzed o-Vanillin Underwent a One-Pot Tandem Reaction to Construct Complex Chiral Tetrameric Isomer-Based Hexanuclear Clusters. Inorg Chem 2025; 64:8591-8600. [PMID: 40265323 DOI: 10.1021/acs.inorgchem.5c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
In this work, Dy(NO3)3·6H2O and o-vanillin reacted under "one-pot" conditions, achieving for the first time four efficient condensations of o-vanillin and obtaining a pair of chiral hexanuclear clusters R/S-Dy6. The four Dy(III) ions in the structure of R/S-Dy6 are arranged in a planar quadrilateral with a Dy(III) ion derived from each of the upper and lower ends, forming a shape similar to a "chair". The complex chiral ligands H4LR1 and H4LS1 were obtained from simple o-vanillin through a multistep tandem reaction. Their formation process involved a series of reaction steps, including a free radical coupling reaction to form pinacol and an in situ tandem reaction of pinacol and o-vanillin. Magnetic studies show that the Dy(III) ions in R/S-Dy6 have magnetic anisotropy and/or low excited states. In addition, R/S-Dy6 has an outstanding ability to produce reactive oxygen species under low-power light irradiation and shows excellent photodynamic sterilization. The inhibition zones against Escherichia coli are about 2.09 and 2.99 cm, and the inhibition zones against Staphylococcus aureus are about 2.51 and 2.93 cm, respectively. This work not only provides a vivid example for the synthesis of complex chiral organic products but also promotes the progress of lanthanide clusters' crystal engineering.
Collapse
Affiliation(s)
- Ru-Yan Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, P. R. China
| | - Ju-Fen Ai
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jia-Yi Tao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, P. R. China
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
5
|
Meng RX, Zhao LC, Luo LP, Tian YQ, Shao YL, Tang Q, Wang L, Yan J, Liu C. Atomic-level engineering of single Ag 1+ site distribution on titanium-oxo cluster surfaces to boost CO 2 electroreduction. Chem Sci 2025; 16:6845-6852. [PMID: 40110521 PMCID: PMC11917444 DOI: 10.1039/d4sc07186g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/06/2025] [Indexed: 03/22/2025] Open
Abstract
Precise control over the distribution of active metal sites on catalyst surfaces is essential for maximizing catalytic efficiency. Addressing the limitations of traditional cluster catalysts with core-embedded catalytic sites, this work presents a strategy to position catalytic sites on the surfaces of oxide clusters. We utilize a calixarene-stabilized titanium-oxo cluster (Ti12L6) as a scaffold to anchor Ag1+ in situ, forming the unique nanocluster Ti12Ag4.5 with six surface-exposed Ag1+ sites. The in situ transformation from Ti12L6 into Ti12Ag4.5 clusters was traced through mass spectrometry, revealing a solvent-mediated dynamic process of disintegration and reassembly of the Ti12L6 macrocycle. The unique Ti12Ag4.5 cluster, featuring a surface-exposed catalytic site configuration, efficiently catalyzes the electroreduction of CO2 to CO over a broad potential window, achieving CO faradaic efficiencies exceeding 82.0% between -0.4 V and -1.8 V. Its catalytic performance surpasses that of bimetallic Ti2Ag2, which features a more conventional design with Ag1+ sites embedded within the cluster. Theoretical calculations indicate that the synergy between the titanium-oxo support and the single Ag1+ sites lowers the activation energy, facilitating the formation of the *COOH intermediate. This work reveals that engineered interactions between active surface metal and the oxide support could amplify catalytic activity, potentially defining a new paradigm in catalyst design.
Collapse
Affiliation(s)
- Ru-Xin Meng
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Lan-Cheng Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 Shandong P. R. China
| | - Li-Pan Luo
- College of Chemistry and Chemical Engineering, Chongqing University Chongqing 400044 P. R. China
| | - Yi-Qi Tian
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Yong-Liang Shao
- School of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Qing Tang
- College of Chemistry and Chemical Engineering, Chongqing University Chongqing 400044 P. R. China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 Shandong P. R. China
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| |
Collapse
|
6
|
Chen W, Wang L, Wang ZR, Zhu T, Ye Y, Li QH, Yi X, Zhang J. Improving the Lithography Sensitivity of Atomically Precise Tin-Oxo Nanoclusters via Heterometal Strategy. Angew Chem Int Ed Engl 2025; 64:e202414360. [PMID: 39353849 DOI: 10.1002/anie.202414360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
Tin-oxo clusters are increasingly recognized as promising materials for nanolithography technology due to their unique properties, yet their structural impacts on lithography performance remain underexplored. This work explores the structural impacts of heterometal strategies on the performance of tin-oxo clusters in nanolithography, focusing on various metal dopants and their coordination geometries. Specifically, SnOC-1(In), SnOC-1(Al), SnOC-1(Fe), and SnOC-2 were synthesized and characterized. These clusters demonstrate excellent solubility, dispersibility, and stability, facilitating the preparation of high-quality films via spin-coating for lithographic applications. Notably, this work innovatively employs Atomic Force Microscopy-based Infrared Spectroscopy (AFM-IR), neutron reflectivity (NR), and X-ray reflectivity (XRR) measurements to confirm film homogeneity. Upon electron beam lithography (EBL), all four materials achieve 50 nm line patterns, with SnOC-1(In) demonstrating the highest lithography sensitivity. This enhanced sensitivity is attributed to indium dopants, which possess superior EUV absorption capabilities and unsaturated coordination environments. Further studies on exposure mechanisms indicated that Sn-C bond cleavage generates butyl free radicals, promoting network formations that induce solubility-switching behaviors for lithography. These findings underscore the efficacy of tailored structural design and modulation of cluster materials through heterometal strategies in enhancing lithography performance, offering valuable insights for future material design and applications.
Collapse
Affiliation(s)
- Weizhou Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Liming Wang
- China Spallation Neutron Source Science Center (SNSSC), Dongguan, 523803, P. R. China
| | - Zi-Rui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Tao Zhu
- China Spallation Neutron Source Science Center (SNSSC), Dongguan, 523803, P. R. China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Yuting Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Xiaofeng Yi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
7
|
Qi X, Xie YL, Niu JY, Zhao JW, Li YM, Fang WH, Zhang J. Application of Hard and Soft Acid-base Theory to Construct Heterometallic Materials with Metal-oxo Clusters. Angew Chem Int Ed Engl 2025; 64:e202417548. [PMID: 39445657 DOI: 10.1002/anie.202417548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Heterometallic cluster-based materials offer the potential to incorporate multiple functionalities, leveraging the aggregation effects of clusters and translating this heterogeneity and complexity into unexpected properties that are more than just the sum of their components. However, the rational construction of heterometallic cluster-based materials remains challenging due to the complexity of metal cation coordination and structural unpredictability. This minireview provides insights into a general synthetic strategy based on Hard and Soft Acids and Bases (HSAB) theory, summarizing its advantages in the designed synthesis of discrete heterometallic clusters (intracluster assembly) and infinite heterometallic cluster-based materials (intercluster assembly). Furthermore, it emphasizes the potential to exploit the intrinsic properties of mixed components to achieve breakthroughs across a broad range of applications. The insights from this review are expected to drive the progress of heterometallic cluster-based materials in a controllable and predictable manner.
Collapse
Affiliation(s)
- Xiao Qi
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, Beijing, 100049, P. R. China
| | - Yu-Long Xie
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, Beijing, 100049, P. R. China
| | - Jing-Yang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University Kaifeng, Henan, 475004, P. R. China
| | - Jun-Wei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University Kaifeng, Henan, 475004, P. R. China
| | - Ya-Min Li
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University Kaifeng, Henan, 475004, P. R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
8
|
Doan TD, Vu NN, Hoang TLG, Nguyen-Tri P. Metal-organic framework (MOF)-based materials for photocatalytic antibacterial applications. Coord Chem Rev 2025; 523:216298. [DOI: 10.1016/j.ccr.2024.216298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Li F, Zhao C, Li Y, Zhang Z, Huang X, Zhang Y, Fang J, Bian T, Zeng Z, Yin J, Jen AKY. Molecularly tailorable metal oxide clusters ensured robust interfacial connection in inverted perovskite solar cells. SCIENCE ADVANCES 2024; 10:eadq1150. [PMID: 39661681 PMCID: PMC11633742 DOI: 10.1126/sciadv.adq1150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Interfacial recombination and ion migration between perovskite and electron-transporting materials have been the persisting challenges in further improving the efficiency and stability of perovskite solar cells (PVSCs). Here, we design a series of molecularly tailorable clusters as an interlayer that can simultaneously enhance the interaction with C60 and perovskite. These clusters have precisely controlled structures, decent charge carrier mobility, considerable solubility, suitable energy levels, and functional ligands, which can help passivate perovskite surface defects, form a uniform capping net to immobilize C60, and build a robust coupling between perovskite and C60. The target inverted PVSCs achieve an impressive power conversion efficiency (PCE) of 25.6% without the need for additional surface passivation. Crucially, the unencapsulated device displays excellent stability under light, heat, and bias, maintaining 98% of its initial PCE after 1500 hours of maximum power point tracking. These results show great promise in the development of advanced interfacial materials for highly efficient perovskite photovoltaics.
Collapse
Affiliation(s)
- Fengzhu Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Chaowei Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yanxun Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zhen Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Xiaofeng Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yuefeng Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Jie Fang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Tieyuan Bian
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Alex K.-Y. Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
10
|
Ding XY, Zhang C, Shi LX, Wang JY, Yang X, Zhang LY, Sun D, Chen ZN. Synergistic coordination of diphosphine with primary and tertiary phosphorus centers: Ultrastable icosidodecahedral Ag 30 nanoclusters with metallic aromaticity. SCIENCE ADVANCES 2024; 10:eads0728. [PMID: 39602534 PMCID: PMC11601195 DOI: 10.1126/sciadv.ads0728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
As versatile ligands with extraordinary coordination capabilities, RPH2 (R = alkyl or aryl) are rarely used in constructing metal nanoclusters due to their volatility, toxicity, spontaneous flammability, and susceptibility to oxidation. In this work, we designed a primary and tertiary phosphorus-bound diphosphine chelator (2-Ph2PC6H4PH2) to create ultrastable silver nanoclusters with metallic aromaticity. By controlling the deprotonation rate of 2-Ph2PC6H4PH2 and adjusting the templates, we successfully synthesized two near-infrared emissive nanoclusters, Ag30 and Ag32, which have analogous icosidodecahedral Ag30 shells with an Ih symmetry. Deprotonated ligand (2-Ph2PαC6H4Pβ2-) exhibits a coordination mode of μ5-η1(Pβ),η2(Pα,Pβ), which endows a unique metallic aromaticity to Ag30 and Ag32. The solution-processed organic light-emitting diodes based on Ag30 achieve an external quantum efficiency of 15.1%, representing the breakthrough in application of silver nanoclusters to near-infrared-emitting devices. This work represents a special ligand system for synthesizing ligand-protected coinage metal nanoclusters and opens up horizons of creating nanoclusters with distinct geometries and metal aromaticity.
Collapse
Affiliation(s)
- Xu-Yang Ding
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji’nan 250100, China
| | - Lin-Xi Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xin Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Yi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji’nan 250100, China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
11
|
Passadis SS, Gray M, Parac-Vogt TN, Keramidas AD, Miras HN, Kabanos TA. Revitalisation of group IV metal-oxo clusters: synthetic approaches, structural motifs and applications. Dalton Trans 2024; 53:18400-18419. [PMID: 39446114 DOI: 10.1039/d4dt02417f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Group (IV) metal oxo clusters represent a unique family of molecular species that are increasingly being utilized in applications ranging from catalysis and materials chemistry to electronics, and sensors. These clusters exhibit distinctive structural features, chemical reactivity, and electronic structure. Nevertheless, their full potential has yet to be fully realized due to the lack of deeper understanding regarding their structure and formation mechanisms, inherent traits, and intricacies in their design, which could ultimately enable significant customization of their properties and overall behaviour. Considering the recently observed reignited interest in the chemistry of group IV molecular species, the scope of this article is to bring to the readers the main chemical characteristics of the family of titanium, zirconium, and hafnium-based clusters, their structural features and their potential in future applications.
Collapse
Affiliation(s)
- Stamatis S Passadis
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Mark Gray
- School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | - Themistoklis A Kabanos
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.
| |
Collapse
|
12
|
Chen XY, Liu QY, Yu WD, Yan J, Liu C. Advancements in calixarene-protected titanium-oxo clusters: from structural assembly to catalytic functionality. Chem Commun (Camb) 2024; 60:11890-11898. [PMID: 39323237 DOI: 10.1039/d4cc04161e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This review explores calixarenes, a prominent family of third-generation supramolecules celebrated for their distinct hollow, cavity-shaped structures. These macrocycles are intricately assembled by linking multiple phenolic units orthogonally through methylene (-CH2-), sulfur (-S-), or sulfonyl (-SO2-) bridges. This structural framework plays a pivotal role in the intricate assembly of nanoclusters, significantly advancing the field of cluster chemistry. A key focus of current research is the remarkable ability of calixarenes to stabilize titanium-oxo clusters. Our review details the application of calixarenes in constructing titanium-oxo cluster structures, emphasizing how these clusters, when encapsulated within calixarenes, exploit flexible coordination sites for structural modifications and serve as foundational units for more complex assemblies. Additionally, we investigate how these calixarene-stabilized metal-oxo clusters function as versatile scaffolds for catalytically active metal ions, facilitating the creation of bimetallic nanoclusters. These clusters not only exhibit unique structural diversity but also demonstrate exceptional catalytic efficiency. This review aims to inspire ongoing exploration and innovation in the use of calixarenes for the synthesis and application of advanced cluster materials.
Collapse
Affiliation(s)
- Xin-Yu Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Qing-Yi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Wei-Dong Yu
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410000, P. R. China.
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| |
Collapse
|
13
|
Brown S, Warren MR, Kubicki DJ, Fitzpatrick A, Pike SD. Photoinitiated Single-Crystal to Single-Crystal Redox Transformations of Titanium-Oxo Clusters. J Am Chem Soc 2024; 146:17325-17333. [PMID: 38865257 PMCID: PMC11212046 DOI: 10.1021/jacs.4c04068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Titanium-oxo clusters can undergo photochemical reactions under UV light, resulting in the reduction of the titanium-oxo core and oxidation of surface ligands. This is an important step in photocatalytic processes in light-absorbing Ti/O-based clusters, metal-organic frameworks, and (nano)material surfaces; however, studying the direct outcome of this photochemical process is challenging due to the fragility of the immediate photoproducts. In this report, titanium-oxo clusters [TiO(OiPr)(L)]n (n = 4, L = O2PPh2, or n = 6, L = O2CCH2tBu) undergo a two-electron photoredox reaction in the single-crystal state via an irreversible single-crystal to single-crystal (SC-SC) transformation initiated by a UV laser. The process is monitored by single crystal X-ray diffraction revealing the photoreduction of the cluster with coproduction of an (oxidized) acetone ligand, which is retained in the structure as a ligand to Ti(3+). The results demonstrate that photochemistry of inorganic molecules can be studied in the single crystal phase, allowing characterization of photoproducts which are unstable in the solution phase.
Collapse
Affiliation(s)
- Stephen
E. Brown
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Mark R. Warren
- Diamond
Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, U.K.
| | | | - Ann Fitzpatrick
- RAL
Space, Harwell Science & Innovation Campus, Didcot OX11 0QX, U.K.
| | - Sebastian D. Pike
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
14
|
Wang X, Sha F, Xie H, Zengcai Z, Idrees KB, Xu Q, Liu Y, Cho LS, Xiao J, Kirlikovali KO, Ren J, Notestein JM, Farha OK. Unveiling Synergetic Photocatalytic Activity from Heterometallic Ti/Ce Clusters. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30020-30030. [PMID: 38814279 DOI: 10.1021/acsami.4c02961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Titanium-oxo clusters, with their robust structure and suitable optical and electronic properties, have been widely investigated as photocatalysts. Heterometallic Ti/M-oxo clusters provide additional tunability and functionality, which enable systematic structure-activity investigations to elucidate the reaction mechanisms and improve the catalyst design. Incorporating cerium into Ti-oxo clusters can provide additional redox (CeIV/CeIII) and oxygen harvesting ability, but to date, only a limited number of structurally defined titanium-cerium (Ti/Ce) clusters have been reported due to their synthetic challenges. Herein, we report the synthesis and photocatalytic properties of two structurally defined Ti/Ce-oxo clusters, Ti8Ce2(BA)16 and Ti9Ce4(BA)20, as well as a TiCe-BA cluster with a calculated formula of Ti20Ce9O36(BA)42. Photocatalytic study of these clusters demonstrates that the amount of Ce3+ species greatly impacts its photocatalytic oxidation performance, and their superior photocatalytic reactivity toward aerobic alcohol oxidation can be contributed to the synergistic effects of the multiple radical species generated upon light absorption. This work represents a significant milestone in the construction of stable Ti/Ce-oxo clusters, enriching the current library of known heterometallic Ti/M-oxo clusters, and providing a series of crystalline materials with great promise of photoluminescence and photovoltaic chemistry.
Collapse
Affiliation(s)
- Xingjie Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fanrui Sha
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ziyu Zengcai
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Karam B Idrees
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Qingchong Xu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yao Liu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lauren S Cho
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jing Xiao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kent O Kirlikovali
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Justin M Notestein
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Ilbeygi H, Jaafar J. Recent Progress on Functionalized Nanoporous Heteropoly Acids: From Synthesis to Applications. CHEM REC 2024; 24:e202400043. [PMID: 38874111 DOI: 10.1002/tcr.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Indexed: 06/15/2024]
Abstract
Functionalized nanoporous heteropoly acids (HPAs) have garnered significant attention in recent years due to their enhanced surface area and porosity, as well as their potential for low-cost regeneration compared to bulk materials. This review aims to provide an overview of the recent advancements in the synthesis and applications of functionalized HPAs. We begin by introducing the fundamental properties of HPAs and their unique structure, followed by a comprehensive overview of the various approaches employed for the synthesis of functionalized HPAs, including salts, anchoring onto supports, and implementing mesoporous silica sieves. The potential applications of functionalized HPAs in various fields are also discussed, highlighting their boosted performance in a wide range of applications. Finally, we address the current challenges and present future prospects in the development of functionalized HPAs, particularly in the context of mesoporous HPAs. This review aims to provide a comprehensive summary of the recent progress in the field, highlighting the significant advancements made in the synthesis and applications of functionalized HPAs.
Collapse
Affiliation(s)
- Hamid Ilbeygi
- Battery Research and Innovation Hub, Institute of Frontier Materials, Deakin University, Burwood, VIC 3125, Australia
- ARC Research Hub for Integrated Devices for End-user Analysis at Low-levels (IDEAL), Future Industries Institute, STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Juhana Jaafar
- N29a, Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
16
|
Hou J, Huang C, Liu Y, Fei P, Zhang D, Qu K, Zi W, Huang X. Phenanthroline-Mediated Photoelectrical Enhancement in Calix[4]arene-Functionalized Titanium-Oxo Clusters. Molecules 2024; 29:2566. [PMID: 38893442 PMCID: PMC11173645 DOI: 10.3390/molecules29112566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Incorporating two organic ligands with different functionalities into a titanium-oxo cluster entity simultaneously can endow the material with their respective properties and provide synergistic performance enhancement, which is of great significance for enriching the structure and properties of titanium-oxo clusters (TOCs). However, the synthesis of such TOCs is highly challenging. In this work, we successfully synthesized a TBC4A-functionalized TOC, [Ti2(TBC4A)2(MeO)2] (Ti2; MeOH = methanol, TBC4A = tert-butylcalix[4]arene). By adjusting the solvent system, we successfully introduced 1,10-phenanthroline (Phen) and prepared TBC4A and Phen co-protected [Ti2(TBC4A)2(Phen)2] (Ti2-Phen). Moreover, when Phen was replaced with bulky 4,7-diphenyl-1,10-phenanthroline (Bphen), [Ti2(TBC4A)2(Bphen)2] (Ti2-Bphen), which is isostructural with Ti2-Phen, was obtained, demonstrating the generality of the synthetic method. Remarkably, Ti2-Phen demonstrates good stability and stronger light absorption, as well as superior photoelectric performance compared to Ti2. Density functional theory (DFT) calculations reveal that there exists ligand-to-core charge transfer (LCCT) in Ti2, while an unusual ligand-to-ligand charge transfer (LLCT) is present in Ti2-Phen, accompanied by partial LCCT. Therefore, the superior light absorption and photoelectric properties of Ti2-Phen are attributed to the existence of the unusual LLCT phenomenon. This study not only deeply explores the influence of Phen on the performance of the material but also provides a reference for the preparation of materials with excellent photoelectric performance.
Collapse
Affiliation(s)
- Jinle Hou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (C.H.); (Y.L.); (P.F.); (D.Z.); (K.Q.); (W.Z.)
| | | | | | | | | | | | | | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (C.H.); (Y.L.); (P.F.); (D.Z.); (K.Q.); (W.Z.)
| |
Collapse
|
17
|
Fang WH, Xie YL, Wang ST, Liu YJ, Zhang J. Induced Aggregation, Solvent Regulation, and Supracluster Assembly of Aluminum Oxo Clusters. Acc Chem Res 2024; 57:1458-1466. [PMID: 38654437 DOI: 10.1021/acs.accounts.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ConspectusRecent years have witnessed the development of cluster materials as they are atomically precise molecules with uniform size and solution-processability, which are unattainable with traditional nanoparticles or framework materials. The motivation for studying Al(III) chemistry is not only to understand the aggregation process of aluminum in the environment but also to develop novel low-cost materials given its natural abundance. However, the Al-related clusters are underdeveloped compared to the coinage metals, lanthanides, and transition metals. The challenge in isolating crystalline compounds is the lack of an effective method to realize the controllable hydrolysis of Al(III) ions. Compared with the traditional hydrolysis of inorganic Al(III) salts in highly alkaline solutions and hydrolysis of aluminum trialkyl compounds conducted carefully in an inert operating environment, we herein developed an effective way to control the hydrolysis of aluminum isopropanol through an alcoxalation reaction. By solvothermal/low melting point solid melting synthesis and using "ligand aggregation, solvent regulation, and supracluster assembly" strategies, our laboratory has established an organic-inorganic hybrid system of aluminum oxo clusters (AlOCs). The employment of organic ligands promotes the aggregation and slows the hydrolysis of Al(III) ions, which in turn improves the crystallization process. The regulation of the structure types can be achieved through the selection of ligands and the supporting solvents. Compared with the traditional condensed polyoxoaluminates, we successfully isolated a broad range of porous AlOCs, including aluminum molecular rings and Archimedes aluminum oxo cages. By studying ring expansion, structural transformation, and intermolecular supramolecular assembly, we demonstrate unique and unprecedented structural controllability and assembly behavior in cluster science. The advancement of this universal synthetic method is to realize materials customization through modularly oriented supracluster assembly. In this Account, we will provide a clear-cut definition and terminology of "ligand aggregation, solvent regulation, and supracluster assembly". Then we will discuss the discovery in this area by using a strategy, such as aluminum molecular ring, ring size expansion, ring supracluster assembly, etc. Furthermore, given the internal and external pore structures, as well as the solubility and modifiability of the AlOCs, we will demonstrate their potential applications in both the solid and liquid phases, such as iodine capture, the optical limiting responses, and dopant in polymer dielectrics. The strategy herein can be applied to extensive cluster science and promote the research of main group element chemistry. The new synthetic method, fascinating clusters, and unprecedented assembly behaviors we have discovered will advance Al(III) chemistry and will also lay the foundation for functional applications.
Collapse
Affiliation(s)
- Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yu-Long Xie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ya-Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
18
|
Song N, Lu M, Liu J, Lin M, Shangguan P, Wang J, Shi B, Zhao J. A Giant Heterometallic Polyoxometalate Nanocluster for Enhanced Brain-Targeted Glioma Therapy. Angew Chem Int Ed Engl 2024; 63:e202319700. [PMID: 38197646 DOI: 10.1002/anie.202319700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Giant heterometallic polyoxometalate (POM) clusters with precise atom structures, flexibly adjustable and abundant active sites are promising for constructing functional nanodrugs. However, current POM drugs are almost vacant in orthotopic brain tumor therapy due to the inability to effectively penetrate the blood-brain barrier (BBB) and low drug activity. Here, we designed the largest (3.0 nm × 6.0 nm) transition-metal-lanthanide co-encapsulated POM cluster {[Ce10 Ag6 (DMEA)(H2 O)27 W22 O70 ][B-α-TeW9 O33 ]9 }2 88- featuring 238 metal centers via synergistic coordination between two geometry-unrestricted Ce3+ and Ag+ linkers with tungsten-oxo cluster fragments. This POM was combined with brain-targeted peptide to prepare a brain-targeted nanodrug that could efficiently traverse BBB and target glioma cells. The Ag+ active centers in the nanodrug specifically activate reactive oxygen species to regulate the apoptosis pathway of glioma cells with a low half-maximal inhibitory concentration (5.66 μM). As the first brain-targeted POM drug, it efficiently prolongs the survival of orthotopic glioma-bearing mice.
Collapse
Affiliation(s)
- Nizi Song
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Mengya Lu
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Jiancai Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ming Lin
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ping Shangguan
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Jiefei Wang
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bingyang Shi
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, China
| |
Collapse
|
19
|
Sun SN, Niu Q, Lin JM, He LL, Shi JW, Huang Q, Liu J, Lan YQ. Sulfur atom-directed metal-ligand synergistic catalysis in zirconium/hafnium-oxo clusters for highly efficient amine oxidation. Sci Bull (Beijing) 2024; 69:492-501. [PMID: 38044194 DOI: 10.1016/j.scib.2023.11.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
The performance applications (e.g., photocatalysis) of zirconium (Zr) and hafnium (Hf) based complexes are greatly hindered by the limited development of their structures and the relatively inert metal reactivity. In this work, we constructed two ultrastable Zr/Hf-based clusters (Zr9-TC4A and Hf9-TC4A) using hydrophobic 4-tert-butylthiacalix[4]arene (H4TC4A) ligands, in which unsaturated coordinated sulfur (S) atoms on the TC4A4- ligand can generate strong metal-ligand synergy with nearby active metal Zr/Hf sites. As a result, these two functionalized H4TC4A ligands modified Zr/Hf-oxo clusters, as catalysts for the amine oxidation reaction, exhibited excellent catalytic activity, achieving very high substrate conversion (>99%) and product selectivity (>90%). Combining comparative experiments and theoretical calculations, we found that these Zr/Hf-based cluster catalysts accomplish efficient amine oxidation reactions through synergistic effect between metals and ligands: (i) The photocatalytic benzylamine (BA) oxidation reaction was achieved by the synergistic effect of the dual active sites, in which, the naked S sites on the TC4A4- ligand oxidize the BA by photogenerated hole and oxygen molecules are reduced by photogenerated electrons on the metal active sites; (ii) in the aniline oxidation reaction, aniline was adsorbed by the bare S sites on ligands to be closer to metal active sites and then oxidized by the oxygen-containing radicals activated by the metal sites, thus completing the catalytic reaction under the synergistic catalytic effect of the proximity metal-ligand. In this work, the Zr/Hf-based complexes applied in the oxidation of organic amines have been realized using active S atom-directed metal-ligand synergistic catalysis and have demonstrated very high reactivity.
Collapse
Affiliation(s)
- Sheng-Nan Sun
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Qian Niu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiao-Min Lin
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Li-Ling He
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Jing-Wen Shi
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Qing Huang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Said A, Chen G, Zhang G, Wang D, Liu Y, Gao F, Wang G, Tung CH, Wang Y. Enhancing the photocatalytic performance of a rutile unit featuring a titanium-oxide cluster by Pb 2+ doping. Dalton Trans 2024; 53:3666-3674. [PMID: 38293811 DOI: 10.1039/d3dt03865c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Titanium-oxide clusters (TOCs) are well-defined molecular models for TiO2 materials and provide the opportunity to study the structure-activity relationships of TiO2. Here, we report a new Pb-doped TOC, Ti12Pb2, which resembles a two-layer decker of the {TiTi6} structural units of rutile TiO2 with two Ti4+ ions replaced by two Pb2+ ions. Its electronic structure, photoresponse, and photocatalytic performances were investigated and compared with those of the Ti14 cluster, which is isostructural to Ti12Pb2. Our results indicate that Pb2+ does not affect the electronic structure, but it greatly enhances the photocatalytic activity by improving the charge-separation and interfacial charge-transfer properties of the TOC. The successful synthesis of Ti12Pb2 highlights the roles of closed-shell heterometal ions in the construction of new TOCs. Our mechanism may be an inspiration for understanding the structure-activity relationships of closed-shell heterometal-doped TiO2.
Collapse
Affiliation(s)
- Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
21
|
Hou J, Huang N, Acharya D, Liu Y, Zhu J, Teng J, Wang Z, Qu K, Zhang X, Sun D. All-catecholate-stabilized black titanium-oxo clusters for efficient photothermal conversion. Chem Sci 2024; 15:2655-2664. [PMID: 38362423 PMCID: PMC10866351 DOI: 10.1039/d3sc05617a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024] Open
Abstract
The controlled synthesis of titanium-oxo clusters (TOCs) completely stabilized by organic dye ligands with high stability and superior light absorption remains a significant challenge. In this study, we report the syntheses of three atomically precise catechol (Cat)-functionalized TOCs, [Ti2(Cat)2(OEgO)2(OEgOH)2] (Ti2), [Ti8O5(Cat)9(iPrO)4(iPrOH)2] (Ti8), and [Ti16O8(OH)8(Cat)20]·H2O·PhMe (Ti16), using a solvent-induced strategy (HOEgOH = ethylene glycol; iPrOH = isopropanol; PhMe = toluene). Interestingly, the TiO core of Ti16 is almost entirely enveloped by catechol ligands, making it the first all-catechol-protected high-nuclearity TOC. In contrast, Ti2 and Ti8 have four weakly coordinated ethylene glycol ligands and six weakly coordinated iPrOH ligands, respectively, in addition to the catechol ligands. Ti16 is visually evident in its distinctively black appearance, which belongs to black TOCs (B-TOCs) and exhibits an ultralow optical band gap. Furthermore, Ti16 displays exceptional stability in various media/environments, including exposure to air, solvents, and both acidic and alkaline aqueous solutions due to its comprehensive protection by catechol ligands and rich intra-cluster supramolecular interactions. Ti16 has superior photoelectric response qualities and photothermal conversion capabilities compared to Ti2 and Ti8 due to its ultralow optical band gap and remarkable stability. This discovery not only represents a huge step forward in the creation of all-catecholate-protected B-TOCs with ultralow optical band gaps and outstanding stability, but it also gives key valuable mechanistic insights into their photothermal/electric applications.
Collapse
Affiliation(s)
- Jinle Hou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 People's Republic of China
| | - Nahui Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 People's Republic of China
| | - Dinesh Acharya
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Yuxin Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 People's Republic of China
| | - Jiaying Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 People's Republic of China
| | - Jiaxin Teng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 People's Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Konggang Qu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 People's Republic of China
| | - Xianxi Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| |
Collapse
|
22
|
Zhang R, Lan J, Wang F, Chen S, Zhang J. Aggregate assembly of ferrocene functionalized indium-oxo clusters. Chem Sci 2024; 15:726-735. [PMID: 38179516 PMCID: PMC10762979 DOI: 10.1039/d3sc05824g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
In this study, we synthesized multi-nuclear indium oxide clusters (InOCs) using 1,1'-ferrocene dicarboxylic acid (H2FcDCA) as the chelating and surface protection ligand. The obtained clusters include the cubane-type heptanuclear InOCs ([In7]) and the sandwich-type thirteen-nuclear InOCs ([In13]). Notably, [In13] represents the highest nuclear number reported within the InOC family. In addition, the presence of labile coordination sites in these clusters allowed for structural modification and self-assembly. A series of [In7] clusters with adjustable band gaps have been obtained and the self-assembly of [In7] clusters resulted in the formation of an Fe-doped dimer, [Fe2In12], and an imidazole-bridged tetramer, [In28]. Similarly, in the case of [In13] clusters, the coordinated water molecules could be replaced by imidazole, methylimidazole, and even a bridged carboxylic acid, allowing the construction of one-dimensional extended structures. Additionally, part of the H2FcDCA could be substituted by pyrazole. This flexibility in replacing solvent molecules offered diverse possibilities for tailoring the properties and structures of the InOCs to suit specific applications.
Collapse
Affiliation(s)
- Rong Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 People's Republic of China
| | - Jiajing Lan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 People's Republic of China
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
| | - Shumei Chen
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 People's Republic of China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
| |
Collapse
|
23
|
Lin X, Yi X, Zhang J, Zhang L. Structural Regulation and Transformation of Oxalate-Bridged Polyoxo-Titanium Nanoclusters: Intercluster Docking Strategy and Polyiodides Induced Rearrangement. Inorg Chem 2023; 62:21053-21060. [PMID: 38044558 DOI: 10.1021/acs.inorgchem.3c02828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Although significant progress has been made in the synthetic and structural chemistry of polyoxo-titanium clusters (PTCs), the rational regulation of their geometric and electronic configurations is rather difficult. Meanwhile, it is also challenging to induce their systematic structural transformation, thereby customizing their physicochemical properties. In this work, we illustrate the intercluster docking strategy, which utilizes oxalates as multidentate ligands to connect and regulate the modular assembly of polynuclear Ti-O subunits into nanoclusters Ti24(μ3-O)26(μ2-O)4(OiPr)34(Oxal) (PTC-361), Ti28(μ4-O)2(μ3-O)28(μ2-O)8(OtBu)22(PA)12(Oxal) (PTC-362), Ti10(μ3-O)6(OtBu)14(PA)6(Oxal)2(tBC)2 (PTC-363), and Ti24(μ3-O)20(μ2-O)12(PA)12(Oxal)2(Hoxal)8(PyA)8 (PTC-364) (H2Oxal = oxalic acid; HOiPr = isopropanol; HOtBu = t-butanol; H2tBC = 4-tert-butylcatechol; HPA = propionic acid; and HPyA = 2-picolinic acid). Furthermore, the stepwise addition of iodine gives rise to polyiodide I3- to assist the controllable structure transformation of PTC-361 to [Ti12(μ-O)15(OiPr)17]I3 (PTC-365) and even to [Ti24(μ2-O)2(μ3-O)30(OiPr)30](I3)2 (PTC-366) with increasing polyiodide content. Moreover, modification with 4-tert-butylcatecholate as light absorbent material on the surface layers of PTCs and polyiodide I3- incorporation in PTCs expand their light response to the visible region and reduce their highest occupied molecular orbital-lowest unoccupied molecular orbital gaps. This work successfully develops an intercluster docking strategy and gives precise modulation on the geometry of nanoclusters as well as the optimization of their desired properties.
Collapse
Affiliation(s)
- Xin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaofeng Yi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
24
|
Tian YQ, Dai LF, Mu WL, Yu WD, Yan J, Liu C. Atomically accurate site-specific ligand tailoring of highly acid- and alkali-resistant Ti(iv)-based metallamacrocycle for enhanced CO 2 photoreduction. Chem Sci 2023; 14:14280-14289. [PMID: 38098712 PMCID: PMC10718071 DOI: 10.1039/d3sc06046b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Skillfully engineering surface ligands at specific sites within robust clusters presents both a formidable challenge and a captivating opportunity. Herein we unveil an unprecedented titanium-oxo cluster: a calix[8]arene-stabilized metallamacrocycle (Ti16L4), uniquely crafted through the fusion of four "core-shell" {Ti4@(TBC[8])(L)} subunits with four oxalate moieties. Notably, this cluster showcases an exceptional level of chemical stability, retaining its crystalline integrity even when immersed in highly concentrated acid (1 M HNO3) and alkali (20 M NaOH). The macrocycle's surface unveils four specific, customizable μ2-bridging sites, primed to accommodate diverse carboxylate ligands. This adaptability is highlighted through deliberate modifications achieved by alternating crystal soaking in alkali and carboxylic acid solutions. Furthermore, Ti16L4 macrocycles autonomously self-assemble into one-dimensional nanotubes, which subsequently organize into three distinct solid phases, contingent upon the specific nature of the four μ2-bridging ligands. Notably, the Ti16L4 exhibit a remarkable capacity for photocatalytic activity in selectively reducing CO2 to CO. Exploiting the macrocycle's modifiable shell yields a significant boost in performance, achieving an exceptional maximum CO release rate of 4.047 ± 0.243 mmol g-1 h-1. This study serves as a striking testament to the latent potential of precision-guided surface ligand manipulation within robust clusters, while also underpinning a platform for producing microporous materials endowed with a myriad of surface functionalities.
Collapse
Affiliation(s)
- Yi-Qi Tian
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Lin-Fang Dai
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Wen-Lei Mu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Wei-Dong Yu
- China College of Science, Hunan University of Technology and Business Changsha 410000 P. R. China
| | - Jun Yan
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Chao Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| |
Collapse
|
25
|
Li XH, Dai S, Yan XY, Lei H, Liu XY, Liu Y, Zhang W, Xu X, Yin JF, Wu Y, Ye F, Guo QY, Cheng SZD. A Thiol-Michael Approach Towards Versatile Functionalized Cyclic Titanium-Oxo Clusters. Chemistry 2023; 29:e202302352. [PMID: 37584964 DOI: 10.1002/chem.202302352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/17/2023]
Abstract
In expanding our research activities of superlattice engineering, designing new giant molecules is the necessary first step. One attempt is to use inorganic transition metal clusters as building blocks. Efficient functionalization of chemically precise transition metal clusters, however, remains a great challenge to material scientists. Herein, we report an efficient thiol-Michael addition approach for the modifications of cyclic titanium-oxo cluster (CTOC). Several advantages, including high efficiency, mild reaction condition, capability of complete addition, high atom economy, as well as high functional group tolerance were demonstrated. This approach can afford high yields of fully functionalized CTOCs, which provides a powerful platform for achieving versatile functionalization of precise transition metal clusters and further applications.
Collapse
Affiliation(s)
- Xing-Han Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Shuqi Dai
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Xiao-Yun Yan
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio, 44325-3909, United States
| | - Huanyu Lei
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Xian-You Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Yuchu Liu
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio, 44325-3909, United States
| | - Weiqi Zhang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Xiaotong Xu
- School of Water and Environment, Chang'an University, Xi'an, 710018, China
| | - Jia-Fu Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Yuean Wu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Feng Ye
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Qing-Yun Guo
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio, 44325-3909, United States
| | - Stephen Z D Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio, 44325-3909, United States
| |
Collapse
|
26
|
Tian YQ, Mu WL, Wu LL, Yi XY, Yan J, Liu C. Stepwise assembly of thiacalix[4]arene-protected Ag/Ti bimetallic nanoclusters: accurate identification of catalytic Ag sites in CO 2 electroreduction. Chem Sci 2023; 14:10212-10218. [PMID: 37772117 PMCID: PMC10530961 DOI: 10.1039/d3sc02793g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
The accurate identification of catalytic sites in heterogeneous catalysts poses a significant challenge due to the intricate nature of controlling interfacial chemistry at the molecular level. In this study, we introduce a novel strategy to address this issue by utilizing a thiacalix[4]arene (TC4A)-protected Ti-oxo core as a template for loading Ag1+ ions, leading to the successful synthesis of a unique Ag/Ti bimetallic nanocluster denoted as Ti8Ag8. This nanocluster exhibits multiple surface-exposed Ag sites and possesses a distinctive "core-shell" structure, consisting of a {Ti4@Ag8(TC4A)4} core housing a {Ti2O2@Ag4(TC4A)2} motif and two {Ti@Ag2(TC4A)} motifs. To enable a comprehensive analysis, we also prepared a Ti2Ag4 cluster with the same {Ti2O2@Ag4(TC4A)2} structure found within Ti8Ag8. The structural disparities between Ti8Ag8 and Ti2Ag4 provide an excellent platform for a comparison of catalytic activity at different Ag sites. Remarkably, Ti8Ag8 exhibits exceptional performance in the electroreduction of CO2 (eCO2RR), showcasing a CO faradaic efficiency (FECO) of 92.33% at -0.9 V vs. RHE, surpassing the FECO of Ti2Ag4 (69.87% at -0.9 V vs. RHE) by a significant margin. Through density functional theory (DFT) calculations, we unveil the catalytic mechanism and further discover that Ag active sites located at {Ti@Ag2(TC4A)} possess a higher εd value compared to those at {Ti2O2@Ag4(TC4A)2}, enhancing the stabilization of the *COOH intermediate during the eCO2RR. This study provides valuable insights into the accurate identification of catalytic sites in bimetallic nanoclusters and opens up promising avenues for efficient CO2 reduction catalyst design.
Collapse
Affiliation(s)
- Yi-Qi Tian
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Wen-Lei Mu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Lin-Lin Wu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Xiao-Yi Yi
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Jun Yan
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Chao Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| |
Collapse
|
27
|
Bai X, Zhao G, Yang G, Wang M, Chen Z, Zhang N. Titanium-Oxygen Clusters Brazing Li with Li 6.5La 3Zr 1.5Ta 0.5O 12 for High-Performance All-Solid-State Li Batteries. NANO LETTERS 2023; 23:7934-7940. [PMID: 37624088 DOI: 10.1021/acs.nanolett.3c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Garnet-based solid-state electrolytes are considered crucial candidates for solid-state Li batteries due to their high Li+ conductivity and nonflammability; however, poor interfacial contact with the Li anode and growth of Li dendrites limit their application. Herein, a high-activity titanium-oxygen cluster is used as a brazing filler to braze the Li6.5La3Zr1.5Ta0.5O12 (LLZTO) with an Li anode into the whole unit. The brazing layer leads to a significantly lower interfacial impedance of 8.32 Ω cm2. Furthermore, the brazing layer is an isotropic amorphous ion-electron hybrid conductive layer, which significantly promotes Li+ transport and regulates the distribution of the electric field, therefore inhibiting the growth of Li dendrites. The cell exhibits an ultrahigh critical current density of 2.3 mA cm-2 and stable cycling of over 4000 h at 0.5 mA cm-2 (25 °C).
Collapse
Affiliation(s)
- Xiaoming Bai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Guangyu Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Guiye Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Ming Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Zhaoyu Chen
- Space Environment Simulation Research Infrastructure, Harbin Institute of Technology, Harbin 150006, People's Republic of China
| | - Naiqing Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
28
|
Mo QL, Dai XC, Xiao FX. Robust and Stable Atomically Precise Metal Nanoclusters Mediated Solar Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302372. [PMID: 37118858 DOI: 10.1002/smll.202302372] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Atomically precise metal nanoclusters (NCs) represent an emerging sector of light-harvesting antennas by virtue of peculiar atomic stacking fashion, quantum confinement effect, and molecular-like discrete energy band structure. Nevertheless, precise control of charge carriers over metal NCs has yet to be achieved by the short carrier lifetime and intrinsic instability of metal NCs, which renders the complexity of metal NCs-based photosystems with photoredox mechanisms remaining elusive. Herein, fine tuning of charge migration over metal NCs is demonstrated by constructing directional charge transfer channels in multilayered heterostructure enabled by a facile layer-by-layer (LbL) assembly approach, wherein oppositely charged branched poly-ethylenimine (BPEI) and glutathione (GSH)-capped gold NCs [Aux NCs, Au25 (GSH)18 NCs] are alternately deposited on the metal oxide (MOs: TiO2 , WO3 , Fe2 O3 ) substrates. TheAux (Au25 ) NCs layer serves as light-harvesting antennas for engendering charge carriers, andBPEI interim layer uniformly intercalated at the interface of Aux NCs layer constitutes the tandem hole transport channel for motivating the charge transfer cascade, resulting in the considerably enhanced photoelectrochemical water oxidation performances. Besides, poor photo-stability of Aux NCs is surmounted by stimulating the hole transfer kinetics process.
Collapse
Affiliation(s)
- Qiao-Ling Mo
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province, 350108, China
| | - Xiao-Cheng Dai
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province, 350108, China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province, 350108, China
| |
Collapse
|
29
|
Said A, Zhang G, Wang D, Chen G, Liu Y, Gao F, Tung CH, Wang Y. Divalent Heterometal Doped Titanium-Oxide Cluster Polymers: Structures, Photoresponse, and Photocatalysis. Inorg Chem 2023; 62:13476-13484. [PMID: 37552624 DOI: 10.1021/acs.inorgchem.3c01842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Five cluster polymers based on heterometal-doped titanium-oxide cluster (TOC) monomers are reported. The monomers feature Ti10-oxide cluster cores and are connected to the divalent closed-shell heterometal anchors by salicylate ligands. The Sr2+, Ba2+, and Pb2+ dopants cause the monomers to bind head-to-head and generate linear chains, while the Ca2+ and Cd2+ lead to head-to-tail connections and zigzag chains. The cluster polymers are responsive to visible-light up to 565 nm and photo-catalytically active in both H2 evolution and CO2/epoxide cycloaddition reactions. The photo-absorption, photo-charge separation, and photocatalytic properties of the cluster polymers are dependent on the heterometal dopants in order Cd > Pb > Ba > Sr > Ca. Heterometals serve as the catalytic sites in the cluster polymers, which depending on the contribution of the pCB bottom, facilitate photo-charge separation and interfacial charge transfer, further enhancing catalytic activity. The tunable compositions and topologies of the cluster polymers shown herein may inspire the design and synthesis of more multidimensional functional metal-oxide cluster materials for a variety of applications in the future.
Collapse
Affiliation(s)
- Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
30
|
Lai QS, Li XX, Zheng ST. All-inorganic POM cages and their assembly: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
31
|
Pan X, Si X, Zhang X, Yao Q, Li Y, Duan W, Qiu Y, Su J, Huang X. A robust and porous titanium metal-organic framework for gas adsorption, CO 2 capture and conversion. Dalton Trans 2023; 52:3896-3906. [PMID: 36877532 DOI: 10.1039/d2dt03158b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A robust and porous titanium metal-organic framework (Ti-MOF; LCU-402) has been hydrothermally synthesized through combining a tetranuclear Ti2Ca2(μ3-O)2(μ2-H2O)1.3(H2O)4(O2C-)8 cluster and a tritopic 1,3,5-benzene(tris)benzoic (BTB) ligand. LCU-402 shows remarkable stability and permanent porosity for CO2, CH4, C2H2, C2H4, and C2H6 gas adsorption. Moreover, LCU-402 as a heterogeneous catalyst can smoothly convert CO2 under a simulated flue atmosphere into organic carbonate molecules by cycloaddition reactions of CO2 and epoxides, indicating that LCU-402 might be a promising catalyst candidate in practical applications. We are confident that the identification of a persistent titanium-oxo building unit would accelerate the development of new porous Ti-MOF materials.
Collapse
Affiliation(s)
- Xuze Pan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Xuezhen Si
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Xiaoying Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Yunwu Li
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Yi Qiu
- College of Chemistry and molecular engineering, Peking University, Beijing, 100871, PR China.
| | - Jie Su
- College of Chemistry and molecular engineering, Peking University, Beijing, 100871, PR China.
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
32
|
Wang C, Yan J, Chen S, Liu Y. High-Valence Metal-Organic Framework Materials Constructed from Metal-Oxo Clusters: Opportunities and Challenges. Chempluschem 2023; 88:e202200462. [PMID: 36790800 DOI: 10.1002/cplu.202200462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Metal-organic framework (MOF), which possesses stable framework structure constructed by highly connected metal-oxo cluster nodes and organic linkers, has shown great promise in gas storage, adsorption, and separation, owing to the high surface areas, tunable pore aperture, and rich functional groups. In this review article, we summarized recent progress made in synthesizing high-valence MOF (e. g., UiO-66, MIL-125, PCN-22, and MIP-207) with metal-oxo cluster as metal source. Of particular note, recent breakthroughs in the preparation of UiO-66 and MIL-125 membranes with the corresponding Zr6 -oxo and Ti8 -oxo cluster sources (e. g., Zr6 O4 (OH)4 (OAc)12 and Ti8 O8 (OOCR)16 clusters) possessing superior separation performance were highlighted. In the end, an outlook on the preparation of versatile high-valence MOF membranes with the corresponding metal-oxo clusters as metal sources was highlighted.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2 Ganjingzi District, Dalian, 116024, P. R. China
| | - Jiahui Yan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2 Ganjingzi District, Dalian, 116024, P. R. China
| | - Sixing Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2 Ganjingzi District, Dalian, 116024, P. R. China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2 Ganjingzi District, Dalian, 116024, P. R. China.,Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian University of Technology Linggong Road 2 Ganjingzi District, Dalian, 116024, P. R. China
| |
Collapse
|
33
|
Said A, Liu C, Gao C, Wang D, Niu H, Liu Y, Wang G, Tung CH, Wang Y. Lead-Decorated Titanium Oxide Compound with a High Performance in Catalytic CO 2 Insertion to Epoxides. Inorg Chem 2023; 62:1901-1910. [PMID: 36184952 DOI: 10.1021/acs.inorgchem.2c01315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The CO2 cycloaddition to epoxides is an efficient method for CO2 capture and storage, important not only for reducing greenhouse gas emission but also for producing cyclic carbonates, which are valuable industrial materials. In this study, we report a novel high-nuclearity titanium oxide cluster (TOC) inlayed with main-group element Pb2+, H2Ti16Pb9O24(SA)18(DMF)10(OH2)2 (denoted as 1; SA = salicylate; DMF = N,N-dimethylformamide), which has the property of visible-light absorption and has shown high catalytic activities for cycloadditions of CO2 under visible-light irradiation. The cluster was synthesized in a high yield in a facial solvothermal process. Its structure and electronic structure were characterized by single-crystal X-ray diffraction, density functional theory calculations, and complementary techniques. The cycloaddition reactions were performed under solvent-free conditions. While the catalytic activity due to the Lewis acidity was moderate, visible-light irradiation further folded the reaction rates. The turnover number reached 3400 with a turnover frequency of 120 h-1. Mechanism studies indicated a synergistic effect of the Lewis acidity and photogenerated charge carriers. The performance of 1 in reversible I2 uptake was also investigated. This study demonstrates the high potential of heterometal-decorated TOCs in the cost-effective and efficient CO2 cycloaddition reaction under mild conditions.
Collapse
Affiliation(s)
- Amir Said
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Caiyun Liu
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chang Gao
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Wang
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Huihui Niu
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chen-Ho Tung
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
34
|
Xu H, Wu Y, Yang L, Rao Y, Wang J, Peng S, Li Q. Water-Harvesting Metal-Organic Frameworks with Gigantic Al 24 Units and their Deconstruction into Molecular Clusters. Angew Chem Int Ed Engl 2023; 62:e202217864. [PMID: 36479801 DOI: 10.1002/anie.202217864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
In contrast to the vast Al-oxo molecular cluster chemistry, Al-based building units for metal-organic framework (MOF) construction are limited in structural diversity and complexity. Synthesis of single crystalline MOFs based on this "hard" metal is further complicated by the poor reversibility of the Al-organic coordination linkages. Here, a strategy to employ two kinds of linkages with distinct strength-strong Al-carboxylate linkage and weak Cu-pyrazol N linkage-gives FDM-91 (FDM=Fudan Materials) with gigantic Al24 -based units. After replacing the weak moieties with organic linkers post-synthetically, two new stable MOFs with exceptional water harvesting capacity (up to 0.53 g g-1 ) and outstanding cycling performance are developed. Linkage-selective dissociation of FDM-91 further leads to the isolation of the Al24 molecular clusters. The versatile chemistry performed here to reinforce or deconstruct MOFs provides a new way to make important extended and discrete structures.
Collapse
Affiliation(s)
- Huoshu Xu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Yichen Wu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Lingyi Yang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Yin Rao
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Junyi Wang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Shuyin Peng
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| | - Qiaowei Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P.R. China
| |
Collapse
|
35
|
Xie B, Wang HQ, Li HF, Zeng JK. Structural and electronic properties of Ln2Si6q: (Sm, Eu, Yb; q = 0, −1) clusters. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
36
|
Brown SE, Mantaloufa I, Andrews RT, Barnes TJ, Lees MR, De Proft F, Cunha AV, Pike SD. Photoactivation of titanium-oxo cluster [Ti 6O 6(OR) 6(O 2C t Bu) 6]: mechanism, photoactivated structures, and onward reactivity with O 2 to a peroxide complex. Chem Sci 2023; 14:675-683. [PMID: 36741534 PMCID: PMC9847671 DOI: 10.1039/d2sc05671b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The molecular titanium-oxo cluster [Ti6O6(OiPr)6(O2C t Bu)6] (1) can be photoactivated by UV light, resulting in a deeply coloured mixed valent (photoreduced) Ti (iii/iv) cluster, alongside alcohol and ketone (photooxidised) organic products. Mechanistic studies indicate that a two-electron (not free-radical) mechanism occurs in this process, which utilises the cluster structure to facilitate multielectron reactions. The photoreduced products [Ti6O6(OiPr)4(O2C t Bu)6(sol)2], sol = iPrOH (2) or pyridine (3), can be isolated in good yield and are structurally characterized, each with two, uniquely arranged, antiferromagnetically coupled d-electrons. 2 and 3 undergo onward oxidation under air, with 3 cleanly transforming into peroxide complex, [Ti6O6(OiPr)4(O2C t Bu)6(py)(O2)] (5). 5 reacts with isopropanol to regenerate the initial cluster (1) completing a closed cycle, and suggesting opportunities for the deployment of these easily made and tuneable clusters for sustainable photocatalytic processes using air and light. The redox reactivity described here is only possible in a cluster with multiple Ti sites, which can perform multi-electron processes and can adjust its shape to accommodate changes in electron density.
Collapse
Affiliation(s)
| | | | | | | | | | - Frank De Proft
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Ana V. Cunha
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB)BrusselsBelgium,University of AntwerpAntwerpBelgium
| | | |
Collapse
|
37
|
Wang ST, Liu YJ, Zhang CY, Yang F, Fang WH, Zhang J. Cluster-Based Crystalline Materials for Iodine Capture. Chemistry 2023; 29:e202202638. [PMID: 36180419 DOI: 10.1002/chem.202202638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/06/2022]
Abstract
The treatment of radioactive iodine in nuclear waste has always been a critical issue of social concern. The rational design of targeted and efficient capture materials is of great significance to the sustainable development of the ecological environment. In recent decades, crystalline materials have served as a molecular platform to study the binding process and capture mechanism of iodine molecules, enabling people to understand the interaction between radioactive iodine guests and pores intuitively. Cluster-based crystalline materials, including molecular clusters and cluster-based metal-organic frameworks, are emerging candidates for iodine capture due to their aggregative binding sites, precise structural information, tunable pores/packing patterns, and abundant modifications. Herein, recent progress of different types of cluster materials and cluster-dominated metal-organic porous materials for iodine capture is reviewed. Research prospects, design strategies to improve the affinity for iodine and possible capture mechanisms are discussed.
Collapse
Affiliation(s)
- San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ya-Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Cheng-Yang Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Fan Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
38
|
Luo XM, Li YK, Dong XY, Zang SQ. Platonic and Archimedean solids in discrete metal-containing clusters. Chem Soc Rev 2023; 52:383-444. [PMID: 36533405 DOI: 10.1039/d2cs00582d] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal-containing clusters have attracted increasing attention over the past 2-3 decades. This intense interest can be attributed to the fact that these discrete metal aggregates, whose atomically precise structures are resolved by single-crystal X-ray diffraction (SCXRD), often possess intriguing geometrical features (high symmetry, aesthetically pleasing shapes and architectures) and fascinating physical properties, providing invaluable opportunities for the intersection of different disciplines including chemistry, physics, mathematical geometry and materials science. In this review, we attempt to reinterpret and connect these fascinating clusters from the perspective of Platonic and Archimedean solid characteristics, focusing on highly symmetrical and complex metal-containing (metal = Al, Ti, V, Mo, W, U, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, lanthanoids (Ln), and actinoids) high-nuclearity clusters, including metal-oxo/hydroxide/chalcogenide clusters and metal clusters (with metal-metal binding) protected by surface organic ligands, such as thiolate, phosphine, alkynyl, carbonyl and nitrogen/oxygen donor ligands. Furthermore, we present the symmetrical beauty of metal cluster structures and the geometrical similarity of different types of clusters and provide a large number of examples to show how to accurately describe the metal clusters from the perspective of highly symmetrical polyhedra. Finally, knowledge and further insights into the design and synthesis of unknown metal clusters are put forward by summarizing these "star" molecules.
Collapse
Affiliation(s)
- Xi-Ming Luo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ke Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
39
|
Xiao JD, Li R, Jiang HL. Metal-Organic Framework-Based Photocatalysis for Solar Fuel Production. SMALL METHODS 2023; 7:e2201258. [PMID: 36456462 DOI: 10.1002/smtd.202201258] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) represent a novel class of crystalline inorganic-organic hybrid materials with tunable semiconducting behavior. MOFs have potential for application in photocatalysis to produce sustainable solar fuels, owing to their unique structural advantages (such as clarity and modifiability) that can facilitate a deeper understanding of the structure-activity relationship in photocatalysis. This review takes the photocatalytic active sites as a particular perspective, summarizing the progress of MOF-based photocatalysis for solar fuel production; mainly including three categories of solar-chemical conversions, photocatalytic water splitting to hydrogen fuel, photocatalytic carbon dioxide reduction to hydrocarbon fuels, and photocatalytic nitrogen fixation to high-energy fuel carriers such as ammonia. This review focuses on the types of active sites in MOF-based photocatalysts and discusses their enhanced activity based on the well-defined structure of MOFs, offering deep insights into MOF-based photocatalysis.
Collapse
Affiliation(s)
- Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Rui Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
40
|
Gao MY, Bai H, Cui X, Liu S, Ling S, Kong T, Bai B, Hu C, Dai Y, Zhao Y, Zhang L, Zhang J, Xiong Y. Precisely Tailoring Heterometallic Polyoxotitanium Clusters for the Efficient and Selective Photocatalytic Oxidation of Hydrocarbons. Angew Chem Int Ed Engl 2022; 61:e202215540. [PMID: 36314983 DOI: 10.1002/anie.202215540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 11/05/2022]
Abstract
Photocatalysis is a promising yet challenging approach for the selective oxidation of hydrocarbons to valuable oxygenated chemicals with O2 under mild conditions. In this work, we report an atomically precise material model to address this challenge. The key to our solution is the rational incorporation of Fe species into polyoxotitanium cluster to form a heterometallic Ti4 Fe1 cocrystal. This newly designed cocrystal cluster, which well governs the energy and charge transfer as evidenced by spectroscopic characterizations and theoretical calculations, enables the synergistic process involving C(sp3 )-H bond activation by photogenerated holes and further reactions by singlet oxygen (1 O2 ). Remarkably, the cocrystal Ti4 Fe1 cluster achieves efficient and selective oxidation of hydrocarbons (C5 to C16 ) into aldehydes and ketones with a conversion rate up to 12 860 μmol g-1 h-1 , 5 times higher than that of Fe-doped Ti3 Fe1 cluster. This work provides insights into photocatalyst design at atomic level enabling synergistic catalysis.
Collapse
Affiliation(s)
- Mei-Yan Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
| | - Hui Bai
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, P. R. China
| | - Xiaofeng Cui
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, P. R. China.,Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, Anhui, P. R. China
| | - Shuyan Liu
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, Anhui, P. R. China
| | - Shan Ling
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, P. R. China
| | - Tingting Kong
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, P. R. China
| | - Bing Bai
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, P. R. China
| | - Canyu Hu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Yitao Dai
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Yingguo Zhao
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, Anhui, P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
| | - Yujie Xiong
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, P. R. China.,School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| |
Collapse
|
41
|
Sheng K, Huang XQ, Wang R, Wang WZ, Gao ZY, Tung CH, Sun D. Decagram-Scale Synthesis of Heterometallic Ag/Ti Cluster as Sustainable Catalyst for Selective Oxidation of Sulfides. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Liu YF, Hu CW, Yang GP. Recent advances in polyoxometalates acid-catalyzed organic reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Youzhu Y, Hui W, Leilei L, Yuhua G, Jing F, Yichao L. Crystal structure of bis(μ 2-2-oxido-2-phenylacetato-κ 3
O,O′:O′)-bis( N-oxido-benzamide-κ 2
O,O′)-bis(propan-2-olato-κ 1
O)dititanium(IV), C 36H 38N 2O 12Ti 2. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C36H38N2O12Ti2, monoclinic, P21/n (no. 14), a = 10.3151(7) Å, b = 15.8747(11) Å, c = 11.5020(8) Å, β = 98.471(3)°, V = 1862.9(2) Å3, Z = 2, R
gt(F) = 0.0386, wR
ref(F
2) = 0.1075, T = 296(2) K.
Collapse
Affiliation(s)
- Yu Youzhu
- School of Chemical and Environmental Engineering , Anyang Institute of Technology , Anyang 455000 , Henan , P. R. China
| | - Wang Hui
- School of Chemistry and Material Science , Shanxi Normal University , Taiyuan 060006 , Shanxi , P. R. China
| | - Li Leilei
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering , Liaocheng University , Liaoocheng 252059 , Shandong , P. R. China
| | - Guo Yuhua
- School of Chemical and Environmental Engineering , Anyang Institute of Technology , Anyang 455000 , Henan , P. R. China
| | - Feng Jing
- School of Chemical and Environmental Engineering , Anyang Institute of Technology , Anyang 455000 , Henan , P. R. China
| | - Li Yichao
- School of Chemical and Environmental Engineering , Anyang Institute of Technology , Anyang 455000 , Henan , P. R. China
| |
Collapse
|
44
|
Zhang L, Fan X, Yi X, Lin X, Zhang J. Coordination-Delayed-Hydrolysis Method for the Synthesis and Structural Modulation of Titanium-Oxo Clusters. Acc Chem Res 2022; 55:3150-3161. [PMID: 36223528 DOI: 10.1021/acs.accounts.2c00421] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusAtomically precise titanium-oxo clusters (TOCs) are the structure and reactivity model compounds of technically important TiO2 materials, which could help build structure-property relationships and achieve property modulation at the molecular level. However, the traditional formation of TOCs has relied on the poorly controllable hydrolysis of titanium alkoxide in the solvent for a long time, limiting the development of TOC structural chemistry to a great extent. In addition, easily hydrolyzable alkoxy groups would be still coordinated on the surface of the TOCs generated by this method, making the clusters sensitive and unstable to the moisture. To achieve controllable preparation of TOCs, we believe it is crucial to attenuate the hydrolysis of titanium ions in the formation process of a cluster. To this end, we have recently applied an effective coordination-delayed-hydrolysis (CDH) strategy for TOC synthesis, which provides powerful tools for tuning their structures.In this Account, at the beginning, a brief introduction to the coordination-delayed-hydrolysis strategy is supplied, and its predominant features for constructing novel TOCs are highlighted. In subsequent sections, we discuss how the applied chelating organic/inorganic ligands (named hydrolysis delayed ligands) influence the hydrolysis process of Ti4+ ions to form a large family of TOCs with various nuclearities and core structures. Various hydrolysis delayed ligands have been explored, ranging from common O-donor ligands (carboxylate, phenol, or sulfate) to rarely used N-donor ligands (pyrazole) or bifunctional O/N-donor ones (quinoline, oxime, or alkanolamine). Breakthroughs in the symmetry, configuration, and cluster nuclei of TOCs have been accordingly achieved. Then, we show that this CDH method can be used to tune the surface structure of TOCs by modifying functional organic ligands. As a result, the physicochemical properties of TOCs, especially optical band gaps, can be optimized, and their stability under ambient conditions is significantly improved. In addition, we illustrate that the reversible bonds between hydrolysis delayed ligands and Ti ions further allows us to introduce active heterometal ions or clusters upon or inside the Ti-O cores to prepare heterometallic TOCs with unprecedented structures and properties. In particular, noble metal (Ag ions or clusters) has been incorporated into Ti-O clusters for the first time. As a summary, the coordination-delayed-hydrolysis strategy has realized the controllable hydrolysis of Ti4+ ions to some extent, breaking through the limitations of traditional synthesis methods and producing fruitful results in the field of titanium-oxo clusters. It is believed that this CDH method would also be effective for synthesizing oxo clusters of other easily hydrolyzed metal ions (Al3+, Sn4+, In3+, etc.) to afford significant contribution for the cluster community.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, P. R. China
| | - Xi Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, P. R. China
| | - Xiaofeng Yi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, P. R. China
| | - Xin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, P. R. China
| |
Collapse
|
45
|
Dzhardimalieva GI, Uflyand IE, Zhinzhilo VA, Drogan EG, Burlakova VE, Irkha VA. Titanium(IV) Oxoacrylate Complexes with Polypyridine Ligands as Precursors of Nanomaterials with Antiwear Properties. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Chen J, Abazari R, Adegoke KA, Maxakato NW, Bello OS, Tahir M, Tasleem S, Sanati S, Kirillov AM, Zhou Y. Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214664] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Gao C, Wang D, Liu Y, Zhang G, Liu C, Said A, Niu H, Wang G, Tung CH, Wang Y. New picolinate-functionalized titanium-oxide clusters: syntheses, structures and photocatalytic H 2 evolution. Dalton Trans 2022; 51:15385-15392. [PMID: 36149342 DOI: 10.1039/d2dt01882a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two nanosized titanium-oxide clusters (TOCs), Ti12(μ2-O)14(μ3-O)4PA16 (1; PA = 2-picolinate) and Ti12(μ2-O)18PA18 (2) were synthesized by using 2-picolinic acid and Ti(OiPr)4 in one-pot reactions. Their structures were determined using single-crystal X-ray diffractometry. Although both have the same core composition of Ti12O18, 1 exhibited superior H2 evolution activity of up to 180 μmol h-1 g-1, which is nearly eight times faster than 2. Mechanism studies revealed that 1 could induce the assembly of 2.3 nm PtNPs into 10-30 nm supra-nanoparticle structures, which contributed to the increased H2 evolution rate.
Collapse
Affiliation(s)
- Chang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Caiyun Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Huihui Niu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. .,State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
48
|
Wang D, Said A, Liu Y, Niu H, Liu C, Wang G, Li Z, Tung CH, Wang Y. Cr-Ti Mixed Oxide Molecular Cages: Synthesis, Structure, Photoresponse, and Photocatalytic Properties. Inorg Chem 2022; 61:14887-14898. [PMID: 36063420 DOI: 10.1021/acs.inorgchem.2c02605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The solvothermal reaction of titanium isopropoxide and chromate in the presence of benzoate produced two novel host-guest clusters encapsulating Cs+ or H3O+, (H3O)@Ti7Cr14 and Cs@Ti7Cr14. The most remarkable feature is that the Ti7O7 ring is concentrically embraced by a Cr14O14 ring to form a rigid Ti7Cr14 host. ESI-MS and 133Cs NMR revealed that the overall framework structures are preserved, whereas the benzoate ligands on the two clusters may be labile in solutions. Both (H3O)@Ti7Cr14 and Cs@Ti7Cr14 exhibit good UV-vis light-responsive properties and photocatalytic activities, with absorption edges extending up to 780 nm. Cs@Ti7Cr14 is an effective visible-light-responsive photocatalyst in both the heterogeneous methylene dye degradation and homogeneous CO2 cycloaddition reaction under mild conditions like room temperature and 1 bar of CO2. According to the mechanism studies, Cs+, as a rigid guest, can significantly improve the photogenerated charge separation efficiency of the Ti7Cr14 host, thereby improving its interface charge separation properties, photocurrent, and photocatalytic activities. Our findings not only provide new members of heterometallic titanium oxide clusters to enrich the metal oxide cluster family but also open up new possibilities for their photoresponses, which may play an important role in solar energy harvesting for sustainable chemistry.
Collapse
Affiliation(s)
- Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Huihui Niu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Caiyun Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
49
|
Zhou J, Li J, Kan L, Zhang L, Huang Q, Yan Y, Chen Y, Liu J, Li SL, Lan YQ. Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO 2 reduction with H 2O. Nat Commun 2022; 13:4681. [PMID: 35948601 PMCID: PMC9365760 DOI: 10.1038/s41467-022-32449-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/28/2022] [Indexed: 12/25/2022] Open
Abstract
Mimicking natural photosynthesis to convert CO2 with H2O into value-added fuels achieving overall reaction is a promising way to reduce the atmospheric CO2 level. Casting the catalyst of two or more catalytic sites with rapid electron transfer and interaction may be an effective strategy for coupling photocatalytic CO2 reduction and H2O oxidation. Herein, based on the MOF ∪ COF collaboration, we have carefully designed and synthesized a crystalline hetero-metallic cluster catalyst denoted MCOF-Ti6Cu3 with spatial separation and functional cooperation between oxidative and reductive clusters. It utilizes dynamic covalent bonds between clusters to promote photo-induced charge separation and transfer efficiency, to drive both the photocatalytic oxidative and reductive reactions. MCOF-Ti6Cu3 exhibits fine activity in the conversion of CO2 with water into HCOOH (169.8 μmol g−1h−1). Remarkably, experiments and theoretical calculations reveal that photo-excited electrons are transferred from Ti to Cu, indicating that the Cu cluster is the catalytic reduction center. A crystalline hetero-metallic cluster catalyst based on a covalent organic framework strategy is reported. The catalyst can facilitate both photocatalytic oxidative and reductive reactions leading to efficient production of HCOOH from CO2 and H2O.
Collapse
Affiliation(s)
- Jie Zhou
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Jie Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Liang Kan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Lei Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Qing Huang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Yong Yan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China.
| | - Yifa Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China.
| |
Collapse
|
50
|
Rassu P, Ma X, Wang B. Engineering of catalytically active sites in photoactive metal–organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214561] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|