1
|
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem Rev 2023; 123:6107-6196. [PMID: 36996355 DOI: 10.1021/acs.chemrev.2c00896] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.
Collapse
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Gerhard Pirngruber
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| |
Collapse
|
2
|
Conesa J, Morales M, García-Bosch N, Ramos IR, Guerrero-Ruiz A. GRAPHITE SUPPORTED HETEROPOLYACID AS A REGENERABLE CATALYST IN THE DEHYDRATION OF 1-BUTANOL TO BUTENES. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Shi Y, Weller AS, Blacker AJ, Dyer PW. Conversion of butanol to propene in flow: A triple dehydration, isomerisation and metathesis cascade. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
4
|
Abstract
Abstract
In the last decade, there was observed a growing demand for both n-butanol as a potential fuel or fuel additive, and propylene as the only raw material for production of alcohol and other more bulky propylene chemical derivatives with faster growing outputs (polymers, propylene oxide, and acrylic acid). The predictable oilfield depletion and the European Green Deal adoption stimulated interest in alternative processes for n-butanol production, especially those involving bio-based materials. Their commercialization will promote additional market penetration of n-butanol for its application as a basic chemical. We analyze briefly the current status of two most advanced bio-based processes, i.e. ethanol–to-n-butanol and acetone–butanol–ethanol (ABE) fermentation. In the second part of the review, studies of n-butanol and ABE conversion to valuable products are considered with an emphasis on the most perspective catalytic systems and variants of the future processes realization.
Collapse
Affiliation(s)
- Larisa Pinaeva
- Department of Technology of Catalytic Processes, Boreskov Institute of Catalysis , Novosibirsk 630090 , Russia
| | - Alexandr Noskov
- Department of Technology of Catalytic Processes, Boreskov Institute of Catalysis , Novosibirsk 630090 , Russia
| |
Collapse
|
5
|
Schweitzer JM, Rey J, Bignaud C, Bučko T, Raybaud P, Moscovici-Mirande M, Portejoie F, James C, Bouchy C, Chizallet C. Multiscale Modeling as a Tool for the Prediction of Catalytic Performances: The Case of n-Heptane Hydroconversion in a Large-Pore Zeolite. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jean-Marc Schweitzer
- IFP Energies nouvelles─Rond-Point de l’Echangeur de Solaize─BP 3, 69360 Solaize, France
| | - Jérôme Rey
- IFP Energies nouvelles─Rond-Point de l’Echangeur de Solaize─BP 3, 69360 Solaize, France
| | - Charles Bignaud
- IFP Energies nouvelles─Rond-Point de l’Echangeur de Solaize─BP 3, 69360 Solaize, France
- Département de Chimie, PSL University, École Normale Supérieure, 75005 Paris, France
| | - Tomáš Bučko
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, SK- 84215 Bratislava, Slovakia
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84236 Bratislava, Slovakia
| | - Pascal Raybaud
- IFP Energies nouvelles─Rond-Point de l’Echangeur de Solaize─BP 3, 69360 Solaize, France
| | | | - Frédéric Portejoie
- IFP Energies nouvelles─Rond-Point de l’Echangeur de Solaize─BP 3, 69360 Solaize, France
| | - Christophe James
- IFP Energies nouvelles─Rond-Point de l’Echangeur de Solaize─BP 3, 69360 Solaize, France
| | - Christophe Bouchy
- IFP Energies nouvelles─Rond-Point de l’Echangeur de Solaize─BP 3, 69360 Solaize, France
| | - Céline Chizallet
- IFP Energies nouvelles─Rond-Point de l’Echangeur de Solaize─BP 3, 69360 Solaize, France
| |
Collapse
|
6
|
Selective dehydration of 1-butanol to butenes over silica supported heteropolyacid catalysts: Mechanistic aspect. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Omojola T, Logsdail AJ, van Veen AC, Nastase SAF. A quantitative multiscale perspective on primary olefin formation from methanol. Phys Chem Chem Phys 2021; 23:21437-21469. [PMID: 34569573 DOI: 10.1039/d1cp02551a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of the first C-C bond and primary olefins from methanol over zeolite and zeotype catalysts has been studied for over 40 years. Over 20 mechanisms have been proposed for the formation of the first C-C bond. In this quantitative multiscale perspective, we decouple the adsorption, desorption, mobility, and surface reactions of early species through a combination of vacuum and sub-vacuum studies using temporal analysis of products (TAP) reactor systems, and through studies with atmospheric fixed bed reactors. These results are supplemented with density functional theory calculations and data-driven physical models, using partial differential equations, that describe the temporal and spatial evolution of species. We consider the effects of steam, early degradation species, and product masking due to the inherent autocatalytic nature of the process, which all complicate the observation of the primary olefin(s). Although quantitative spectroscopic determination of the lifetimes, surface mobility, and reactivity of adspecies is still lacking in the literature, we observe that reaction barriers are competitive with adsorption enthalpies and/or activation energies of desorption, while facile diffusion occurs in the porous structures of the zeolite/zeotype catalysts. Understanding the various processes allows for quantitative evaluation of their competing energetics, which leads to molecular insights as to what governs the catalytic activity during the conversion of methanol to primary olefins over zeolite/zeotype catalysts.
Collapse
Affiliation(s)
- Toyin Omojola
- Department of Chemical Engineering, Claverton Down, University of Bath, Bath BA2 7AY, UK. .,School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - André C van Veen
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Stefan Adrian F Nastase
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| |
Collapse
|
8
|
Kumar G, Ren L, Pang Y, Li X, Chen H, Gulbinski J, Dauenhauer PJ, Tsapatsis M, Abdelrahman OA. Acid Sites of Phosphorus-Modified Zeosils. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Gaurav Kumar
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Limin Ren
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
- Catalysis Center for Energy Innovation, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Yutong Pang
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Xinyu Li
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Han Chen
- Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Jason Gulbinski
- Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Paul J. Dauenhauer
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
- Catalysis Center for Energy Innovation, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Michael Tsapatsis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
- Catalysis Center for Energy Innovation, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Omar A. Abdelrahman
- Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, Massachusetts 01003, United States
- Catalysis Center for Energy Innovation, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
9
|
Fečík M, Plessow PN, Studt F. Influence of Confinement on Barriers for Alkoxide Formation in Acidic Zeolites. ChemCatChem 2021. [DOI: 10.1002/cctc.202100009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michal Fečík
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Philipp N. Plessow
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute of Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engessestrasse 18 76131 Karlsruhe Germany
| |
Collapse
|
10
|
Berger F, Sauer J. Dimerization of Linear Butenes and Pentenes in an Acidic Zeolite (H-MFI). Angew Chem Int Ed Engl 2021; 60:3529-3533. [PMID: 33314606 PMCID: PMC7898720 DOI: 10.1002/anie.202013671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Indexed: 11/06/2022]
Abstract
Quantum chemical evidence is produced to show that dimerization of linear butenes and pentenes at zeolitic Brønsted sites in H-MFI yields alkanes featuring cyclohexane rings rather than branched alkenes. The absence of any C=C double bond in the formed cyclic alkane explains the observations that oligomerization stops at the dimer. The calculated reaction enthalpies for the dimerization of 2-pentene in the gas phase are -84 kJ mol-1 for branched alkenes, but -153 and -154 kJ mol-1 for alkyl-cyclopentane and -hexane, respectively. Together with calculated adsorption enthalpies of the dimers, -111 and -127 kJ mol-1 , respectively, this implies surface dimer formation enthalpies of -264 and -281 kJ mol-1 , respectively, in close agreement with the experimental value of -285 kJ mol-1 . In contrast, the predicted enthalpy for formation of branched alkoxides, -198 kJ mol-1 , deviates by 87 kJ mol-1 from experiment. Calculated IR spectra for the Brønsted OH group show the observed conversion of the band at approximately 3000 cm-1 (hydrogen bond with alkene) to a less intense band at approximately 3450-3500 cm-1 (interaction with alkane).
Collapse
Affiliation(s)
- Fabian Berger
- Institut für ChemieHumboldt-Universität zu BerlinUnter den Linden 610099BerlinGermany
| | - Joachim Sauer
- Institut für ChemieHumboldt-Universität zu BerlinUnter den Linden 610099BerlinGermany
| |
Collapse
|
11
|
Berger F, Sauer J. Dimerization of Linear Butenes and Pentenes in an Acidic Zeolite (H‐MFI). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fabian Berger
- Institut für Chemie Humboldt-Universität zu Berlin Unter den Linden 6 10099 Berlin Germany
| | - Joachim Sauer
- Institut für Chemie Humboldt-Universität zu Berlin Unter den Linden 6 10099 Berlin Germany
| |
Collapse
|
12
|
de Reviere A, Gunst D, Sabbe MK, Reyniers MF, Verberckmoes A. Dehydration of butanol towards butenes over MFI, FAU and MOR: influence of zeolite topology. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02366c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of zeolite topology on the kinetics, selectivity and catalyst stability for the dehydration of butanol is studied experimentally and through microkinetic modeling.
Collapse
Affiliation(s)
- Arno de Reviere
- Industrial Catalysis and Adsorption Technology
- Ghent University
- 9000 Ghent
- Belgium
- Laboratory for Chemical Technology
| | - Dieter Gunst
- Industrial Catalysis and Adsorption Technology
- Ghent University
- 9000 Ghent
- Belgium
- Laboratory for Chemical Technology
| | - Maarten K. Sabbe
- Industrial Catalysis and Adsorption Technology
- Ghent University
- 9000 Ghent
- Belgium
- Laboratory for Chemical Technology
| | | | - An Verberckmoes
- Industrial Catalysis and Adsorption Technology
- Ghent University
- 9000 Ghent
- Belgium
| |
Collapse
|
13
|
Sustainable short-chain olefin production through simultaneous dehydration of mixtures of 1-butanol and ethanol over HZSM-5 and γ-Al2O3. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Chizallet C. Toward the Atomic Scale Simulation of Intricate Acidic Aluminosilicate Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01136] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles Solaize, Rond-Point de l’Echangeur de Solaize, BP 3, 69360 Solaize, France
| |
Collapse
|
15
|
Stadler BM, Wulf C, Werner T, Tin S, de Vries JG. Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01665] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard M. Stadler
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Christoph Wulf
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Thomas Werner
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Johannes G. de Vries
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
16
|
Vinter KP, Dauenhauer PJ. Inert competitive adsorption for the inhibition of oligomerization of alkenes during alcohol dehydration. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01222a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inert competitive adsorbents inhibit secondary undesired reactions.
Collapse
Affiliation(s)
- Katherine P. Vinter
- Department of Chemical Engineering and Materials Science
- University of Minnesota
- Minneapolis
- 55455 USA
- Catalysis Center for Energy Innovation
| | - Paul J. Dauenhauer
- Department of Chemical Engineering and Materials Science
- University of Minnesota
- Minneapolis
- 55455 USA
- Catalysis Center for Energy Innovation
| |
Collapse
|