1
|
Saito K, Morita M, Okada T, Wijitwongwan RP, Ogawa M. Designed functions of oxide/hydroxide nanosheets via elemental replacement/doping. Chem Soc Rev 2024; 53:10523-10574. [PMID: 39371019 DOI: 10.1039/d4cs00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Partial replacement of one structural element in a solid with another of a similar size was conducted to impart functionality to the solids and modify their properties. This phenomenon is found in nature in coloured gemstones and clay minerals and is used in materials chemistry and physics, endowing materials with useful properties that can be controlled by incorporated heteroelements and their amounts. Depending on the area of research (or expected functions), the replacement is referred to as "isomorphous substitution", "doping", etc. Herein, elemental replacement in two-dimensional (2D) oxides and hydroxides (nanosheets or layered materials) is summarised with emphasis on the uniqueness of their preparation, characterisation and application compared with those of the corresponding bulk materials. Among the 2D materials (graphene, metallenes, transition metal chalcogenides, metal phosphate/phosphonates, MXenes, etc.), 2D oxides and hydroxides are characterised by their presence in nature, facile synthesis and storage under ambient conditions, and possible structural variation from atomic-level nanosheets to thicker nanosheets composed of multilayered structures. The heteroelements to be doped were selected depending on the target application objectively; however, there are structural and synthetic limitations in the doping of heteroelements. In the case of layered double hydroxides (single layer) and layered alkali silicates (from single layer to multiple layers), including layered clay minerals (2 : 1 layer), the replacement (commonly called isomorphous substitution) is discussed to understand/design characteristics such as catalytic, adsorptive (including ion exchange), and swelling properties. Due to the variation in their main components, the design of layered transition metal oxide/hydroxide materials via isomorphous substitution is more versatile; in this case, tuning their band structure, doping both holes and electrons, and creating impurity levels are examined by the elemental replacement of the main components. As typical examples, material design for the photocatalytic function of an ion-exchangeable layered titanate (lepidocrocite-type titanate) and a perovskite niobate (KCa2Nb3O10) is discussed, where elemental replacement is effective in designing their multiple functions.
Collapse
Affiliation(s)
- Kanji Saito
- Department of Materials Science, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0054, Japan
| | - Masashi Morita
- Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Tomohiko Okada
- Department of Materials Chemistry, and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano-shi 380-8553, Japan
| | - Rattanawadee Ploy Wijitwongwan
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
2
|
Bessa LADM, Nazário MLF, Izumi CMS, Constantino VRL, Lourenço V, Lopes EA, Mizubuti ESG, Tronto J. Enhanced white rot control in garlic bulbil using organic-inorganic hybrid materials as coating membranes. Dalton Trans 2024; 53:7880-7889. [PMID: 38634831 DOI: 10.1039/d4dt00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Organic-inorganic hybrid materials have a range of applications due to their unique properties. Their application in agriculture brings alternatives for the controlled release of nutrients in the soil, the seed coating, the transport of herbicides, and the treatment of plant diseases. The present study aimed to investigate the use of fungicides incorporated into hybrid membranes formed by synthetic hectorite (LAPONITE®) and polymers in the pre-treatment of garlic bulbils exposed to the pathogen Stromatinia cepivora, which causes white rot. The coatings were selected by a germination test, based on the bulbil sprouting index, and by a mycelial growth inhibition test, based on the percentage of mycelial growth inhibition. The chosen membranes were used to coat the bulbils for bioassays conducted in a biochemical oxygen demand incubator at 17 °C. The coated bulbils were planted in soil samples containing three different densities of Stromatinia cepivora: 0.1 g, 1.0 g, and 10 g of sclerotium per L of soil. Membranes containing 2% carboxymethyl cellulose and 2% LAPONITE® incorporated with (i) the fungicide tebuconazole (36 mg L-1) and (ii) the combination of the actives tebuconazole (36 mg L-1) and triadimenol (62 mg L-1) showed the total rate of sprouting and null indices of incidence of symptoms and mortality in its repetitions. The hybrid membranes were characterized employing several techniques, including X-ray diffraction, infrared and Raman spectroscopy, thermogravimetric analysis and differential scanning calorimetry coupled to mass spectrometry, and optical microscopy. Characterization data confirmed the presence of fungicides incorporated into the membranes. Some concentrations of fungicides were low enough not to be detected in all analyses performed, although they guaranteed a protective character to the bulbils about the fungus S. cepivora present in the soil, with a possibility of antifungal pre-treatment with a potential reduction in the concentration used.
Collapse
Affiliation(s)
- Lorena Alves de Melo Bessa
- Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Campus Rio Paranaíba, CEP 38810-000, Rio Paranaíba, MG, Brazil.
| | - Mariane Luísa Ferreira Nazário
- Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Campus Rio Paranaíba, CEP 38810-000, Rio Paranaíba, MG, Brazil.
| | - Celly Mieko Shinohara Izumi
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Univeritário, CEP 36036-900, Juiz de Fora, MG, Brazil.
| | - Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo, SP, Brazil.
| | - Valdir Lourenço
- Embrapa Hortaliças, CEP 70.351-970, Brasília, Distrito Federal, Brazil.
| | - Everaldo Antônio Lopes
- Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Campus Rio Paranaíba, CEP 38810-000, Rio Paranaíba, MG, Brazil.
| | | | - Jairo Tronto
- Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Campus Rio Paranaíba, CEP 38810-000, Rio Paranaíba, MG, Brazil.
| |
Collapse
|
3
|
Kim SH, Bae IS, Lee HU, Moon JY, Lee YC. A Bioactive Compound-Loaded Zinc-Aminoclay Encapsulated, Pickering Emulsion System for Treating Acne-Inducing Microbes. Int J Mol Sci 2023; 24:9669. [PMID: 37298619 PMCID: PMC10253637 DOI: 10.3390/ijms24119669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Acne is a common skin condition caused by the growth of certain bacteria. Many plant extracts have been investigated for their potential to combat acne-inducing microbes, and one such plant extract is microwave-assisted Opuntia humifusa extract (MA-OHE). The MA-OHE was loaded onto zinc-aminoclay (ZnAC) and encapsulated in a Pickering emulsion system (MA-OHE/ZnAC PE) to evaluate its therapeutic potential against acne-inducing microbes. Dynamic light scattering and scanning electron microscopy were used to characterize MA-OHE/ZnAC PE with a mean particle diameter of 353.97 nm and a PDI of 0.629. The antimicrobial effect of MA-OHE/ZnAC was evaluated against Staphylococcus aureus (S. aureus) and Cutibacterium acnes (C. acnes), which contribute to acne inflammation. The antibacterial activity of MA-OHE/ZnAC was 0.1 and 0.025 mg/mL to S. aureus and C. acnes, respectively, which were close to naturally derived antibiotics. Additionally, the cytotoxicity of MA-OHE, ZnAC, and MA-OHE/ZnAC was tested, and the results showed that they had no cytotoxic effects on cultured human keratinocytes in a range of 10-100 μg/mL. Thus, MA-OHE/ZnAC is suggested to be a promising antimicrobial agent for treating acne-inducing microbes, while MA-OHE/ZnAC PE is a potentially advantageous dermal delivery system.
Collapse
Affiliation(s)
- Seong-Hyeon Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - In-Sun Bae
- Swsonaki Inc., Gwangyang Frontier-Valley 3rd, 30 Gaseok-ro, Incheon 22827, Republic of Korea;
| | - Hyun Uk Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea;
| | - Ju-Young Moon
- Department of Beauty Design Management, Hansung University, 116, Samseongyo-ro 16gil, Seoul 02876, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
4
|
Basuki T, Nakashima S. Cs Adsorption and CsCl Particle Formation Facilitated by Amino Talc-like Clay in Aqueous Solutions at Room Temperature. ACS OMEGA 2021; 6:26026-26034. [PMID: 34660964 PMCID: PMC8515395 DOI: 10.1021/acsomega.1c02975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/16/2021] [Indexed: 05/09/2023]
Abstract
Amino talc-like clay with an increased number of active sites and dispersion in a colloidal system has been synthesized and used for contaminant adsorption and support for nanoparticle formation. Amino talc-like clays having different number of layers and aminoalkyl ligands were synthesized and their Cs uptake behavior was examined. Cs uptake through Cs adsorption and CsCl particle formation facilitated by amino talc-like clay in a colloidal aqueous solution at room temperature are reported. The amino talc-like clay demonstrated better Cs uptake with a high initial Cs concentration than talc and montmorillonite. This might have been caused by a high concentration of trapped Cs and Cl ions in exfoliated amino clay, which eventually became CsCl particles. The formation of the CsCl particles in the amino clay depended on the clay concentration and ethanol treatment. The exfoliation of the basal sheets of the amino clay as a result of a high salt concentration and the protonation of amine induced by ethanol treatment was shown to be a precondition for CsCl particle formation. These results could promote amino talc-like clay for high-concentration Cs uptake and the green synthesis of Cs-halide particles in an aqueous solution.
Collapse
Affiliation(s)
- Triyono Basuki
- Natural
Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Satoru Nakashima
- Natural
Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Basic
Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
5
|
(Baitong) Tirayaphanitchkul C, (Jaa) Imwiset K, Ogawa M. Nanoarchitectonics through Organic Modification of Oxide Based Layered Materials; Concepts, Methods and Functions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200310] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chalunda (Baitong) Tirayaphanitchkul
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Kamonnart (Jaa) Imwiset
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
6
|
Thiebault T, Brendlé J, Augé G, Limousy L. Laponites ® for the Recovery of 133Cs, 59Co, and 88Sr from Aqueous Solutions and Subsequent Storage: Impact of Grafted Silane Loads. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13030572. [PMID: 31991742 PMCID: PMC7040832 DOI: 10.3390/ma13030572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
In this study, silylated Laponites® (LAP) were synthetized with various loads of 3-aminopropyltriethoxysilane (APTES) to evaluate their adsorption properties of 133Cs, 59Co, and 88Sr during single-solute and competitive experiments. The increase in the initial load of APTES increased the adsorbed amount of APTES in the resulted grafted clay. The characterization of LAP-APTES exhibited a covalent binding between APTES and LAP and emphasized the adsorption sites of APTES for each tested load. In comparison with raw LAP, LAP-APTES displayed significantly higher adsorption properties of Co2+, Cs+, and Sr2+. The competitive adsorption of these three contaminants provides a deeper understanding of the affinity between adsorbate and adsorbent. Therefore, Co2+ displayed a strong and specific adsorption onto LAP-APTES. Except for Cs+, the adsorption capacity was improved with increasing the load of APTES. Finally, the desorption behavior of the three contaminants was tested in saline solutions. Cs+ and Sr2+ were significantly released especially by inorganic cations displaying the same valence. Conversely, desorption of Co2+ was very low whatever the saline solution. LAP-APTES, therefore, presented suitable adsorption properties for the removal of radionuclides especially for Co2+, making this material suitable to improve the decontamination of radioactive wastewaters.
Collapse
Affiliation(s)
- Thomas Thiebault
- IS2M, Université de Haute-Alsace, CNRS, UMR 7361, 3b rue Alfred Werner, F-68100 Mulhouse, France; (J.B.); (L.L.)
- Université de Strasbourg, F-67081 Strasbourg, France
- EPHE, PSL University, UMR 7619 METIS (SU, CNRS, EPHE), 4 Place Jussieu, F-75005 Paris, France
| | - Jocelyne Brendlé
- IS2M, Université de Haute-Alsace, CNRS, UMR 7361, 3b rue Alfred Werner, F-68100 Mulhouse, France; (J.B.); (L.L.)
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Grégoire Augé
- ONET Technologies, 36 Boulevard de l’Océan, CS 20280, 13258 Marseille CEdEX 09, France;
| | - Lionel Limousy
- IS2M, Université de Haute-Alsace, CNRS, UMR 7361, 3b rue Alfred Werner, F-68100 Mulhouse, France; (J.B.); (L.L.)
- Université de Strasbourg, F-67081 Strasbourg, France
| |
Collapse
|
7
|
Thiebault T, Brendlé J, Augé G, Limousy L. Cleaner Synthesis of Silylated Clay Minerals for the Durable Recovery of Ions (Co2+ and Sr2+) from Aqueous Solutions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thomas Thiebault
- Université de Haute-Alsace, IS2M, CNRS, UMR 7361, 3b Rue Alfred Werner, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
- EPHE, PSL University, UMR 7619 METIS (SU, CNRS, EPHE), 4 Place Jussieu, F-75005 Paris, France
| | - Jocelyne Brendlé
- Université de Haute-Alsace, IS2M, CNRS, UMR 7361, 3b Rue Alfred Werner, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Grégoire Augé
- ONET Technologies, 36 Boulevard de l’Océan, CS 20280, 13258 Marseille Cedex 09, France
| | - Lionel Limousy
- Université de Haute-Alsace, IS2M, CNRS, UMR 7361, 3b Rue Alfred Werner, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| |
Collapse
|
8
|
Claverie M, Garcia J, Prevost T, Brendlé J, Limousy L. Inorganic and Hybrid (Organic⁻Inorganic) Lamellar Materials for Heavy metals and Radionuclides Capture in Energy Wastes Management-A Review. MATERIALS 2019; 12:ma12091399. [PMID: 31035735 PMCID: PMC6539926 DOI: 10.3390/ma12091399] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 02/03/2023]
Abstract
The energy industry (nuclear, battery, mining industries, etc.) produces a large quantity of hazardous effluents that may contain radionuclides (137Cs and 90Sr in particular) and heavy metals. One of the hardest tasks of environmental safety and sustainable development is the purification of wastewater holding these pollutants. Adsorption is one of the most powerful methods for extracting toxic compounds from wastewater. This study reviews the usefulness of clay minerals as adsorbent for removing these hazardous elements to clean up energy production processes. Phyllosilicates are able to extract several heavy metals from effluent, as widely examined. A particular focus is given to synthetic phyllosilicates and their abilities to entrap heavy metals with a special attention paid to those synthesized by sol-gel route. Indeed, this method is attractive since it allows the development of organic–inorganic hybrids from organosilanes presenting various functions (amino, thiol, etc.) that can interact with pollutants. Regarding these pollutants, a part of this review focuses on the interaction of lamellar materials (natural and synthetic phyllosilicates as well as layered double hydroxide) with heavy metals and another part deals with the adsorption of specific radionuclides, cesium and strontium.
Collapse
Affiliation(s)
- Marie Claverie
- Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093 Mulhouse, Cedex, France.
| | - Justo Garcia
- Orano, Tour Areva, 1 place Jean Millier, 92400 Courbevoie, France.
| | - Thierry Prevost
- Orano, Tour Areva, 1 place Jean Millier, 92400 Courbevoie, France.
| | - Jocelyne Brendlé
- Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093 Mulhouse, Cedex, France.
| | - Lionel Limousy
- Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093 Mulhouse, Cedex, France.
| |
Collapse
|