1
|
Liu C, Wang Y, Wang A, Su F, Wang H. Structures, spectral and photodynamic properties of two nitrosylruthenium (II) isomer complexes containing 8-quinolinolate and L-proline ligands. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
2
|
Munteanu AC, Uivarosi V. Ruthenium Complexes in the Fight against Pathogenic Microorganisms. An Extensive Review. Pharmaceutics 2021; 13:874. [PMID: 34199283 PMCID: PMC8232020 DOI: 10.3390/pharmaceutics13060874] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
The widespread use of antibiotics has resulted in the emergence of drug-resistant populations of microorganisms. Clearly, one can see the need to develop new, more effective, antimicrobial agents that go beyond the explored 'chemical space'. In this regard, their unique modes of action (e.g., reactive oxygen species (ROS) generation, redox activation, ligand exchange, depletion of substrates involved in vital cellular processes) render metal complexes as promising drug candidates. Several Ru (II/III) complexes have been included in, or are currently undergoing, clinical trials as anticancer agents. Based on the in-depth knowledge of their chemical properties and biological behavior, the interest in developing new ruthenium compounds as antibiotic, antifungal, antiparasitic, or antiviral drugs has risen. This review will discuss the advantages and disadvantages of Ru (II/III) frameworks as antimicrobial agents. Some aspects regarding the relationship between their chemical structure and mechanism of action, cellular localization, and/or metabolism of the ruthenium complexes in bacterial and eukaryotic cells are discussed as well. Regarding the antiviral activity, in light of current events related to the Covid-19 pandemic, the Ru (II/III) compounds used against SARS-CoV-2 (e.g., BOLD-100) are also reviewed herein.
Collapse
Affiliation(s)
- Alexandra-Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
3
|
Ghosh S, Amariei G, Mosquera MEG, Rosal R. Polymeric ruthenium precursor as a photoactivated antimicrobial agent. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123788. [PMID: 33254797 DOI: 10.1016/j.jhazmat.2020.123788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 06/12/2023]
Abstract
Ruthenium coordination compounds have demonstrated a promising anticancer and antibacterial activity, but their poor water solubility and low stability under physiological conditions may limit their therapeutic applications. Physical encapsulation or covalent conjugation with polymers may overcome these drawbacks, but generally involve multistep reactions and purification processes. In this work, the antibacterial activity of the polymeric precursor dicarbonyldichlororuthenium (II) [Ru(CO)2Cl2]n has been studied against Escherichia coli and Staphylococcus aureus. This Ru-carbonyl precursor shows minimum inhibitory concentration at nanogram per millilitre, which renders it a novel antimicrobial polymer without any organic ligands. Besides, [Ru(CO)2Cl2]n antimicrobial activity is markedly boosted under photoirradiation, which can be ascribed to the enhanced generation of reactive oxygen species under UV irradiation. [Ru(CO)2Cl2]n has been able to inhibit bacterial growth via the disruption of bacterial membranes and triggering upregulation of stress responses as shown in microscopic measurements. The activity of polymeric ruthenium as an antibacterial material is significant even at 6.6 ng/mL while remaining biocompatible to the mammalian cells at much higher concentrations. This study proves that this simple precursor, [Ru(CO)2Cl2]n, can be used as an antimicrobial compound with high activity and a low toxicity profile in the context of need for new antimicrobial agents to fight bacterial infections.
Collapse
Affiliation(s)
- Srabanti Ghosh
- Department of Organic and Inorganic Chemistry, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, 28805, Alcalá de Henares, Madrid, Spain.
| | - Georgiana Amariei
- Department of Chemical Engineering, Universidad de Alcalá, Campus Universitario, 28805, Alcalá de Henares, Madrid, Spain
| | - Marta E G Mosquera
- Department of Organic and Inorganic Chemistry, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, 28805, Alcalá de Henares, Madrid, Spain.
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, Campus Universitario, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
4
|
Anis-Ul-Haque KM, Woodward CE, Day AI, Wallace L. Interaction of the Large Host Q[10] with Metal Polypyridyl Complexes: Binding Modes and Effects on Luminescence. Inorg Chem 2020; 59:3942-3953. [PMID: 32125142 DOI: 10.1021/acs.inorgchem.9b03603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aqueous solution state host-guest systems have been studied, comprising the large host cucurbit[10]uril with luminescent cationic tris(polypyridyl) (PP) metal complexes [Ru(PP)3]2+ and [Ir(PP)3]3+. All complexes bind strongly with the host, with the overall complex charge and size having a minor effect on affinity but influencing the association dynamics and contribution from higher-order (1:2) host-guest species. The 1:2 species contributes more significantly to the binding equilibrium in the case of [Ru(phen)3]2+. The effect of the host upon emission is highly variable and depends on the electronic structure of the guest. The metal-to-ligand charge transfer (MLCT) emission of [Ru(PP)3]2+ is strongly quenched, in contrast to the large enhancements seen previously for MLCT emission of iridium cyclometalated complexes, while the ligand-centered emission of [Ir(PP)3]3+ is little affected. The mechanisms of quenching and enhancement are discussed, together with the implications for the design of larger supramolecular assemblies based on these archetypal emitters.
Collapse
Affiliation(s)
- K M Anis-Ul-Haque
- School of Science, The University of New South Wales, Canberra, ACT 2600, Australia
| | - Clifford E Woodward
- School of Science, The University of New South Wales, Canberra, ACT 2600, Australia
| | - Anthony I Day
- School of Science, The University of New South Wales, Canberra, ACT 2600, Australia
| | - Lynne Wallace
- School of Science, The University of New South Wales, Canberra, ACT 2600, Australia
| |
Collapse
|
5
|
Flint KL, Collins JG, Bradley SJ, Smith TA, Sumby CJ, Keene FR. Synthesis and Characterisation of Helicate and Mesocate Forms of a Double-Stranded Diruthenium(II) Complex of a Di(terpyridine) Ligand. Aust J Chem 2019. [DOI: 10.1071/ch19220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A diruthenium(ii) complex involving the di(terpyridine) ligand 1,2-bis{5-(5″-methyl-2,2′:6′,2″-terpyridinyl)}ethane was synthesised by heating an equimolar ratio of RuCl3 and the ligand under reflux conditions in ethylene glycol for 3 days, realising double-stranded helicate and mesocate forms which were chromatographically separated. The two species were obtained in relatively low yield (each ~7–9%) from the reaction mixture. X-Ray structural studies revealed differences in the cavity sizes of the two structures, with the helicate structure having a significantly smaller cavity. Furthermore, the helicate and mesocate forms pack with notably different arrangements of the structures with the helicate having large solvent and anion filled pores. 1D/2D NMR studies revealed rigidity in the mesocate structure relative to that of the helicate, such that the –CH2CH2– signal was split in the former and appeared as a singlet in the latter. In a manner analogous to the behaviour of the parent [Ru(tpy)2]2+ coordination moiety (tpy=2,2′:6′,2″-terpyridine), photophysical studies indicated that both the helicate and mesocate forms were non-emissive at ~610nm at room temperature, but at 77K in n-butyronitrile, both isomers showed emission at ~610nm (λex 472nm). However, the temporal emission characteristics were very different: time-resolved studies showed the emission of the helicate species decayed with a dominant emission lifetime of ~10 μs (similar to the emissive properties of free [Ru(tpy)2]2+ under the same conditions), whereas for the mesocate the emission lifetime was at least three orders of magnitude lower (~4 ns).
Collapse
|
6
|
Sun B, Musgrave IF, Day AI, Heimann K, Keene FR, Collins JG. Eukaryotic Cell Toxicity and HSA Binding of [Ru(Me 4phen)(bb 7)] 2+ and the Effect of Encapsulation in Cucurbit[10]uril. Front Chem 2018; 6:595. [PMID: 30560120 PMCID: PMC6287197 DOI: 10.3389/fchem.2018.00595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
The toxicity (IC50) of a series of mononuclear ruthenium complexes containing bis[4(4′-methyl-2,2′-bipyridyl)]-1,n-alkane (bbn) as a tetradentate ligand against three eukaryotic cell lines—BHK (baby hamster kidney), Caco-2 (heterogeneous human epithelial colorectal adenocarcinoma) and Hep-G2 (liver carcinoma)—have been determined. The results demonstrate that cis-α-[Ru(Me4phen)(bb7)]2+ (designated as α-Me4phen-bb7, where Me4phen = 3,4,7,8-tetramethyl-1,10-phenanthroline) showed little toxicity toward the three cell lines, and was considerably less toxic than cis-α-[Ru(phen)(bb12)]2+ (α-phen-bb12) and the dinuclear complex [{Ru(phen)2}2{μ-bb12}]4+. Fluorescence spectroscopy was used to study the binding of the ruthenium complexes with human serum albumin (HSA). The binding of α-Me4phen-bb7 to the macrocyclic host molecule cucurbit[10]uril (Q[10]) was examined by NMR spectroscopy. Large upfield 1H NMR chemical shift changes observed for the methylene protons in the bb7 ligand upon addition of Q[10], coupled with the observation of several intermolecular ROEs in ROESY spectra, indicated that α-Me4phen-bb7 bound Q[10] with the bb7 methylene carbons within the cavity and the metal center positioned outside one of the portals. Simple molecular modeling confirmed the feasibility of the binding model. An α-Me4phen-bb7-Q[10] binding constant of 9.9 ± 0.2 × 106 M−1 was determined by luminescence spectroscopy. Q[10]-encapsulation decreased the toxicity of α-Me4phen-bb7 against the three eukaryotic cell lines and increased the binding affinity of the ruthenium complex for HSA. Confocal microscopy experiments indicated that the level of accumulation of α-Me4phen-7 in BHK cells is not significantly affected by Q[10]-encapsulation. Taken together, the combined results suggest that α-Me4phen-7 could be a good candidate as a new antimicrobial agent, and Q[10]-encapsulation could be a method to improve the pharmacokinetics of the ruthenium complex.
Collapse
Affiliation(s)
- Biyun Sun
- School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, ACT, Australia
| | - Ian F Musgrave
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Anthony I Day
- School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, ACT, Australia
| | - Kirsten Heimann
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - F Richard Keene
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA, Australia.,Australian Institute of Tropical Health and Medicine/Centre for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
| | - J Grant Collins
- School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, ACT, Australia
| |
Collapse
|
7
|
Liu X, Sun B, Kell REM, Southam HM, Butler JA, Li X, Poole RK, Keene FR, Collins JG. The Antimicrobial Activity of Mononuclear Ruthenium(II) Complexes Containing the dppz Ligand. Chempluschem 2018; 83:643-650. [DOI: 10.1002/cplu.201800042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/27/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Xuewen Liu
- School of Physical, Environmental and Mathematical Sciences; University of New South Wales; Australian Defence Force Academy; Canberra ACT 2600 Australia
- College of Chemistry and Material Engineering; Hunan University of Arts and Science; ChangDe 415000 P. R. China
| | - Biyun Sun
- School of Physical, Environmental and Mathematical Sciences; University of New South Wales; Australian Defence Force Academy; Canberra ACT 2600 Australia
| | - Ruby E. M. Kell
- Department of Molecular Biology and Biotechnology; The University of Sheffield; Sheffield S10 2TN United Kingdom
| | - Hannah M. Southam
- Department of Molecular Biology and Biotechnology; The University of Sheffield; Sheffield S10 2TN United Kingdom
| | - Jonathan A. Butler
- Department of Molecular Biology and Biotechnology; The University of Sheffield; Sheffield S10 2TN United Kingdom
| | - Xin Li
- New Drug Screening Center; China Pharmaceutical University; Nanjing JiangSu Province 210009 P. R. China
| | - Robert K. Poole
- Department of Molecular Biology and Biotechnology; The University of Sheffield; Sheffield S10 2TN United Kingdom
| | - F. Richard Keene
- School of Physical Sciences; University of Adelaide; Adelaide SA 5005 Australia
- Australian Institute of Tropical Health & Medicine; Centre for Biodiscovery & Molecular Development of Therapeutics; James Cook University; Townsville QLD 4811 Australia
| | - J. Grant Collins
- School of Physical, Environmental and Mathematical Sciences; University of New South Wales; Australian Defence Force Academy; Canberra ACT 2600 Australia
| |
Collapse
|