1
|
Li Y, Zhu N, Hu W, Liu YR, Jia W, Lin G, Li H, Li Y, Gao Y, Zhao J. New insights into sulfur input induced methylmercury production and accumulation in paddy soil and rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131602. [PMID: 37178535 DOI: 10.1016/j.jhazmat.2023.131602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Sulfur has a high affinity for mercury (Hg) and can serve as effective treating agent for Hg pollution. However, conflict effects between reducing Hg mobility and promoting Hg methylation by sulfur were found in recent studies, and there is a gap in understanding the potential mechanism of MeHg production under different sulfur-treated species and doses. Here, we investigated and compared the MeHg production in Hg-contaminated paddy soil and its accumulation in rice under elemental sulfur or sulfate treatment at a relatively low (500 mg·kg-1) or high (1000 mg·kg-1) level. The associated potential molecular mechanisms are also discussed with the help of density functional theory (DFT) calculation. Pot experiments demonstrate that both elemental sulfur and sulfate at high exposure levels increased MeHg production in soil (244.63-571.72 %) and its accumulation in raw rice (268.73-443.50 %). Coupling the reduction of sulfate or elemental sulfur and decrease of soil redox potential leads to the detachment of Hg-polysulfide complexes from the surface of HgS which can be explained by DFT calculations. Enhancement of free Hg and Fe release through reducing Fe(III) oxyhydroxides further promotes soil MeHg production. The results provide clues for understanding the mechanism by which exogenous sulfur promotes MeHg production in paddies and paddy-like environments and give new insights for decreasing Hg mobility by regulating soil conditions.
Collapse
Affiliation(s)
- Yunyun Li
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Wenjun Hu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, College of Environmental and Biological Engineering, Putian University, Putian 351100, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Jia
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, College of Environmental and Biological Engineering, Putian University, Putian 351100, China
| | - Guoming Lin
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore.
| | - Hong Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yufeng Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Zhang S, Li B, Chen Y, Zhu M, Pedersen JA, Gu B, Wang Z, Li H, Liu J, Zhou XQ, Hao YY, Jiang H, Liu F, Liu YR, Yin H. Methylmercury Degradation by Trivalent Manganese. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5988-5998. [PMID: 36995950 DOI: 10.1021/acs.est.3c00532] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Methylmercury (MeHg) is a potent neurotoxin and has great adverse health impacts on humans. Organisms and sunlight-mediated demethylation are well-known detoxification pathways of MeHg, yet whether abiotic environmental components contribute to MeHg degradation remains poorly known. Here, we report that MeHg can be degraded by trivalent manganese (Mn(III)), a naturally occurring and widespread oxidant. We found that 28 ± 4% MeHg could be degraded by Mn(III) located on synthesized Mn dioxide (MnO2-x) surfaces during the reaction of 0.91 μg·L-1 MeHg and 5 g·L-1 mineral at an initial pH of 6.0 for 12 h in 10 mM NaNO3 at 25 °C. The presence of low-molecular-weight organic acids (e.g., oxalate and citrate) substantially enhances MeHg degradation by MnO2-x via the formation of soluble Mn(III)-ligand complexes, leading to the cleavage of the carbon-Hg bond. MeHg can also be degraded by reactions with Mn(III)-pyrophosphate complexes, with apparent degradation rate constants comparable to those by biotic and photolytic degradation. Thiol ligands (cysteine and glutathione) show negligible effects on MeHg demethylation by Mn(III). This research demonstrates potential roles of Mn(III) in degrading MeHg in natural environments, which may be further explored for remediating heavily polluted soils and engineered systems containing MeHg.
Collapse
Affiliation(s)
- Shuang Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
- Department of Criminal Science and Technology, Henan Police College, Zhengzhou 450046, P.R. China
| | - Baohui Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yi Chen
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Mengqiang Zhu
- Department of Ecosystem Science and Management, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming 82071, United States
| | - Joel A Pedersen
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P.R. China
| | - Hui Li
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jinling Liu
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, P.R. China
| | - Xin-Quan Zhou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yun-Yun Hao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Hong Jiang
- College of Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yu-Rong Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
3
|
Barkay T, Gu B. Demethylation─The Other Side of the Mercury Methylation Coin: A Critical Review. ACS ENVIRONMENTAL AU 2022; 2:77-97. [PMID: 37101582 PMCID: PMC10114901 DOI: 10.1021/acsenvironau.1c00022] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The public and environmental health consequences of mercury (Hg) methylation have drawn much attention and considerable research to Hg methylation processes and their dynamics in diverse environments and under a multitude of conditions. However, the net methylmercury (MeHg) concentration that accumulates in the environment is equally determined by the rate of MeHg degradation, a complex process mediated by a variety of biotic and abiotic mechanisms, about which our knowledge is limited. Here we review the current knowledge on MeHg degradation and its potential pathways and mechanisms. We describe detoxification by resistant microorganisms that employ the Hg resistance (mer) system to reductively break the carbon-mercury (C-Hg) bond producing methane (CH4) and inorganic mercuric Hg(II), which is then reduced by the mercuric reductase to elemental Hg(0). Very recent research has begun to elucidate a mechanism for the long-recognized mer-independent oxidative demethylation, likely involving some strains of anaerobic bacteria as well as aerobic methane-oxidizing bacteria, i.e., methanotrophs. In addition, photochemical and chemical demethylation processes are described, including the roles of dissolved organic matter (DOM) and free radicals as well as dark abiotic demethylation in the natural environment about which little is currently known. We focus on mechanisms and processes of demethylation and highlight the uncertainties and known effects of environmental factors leading to MeHg degradation. Finally, we suggest future research directions to further elucidate the chemical and biochemical mechanisms of biotic and abiotic demethylation and their significance in controlling net MeHg production in natural ecosystems.
Collapse
Affiliation(s)
- Tamar Barkay
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
4
|
Peterson BD, McDaniel EA, Schmidt AG, Lepak RF, Janssen SE, Tran PQ, Marick RA, Ogorek JM, DeWild JF, Krabbenhoft DP, McMahon KD. Mercury Methylation Genes Identified across Diverse Anaerobic Microbial Guilds in a Eutrophic Sulfate-Enriched Lake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15840-15851. [PMID: 33228362 PMCID: PMC9741811 DOI: 10.1021/acs.est.0c05435] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mercury (Hg) methylation is a microbially mediated process that converts inorganic Hg into bioaccumulative, neurotoxic methylmercury (MeHg). The metabolic activity of methylating organisms is highly dependent on biogeochemical conditions, which subsequently influences MeHg production. However, our understanding of the ecophysiology of methylators in natural ecosystems is still limited. Here, we identified potential locations of MeHg production in the anoxic, sulfidic hypolimnion of a freshwater lake. At these sites, we used shotgun metagenomics to characterize microorganisms with the Hg-methylation gene hgcA. Putative methylators were dominated by hgcA sequences divergent from those in well-studied, confirmed methylators. Using genome-resolved metagenomics, we identified organisms with hgcA (hgcA+) within the Bacteroidetes and the recently described Kiritimatiellaeota phyla. We identified hgcA+ genomes derived from sulfate-reducing bacteria, but these accounted for only 22% of hgcA+ genome coverage. The most abundant hgcA+ genomes were from fermenters, accounting for over half of the hgcA gene coverage. Many of these organisms also mediate hydrolysis of polysaccharides, likely from cyanobacterial blooms. This work highlights the distribution of the Hg-methylation genes across microbial metabolic guilds and indicate that primary degradation of polysaccharides and fermentation may play an important but unrecognized role in MeHg production in the anoxic hypolimnion of freshwater lakes.
Collapse
Affiliation(s)
- Benjamin D. Peterson
- Environmental Science & Technology Program, University of Wisconsin - Madison, 660 N. Park Street, Madison, WI 53706, USA
- Corresponding author:
| | - Elizabeth A. McDaniel
- Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | - Anna G. Schmidt
- Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | - Ryan F. Lepak
- Environmental Science & Technology Program, University of Wisconsin - Madison, 660 N. Park Street, Madison, WI 53706, USA
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 8505 Research Way, Middleton, WI 53562, USA
- U.S. Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Sarah E. Janssen
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 8505 Research Way, Middleton, WI 53562, USA
| | - Patricia Q. Tran
- Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, USA
- Department of Integrative Biology, University of Wisconsin - Madison, 250 N. Mills St.Madison, WI 53706, USA
| | - Robert A. Marick
- Department of Biochemistry, University of Wisconsin - Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Jacob M. Ogorek
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 8505 Research Way, Middleton, WI 53562, USA
| | - John F. DeWild
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 8505 Research Way, Middleton, WI 53562, USA
| | - David P. Krabbenhoft
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 8505 Research Way, Middleton, WI 53562, USA
| | - Katherine D. McMahon
- Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, USA
- Department of Civil and Environmental Engineering, University of Wisconsin – Madison, 1415 Engineering Drive, Madison WI 53706, USA
| |
Collapse
|
5
|
Eckley CS, Gilmour CC, Janssen S, Luxton TP, Randall PM, Whalin L, Austin C. The assessment and remediation of mercury contaminated sites: A review of current approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136031. [PMID: 31869604 PMCID: PMC6980986 DOI: 10.1016/j.scitotenv.2019.136031] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/07/2019] [Accepted: 12/07/2019] [Indexed: 04/13/2023]
Abstract
Remediation of mercury (Hg) contaminated sites has long relied on traditional approaches, such as removal and containment/capping. Here we review contemporary practices in the assessment and remediation of industrial-scale Hg contaminated sites and discuss recent advances. Significant improvements have been made in site assessment, including the use of XRF to rapidly identify the spatial extent of contamination, Hg stable isotope fractionation to identify sources and transformation processes, and solid-phase characterization (XAFS) to evaluate Hg forms. The understanding of Hg bioavailability for methylation has been improved by methods such as sequential chemical extractions and porewater measurements, including the use of diffuse gradient in thin-film (DGT) samplers. These approaches have shown varying success in identifying bioavailable Hg fractions and further study and field applications are needed. The downstream accumulation of methylmercury (MeHg) in biota is a concern at many contaminated sites. Identifying the variables limiting/controlling MeHg production-such as bioavailable inorganic Hg, organic carbon, and/or terminal electron acceptors (e.g. sulfate, iron) is critical. Mercury can be released from contaminated sites to the air and water, both of which are influenced by meteorological and hydrological conditions. Mercury mobilized from contaminated sites is predominantly bound to particles, highly correlated with total sediment solids (TSS), and elevated during stormflow. Remediation techniques to address Hg contamination can include the removal or containment of Hg contaminated materials, the application of amendments to reduce mobility and bioavailability, landscape/waterbody manipulations to reduce MeHg production, and food web manipulations through stocking or extirpation to reduce MeHg accumulated in desired species. These approaches often rely on knowledge of the Hg forms/speciation at the site, and utilize physical, chemical, thermal and biological methods to achieve remediation goals. Overall, the complexity of Hg cycling allows many different opportunities to reduce/mitigate impacts, which creates flexibility in determining suitable and logistically feasible remedies.
Collapse
Affiliation(s)
- Chris S Eckley
- U.S. Environmental Protection Agency, Region-10, 1200 6th Ave, Seattle, WA 98101, USA.
| | - Cynthia C Gilmour
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037-0028, USA.
| | - Sarah Janssen
- USGS Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA.
| | - Todd P Luxton
- US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Paul M Randall
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| | - Lindsay Whalin
- San Francisco Bay Water Board, 1515 Clay St., Ste. 1400, Oakland, CA 94612, USA.
| | - Carrie Austin
- San Francisco Bay Water Board, 1515 Clay St., Ste. 1400, Oakland, CA 94612, USA.
| |
Collapse
|
6
|
Wang L, Hou D, Cao Y, Ok YS, Tack FMG, Rinklebe J, O'Connor D. Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. ENVIRONMENT INTERNATIONAL 2020; 134:105281. [PMID: 31726360 DOI: 10.1016/j.envint.2019.105281] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/23/2019] [Accepted: 10/20/2019] [Indexed: 05/24/2023]
Abstract
Mercury contamination in soil, water and air is associated with potential toxicity to humans and ecosystems. Industrial activities such as coal combustion have led to increased mercury (Hg) concentrations in different environmental media. This review critically evaluates recent developments in technological approaches for the remediation of Hg contaminated soil, water and air, with a focus on emerging materials and innovative technologies. Extensive research on various nanomaterials, such as carbon nanotubes (CNTs), nanosheets and magnetic nanocomposites, for mercury removal are investigated. This paper also examines other emerging materials and their characteristics, including graphene, biochar, metal organic frameworks (MOFs), covalent organic frameworks (COFs), layered double hydroxides (LDHs) as well as other materials such as clay minerals and manganese oxides. Based on approaches including adsorption/desorption, oxidation/reduction and stabilization/containment, the performances of innovative technologies with the aid of these materials were examined. In addition, technologies involving organisms, such as phytoremediation, algae-based mercury removal, microbial reduction and constructed wetlands, were also reviewed, and the role of organisms, especially microorganisms, in these techniques are illustrated.
Collapse
Affiliation(s)
- Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yining Cao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea
| | - David O'Connor
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Leven A, Vlassopoulos D, Kanematsu M, Goin J, O'Day PA. Characterization of manganese oxide amendments for in situ remediation of mercury-contaminated sediments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1761-1773. [PMID: 30398226 DOI: 10.1039/c7em00576h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Addition of Mn(iv)-oxide phases pyrolusite or birnessite was investigated as a remedial amendment for Hg-contaminated sediments. Because inorganic Hg methylation is a byproduct of bacterial sulfate reduction, reaction of Mn(iv) oxide with pore water should poise sediment oxidation potential at a level higher than favorable for Hg methylation. Changes in Mn(iv)-oxide mineralogy and oxidation state over time were investigated in sediment tank mesocosm experiments in which Mn(iv)-oxide amendment was either mixed into Hg-contaminated sediment or applied as a thin-layer sand cap on top of sediment. Mesocosms were sampled between 4 and 15 months of operation and solid phases were characterized by X-ray absorption spectroscopy (XAS). For pyrolusite-amended sediments, Mn(iv) oxide was altered to a mixture of Mn(iii)-oxyhydroxide and Mn, Fe(iii, ii)-oxide phases, with a progressive increase in the Mn(ii)-carbonate fraction over time as mesocosm sediments became more reduced. For birnessite-amended sediments, both Mn(iii) oxyhydroxide and Mn(ii) carbonate were identified at 4 months, indicating a faster rate of Mn reduction compared to pyrolusite. After 15 months of reaction, birnessite was converted completely to Mn(ii) carbonate, whereas residual Mn, Fe(iii, ii)-oxide phases were still present in addition to Mn(ii) carbonate in the pyrolusite mesocosm. In the thin-layer sand cap mesocosms, no changes in either pyrolusite or birnessite XAS spectra were observed after 10 months of reaction. Equilibrium phase relationships support the interpretation of mineral redox buffering by mixed-valent (Mn, Fe)(iii, ii)-oxide phases. Results suggest that amendment longevity for redox buffering can be controlled by adjusting the mass and type of Mn(iv) oxide applied, mineral crystallinity, surface area, and particle size. For a given site, amendment capping versus mixing with sediment should be evaluated to determine the optimum treatment approach, which may vary depending on application constraints, rate of Mn(iv) oxide transformation, and frequency of reapplication to maintain desired oxidation state and pH.
Collapse
Affiliation(s)
- Alexander Leven
- Environmental Systems Program, University of California Merced, CA, USA 95343.
| | | | | | | | | |
Collapse
|