1
|
Li CY, Tian ZQ. Sixty years of electrochemical optical spectroscopy: a retrospective. Chem Soc Rev 2024; 53:3579-3605. [PMID: 38421335 DOI: 10.1039/d3cs00734k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Sixty years ago, Reddy, Devanatan, and Bockris performed the first in situ electrochemical ellipsometry experiment, which ushered in a new era in the study of electrochemistry, using optical spectroscopy. After six decades of development, electrochemical optical spectroscopy, particularly electrochemical vibrational spectroscopy, has advanced from a phase of immaturity with few methods and limited applications to a phase of maturity with excellent substrate generality and significantly improved resolutions. Here, we divide the development of electrochemical optical spectroscopy into four phases, focusing on the proof-of-concept of different electrochemical optical spectroscopy studies, the emergence of plasmonic enhancement-based electrochemical optical spectroscopic (in particular vibrational spectroscopic) methods, the realization of electrochemical vibrational spectroscopy on well-defined surfaces, and the efforts to achieve operando spectroelectrochemical applications. Finally, we discuss the future development trend of electrochemical optical spectroscopy, as well as examples of new methodology and research paradigms for operando spectroelectrochemistry.
Collapse
Affiliation(s)
- Chao-Yu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
2
|
Hardy M, Goldberg Oppenheimer P. 'When is a hotspot a good nanospot' - review of analytical and hotspot-dominated surface enhanced Raman spectroscopy nanoplatforms. NANOSCALE 2024; 16:3293-3323. [PMID: 38273798 PMCID: PMC10868661 DOI: 10.1039/d3nr05332f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
Substrate development in surface-enhanced Raman spectroscopy (SERS) continues to attract research interest. In order to determine performance metrics, researchers in foundational SERS studies use a variety of experimental means to characterize the nature of substrates. However, often this process would appear to be performed indiscriminately without consideration for the physical scale of the enhancement phenomena. Herein, we differentiate between SERS substrates whose primary enhancing structures are on the hundreds of nanometer scale (analytical SERS nanosubstrates) and those whose main mechanism derives from nanometric-sized gaps (hot-spot dominated SERS substrates), assessing the utility of various characterization methods for each substrate class. In this context, characterization approaches in white-light spectroscopy, electron beam methods, and scanning probe spectroscopies are reviewed. Tip-enhanced Raman spectroscopy, wavelength-scanned SERS studies, and the impact of surface hydrophobicity are also discussed. Conclusions are thus drawn on the applicability of each characterization technique regarding amenability for SERS experiments that have features at different length scales. For instance, while white light spectroscopy can provide an indication of the plasmon resonances associated with 10 s-100 s nm-scale structures, it may not reveal information about finer surface texturing on the true nm-scale, critical for SERS' sensitivity, and in need of investigation via scanning probe techniques.
Collapse
Affiliation(s)
- Mike Hardy
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, B15 2TT, UK.
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, UK.
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, B15 2TT, UK.
- Healthcare Technologies Institute, Institute of Translational Medicine, Birmingham B15 2TH, UK
| |
Collapse
|
3
|
Kanehira Y, Tapio K, Wegner G, Kogikoski S, Rüstig S, Prietzel C, Busch K, Bald I. The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas. ACS NANO 2023; 17:21227-21239. [PMID: 37847540 DOI: 10.1021/acsnano.3c05464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
A versatile generation of plasmonic nanoparticle dimers for surface-enhanced Raman scattering (SERS) is presented by combining a DNA origami nanofork and spherical and nonspherical Au or Ag nanoparticles. Combining different nanoparticle species with a DNA origami nanofork to form DNA origami nanoantennas (DONAs), the plasmonic nanoparticle dimers can be optimized for a specific excitation wavelength in SERS. The preparation of such nanoparticle dimers is robust enough to enable the characterization of SERS intensities and SERS enhancement factors of dye-modified DONAs on a single dimer level by measuring in total several thousands of dimers from five different dimer designs, each functionalized with three different Raman reporter molecules and measured at four different excitation wavelengths. Based on these data, SERS enhancement factor (EF) distributions have been determined for each dimer design and excitation wavelengths. The structures and measurement conditions with the highest EFs are suitable for single-molecule SERS (SM-SERS), which is realized by placing single dye molecules into hot spots. We demonstrate that the probability of placing single molecules in a strongly enhancing hot spot for SM-SERS can be increased by using anisotropic nanoparticles with several sharp edges, such as nanoflowers. Combining a Ag nanoparticle with a Au particle in one dimer structure allows for a broadband excitation covering almost the whole visible range. The most versatile plasmonic dimer structure for SERS combines a spherical Ag nanoparticle with a Au nanoflower. Employing the discontinuous Galerkin time domain method, we numerically investigate the bare, symmetric dimers with respect to spectral and near-field properties, showing that, indeed, the nanoflowers induce multiple hot spots located at the edges which surpass the intensity of the spherical dimers, indicating the possibility for SM-SERS. The presented DONA structures and SERS data provide a robust basis for applying such designs as versatile SERS tags and as substrates for SM-SERS measurements.
Collapse
Affiliation(s)
- Yuya Kanehira
- Hybrid Nanostructures Lab, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Kosti Tapio
- Hybrid Nanostructures Lab, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Gino Wegner
- AG Theoretical Optics & Photonics, Institute of Physics, Humboldt University of Berlin, 12489 Berlin, Germany
- Institute of Condensed Matter Theory and Optics, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Sergio Kogikoski
- Hybrid Nanostructures Lab, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Sibylle Rüstig
- Hybrid Nanostructures Lab, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Claudia Prietzel
- Hybrid Nanostructures Lab, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Kurt Busch
- AG Theoretical Optics & Photonics, Institute of Physics, Humboldt University of Berlin, 12489 Berlin, Germany
- Max Born Institute, 12489 Berlin, Germany
| | - Ilko Bald
- Hybrid Nanostructures Lab, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
4
|
Dong S, He K, Yang J, Shi Q, Guan L, Chen Z, Feng J. A simple mesoporous silica Nanoparticle-based aptamers SERS sensor for the detection of acetamiprid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121725. [PMID: 35985229 DOI: 10.1016/j.saa.2022.121725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
In this study, we developed a novel, rapid, simple, and sensitive nano sensor based on the controlled release of 4-Aminothiophenol (4-ATP) signal molecules from aptamers (Apts) modified aminated mesoporous silica nanoparticles (MSNs-NH2) for the quantitative detection of acetamiprid (ACE). Firstly, we synthesized the positively charged MSNs-NH2 by one-pot method, then loaded 4-ATP signal molecules into the pore, and finally electrostatically adsorbed the Apts onto the MSNs-NH2, which acts as a gate to control the release of signal molecules. When ACE is added to the system, ACE preferentially and specifically binds to Apts, so the gate opens and 4-ATP signal molecules are released from the pore. Meanwhile, the silver-loaded mesoporous silica nanoparticles (Ag@SiO2) were prepared by one-pot method as surface-enhanced Raman spectroscopy (SERS) substrate to amplify the signal. The intensity of 4-ATP signal molecules at 1433 cm-1 position was observed to has a linear relationship with the concentration of ACE by SERS detection. Under the optimized detection conditions, a linear correlation was observed in the range of 5-60 ng/mL (R2 = 0.99749), and the limit of detection (LOD) was 2.66 ng/mL. The method has high sensitivity, good selectivity and reproducibility, and can be used for actual sample analysis with the recovery rate of 96.24-103.6 %. This study provides a reference for the rapid and convenient detection of ACE in agricultural products.
Collapse
Affiliation(s)
- Sa Dong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Kangli He
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qiuyun Shi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lingjun Guan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Hahm E, Jo A, Lee SH, Kang H, Pham XH, Jun BH. Silica Shell Thickness-Dependent Fluorescence Properties of SiO 2@Ag@SiO 2@QDs Nanocomposites. Int J Mol Sci 2022; 23:ijms231710041. [PMID: 36077434 PMCID: PMC9456444 DOI: 10.3390/ijms231710041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Silica shell coatings, which constitute important technology for nanoparticle (NP) developments, are utilized in many applications. The silica shell's thickness greatly affects distance-dependent optical properties, such as metal-enhanced fluorescence (MEF) and fluorescence quenching in plasmonic nanocomposites. However, the precise control of silica-shell thicknesses has been mainly conducted on single metal NPs, and rarely on complex nanocomposites. In this study, silica shell-coated Ag nanoparticle-assembled silica nanoparticles (SiO2@Ag@SiO2), with finely controlled silica shell thicknesses (4 nm to 38 nm), were prepared, and quantum dots (QDs) were introduced onto SiO2@Ag@SiO2. The dominant effect between plasmonic quenching and MEF was defined depending on the thickness of the silica shell between Ag and QDs. When the distance between Ag NPs to QDs was less than ~10 nm, SiO2@Ag@SiO2@QDs showed weaker fluorescence intensities than SiO2@QD (without metal) due to the quenching effect. On the other hand, when the distance between Ag NPs to QDs was from 10 nm to 14 nm, the fluorescence intensity of SiO2@Ag@SiO2@QD was stronger than SiO2@QDs due to MEF. The results provide background knowledge for controlling the thickness of silica shells in metal-containing nanocomposites and facilitate the development of potential applications utilizing the optimal plasmonic phenomenon.
Collapse
Affiliation(s)
- Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ahla Jo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Deajeon 34158, Korea
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-0521
| |
Collapse
|
6
|
Boccorh DK, Macdonald PA, Boyle CW, Wain AJ, Berlouis LEA, Wark AW. A universal polymer shell-isolated nanoparticle (SHIN) design for single particle spectro-electrochemical SERS sensing using different core shapes. NANOSCALE ADVANCES 2021; 3:6415-6426. [PMID: 36133494 PMCID: PMC9416900 DOI: 10.1039/d1na00473e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/20/2021] [Indexed: 06/16/2023]
Abstract
Shell-isolated nanoparticles (SHINs) have attracted increasing interest for non-interfering plasmonic enhanced sensing in fields such as materials science, biosensing, and in various electrochemical systems. The metallic core of these nanoparticles is isolated from the surrounding environment preventing direct contact or chemical interaction with the metal surface, while still being close enough to enable localized surface plasmon enhancement of the Raman scattering signal from the analyte. This concept forms the basis of the shell isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) technique. To date, the vast majority of SHIN designs have focused on SiO2 shells around spherical nanoparticle cores and there has been very limited published research considering alternatives. In this article, we introduce a new polymer-based approach which provides excellent control over the layer thickness and can be applied to plasmonic metal nanoparticles of various shapes and sizes without compromising the overall nanoparticle morphology. The SHIN layers are shown to exhibit excellent passivation properties and robustness in the case of gold nanosphere (AuNP) and anisotropic gold nanostar (AuNS) core shapes. In addition, in situ SHINERS spectro-electrochemistry measurements performed on both SHIN and bare Au nanoparticles demonstrate the utility of the SHIN coatings. Correlated confocal Raman and SEM mapping was achieved to clearly establish single nanoparticle SERS sensitivity. Finally, confocal in situ SERS mapping enabled visualisation of the redox related molecular structure changes occurring on an electrode surface in the vicinity of individual SHIN-coated nanoparticles.
Collapse
Affiliation(s)
- Delali K Boccorh
- Centre for Molecular Nanometrology, Technology and Innovation Centre, Dept. of Pure & Applied Chemistry, University of Strathclyde 99 George St Glasgow G1 1RD UK +44 (0)141 548 3084
- National Physical Laboratory Hampton Road Teddington TW11 0LW UK
| | - Peter A Macdonald
- Centre for Molecular Nanometrology, Technology and Innovation Centre, Dept. of Pure & Applied Chemistry, University of Strathclyde 99 George St Glasgow G1 1RD UK +44 (0)141 548 3084
| | - Colm W Boyle
- Centre for Molecular Nanometrology, Technology and Innovation Centre, Dept. of Pure & Applied Chemistry, University of Strathclyde 99 George St Glasgow G1 1RD UK +44 (0)141 548 3084
| | - Andrew J Wain
- National Physical Laboratory Hampton Road Teddington TW11 0LW UK
| | - Leonard E A Berlouis
- Dept. of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral St Glasgow G1 1XL UK
| | - Alastair W Wark
- Centre for Molecular Nanometrology, Technology and Innovation Centre, Dept. of Pure & Applied Chemistry, University of Strathclyde 99 George St Glasgow G1 1RD UK +44 (0)141 548 3084
| |
Collapse
|
7
|
Wang HL, You EM, Panneerselvam R, Ding SY, Tian ZQ. Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design. LIGHT, SCIENCE & APPLICATIONS 2021; 10:161. [PMID: 34349103 PMCID: PMC8338991 DOI: 10.1038/s41377-021-00599-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 05/03/2023]
Abstract
Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle-nanoparticle and nanoparticle-substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies.
Collapse
Affiliation(s)
- Hai-Long Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - En-Ming You
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | | | - Song-Yuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
8
|
Shao F, Wang W, Yang W, Yang Z, Zhang Y, Lan J, Dieter Schlüter A, Zenobi R. In-situ nanospectroscopic imaging of plasmon-induced two-dimensional [4+4]-cycloaddition polymerization on Au(111). Nat Commun 2021; 12:4557. [PMID: 34315909 PMCID: PMC8316434 DOI: 10.1038/s41467-021-24856-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023] Open
Abstract
Plasmon-induced chemical reactions (PICRs) have recently become promising approaches for highly efficient light-chemical energy conversion. However, an in-depth understanding of their mechanisms at the nanoscale still remains challenging. Here, we present an in-situ investigation by tip-enhanced Raman spectroscopy (TERS) imaging of the plasmon-induced [4+4]-cycloaddition polymerization within anthracene-based monomer monolayers physisorbed on Au(111), and complement the experimental results with density functional theory (DFT) calculations. This two-dimensional (2D) polymerization can be flexibly triggered and manipulated by the hot carriers, and be monitored simultaneously by TERS in real time and space. TERS imaging provides direct evidence for covalent bond formation with ca. 3.7 nm spatial resolution under ambient conditions. Combined with DFT calculations, the TERS results demonstrate that the lateral polymerization on Au(111) occurs by a hot electron tunneling mechanism, and crosslinks form via a self-stimulating growth mechanism. We show that TERS is promising to be plasmon-induced nanolithography for organic 2D materials.
Collapse
Affiliation(s)
- Feng Shao
- Department of Physics and Astronomy, National Graphene Institute, University of Manchester, Manchester, UK.
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute, East China Normal University, Shanghai, People's Republic of China
| | - Weimin Yang
- Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhilin Yang
- Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Jinggang Lan
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| | - A Dieter Schlüter
- Department of Materials, Polymer Chemistry, ETH Zurich, Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Jiang J, Zou S, Li Y, Zhao F, Chen J, Wang S, Wu H, Xu J, Chu M, Liao J, Zhang Z. Flexible and adhesive tape decorated with silver nanorods for in-situ analysis of pesticides residues and colorants. Mikrochim Acta 2019; 186:603. [PMID: 31385118 DOI: 10.1007/s00604-019-3695-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
A flexible adhesive tape decorated with SERS-active silver nanorods (AgNRs) in the form of an array nanostructure is described. The tape was constructed by transferring the AgNRs nanostructures from silicon to the transparent tape by a "paste & peel off" procedure. The transparent, sticky, and flexible properties of commercial tapes allow almost any SERS-inactive irregular surface to be detected in-situ by pasting the SERS tape onto the position to be analyzed. Three examples for an analytical application are presented, viz. determination of (a) tetramethylthiuram disulfide and thiabendazole (two pesticides), (b) colorants in the gel of a writing pen, and (c) the fluorophore Rhodamine B. The tetramethylthiuram disulfide on apple surface was rapidly detected with a LOD of 28.8 ng·cm-2. The AgNRs effectively quenched the fluorescence of the matrix and fluorophores, this enabling the colorants and Rhodamine B to be identified. The results demonstrated that the SERS tape can be used for versatile in-situ detection. Conceivably, it may find applications in food analysis, non-invasive identification, environmental monitoring, and in other areas of daily life. Graphic abstract A flexible and adhesive SERS active tape decorated with silver nanorods (AgNRs) arrays was constructed through a "paste & peel off" method. It can be used as a versatile in situ analysis platform for various applications.
Collapse
Affiliation(s)
- Jiaolai Jiang
- Institute of Materials, China Academy of Engineering Physics, P. O. Box No.9-11, Mianyang, Sichuan, 621907, People's Republic of China
| | - Sumeng Zou
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yingru Li
- Institute of Materials, China Academy of Engineering Physics, P. O. Box No.9-11, Mianyang, Sichuan, 621907, People's Republic of China
| | - Fengtong Zhao
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jun Chen
- Institute of Materials, China Academy of Engineering Physics, P. O. Box No.9-11, Mianyang, Sichuan, 621907, People's Republic of China
| | - Shaofei Wang
- Institute of Materials, China Academy of Engineering Physics, P. O. Box No.9-11, Mianyang, Sichuan, 621907, People's Republic of China
| | - Haoxi Wu
- Institute of Materials, China Academy of Engineering Physics, P. O. Box No.9-11, Mianyang, Sichuan, 621907, People's Republic of China
| | - Jingsong Xu
- Institute of Materials, China Academy of Engineering Physics, P. O. Box No.9-11, Mianyang, Sichuan, 621907, People's Republic of China
| | - Mingfu Chu
- Institute of Materials, China Academy of Engineering Physics, P. O. Box No.9-11, Mianyang, Sichuan, 621907, People's Republic of China
| | - Junsheng Liao
- Institute of Materials, China Academy of Engineering Physics, P. O. Box No.9-11, Mianyang, Sichuan, 621907, People's Republic of China.
| | - Zhengjun Zhang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
10
|
Panneerselvam R, Liu GK, Wang YH, Liu JY, Ding SY, Li JF, Wu DY, Tian ZQ. Surface-enhanced Raman spectroscopy: bottlenecks and future directions. Chem Commun (Camb) 2018; 54:10-25. [DOI: 10.1039/c7cc05979e] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This feature article discusses developmental bottleneck issues in surface Raman spectroscopy in its early stages and surface-enhanced Raman spectroscopy (SERS) in the past four decades and future perspectives.
Collapse
Affiliation(s)
- Rajapandiyan Panneerselvam
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Guo-Kun Liu
- Department of the Environment & Ecology
- State Key Laboratory of Marine Environmental Science
- Xiamen University
- Xiamen 361102
- China
| | - Yao-Hui Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- Xiamen University
- Xiamen 361005
- China
| | - Jun-Yang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Song-Yuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
11
|
Ding SY, You EM, Tian ZQ, Moskovits M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev 2017; 46:4042-4076. [DOI: 10.1039/c7cs00238f] [Citation(s) in RCA: 734] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A fundamental theoretical understanding of SERS, and SERS hotspots, leads to new design principles for SERS substrates and new applications in nanomaterials and chemical analysis.
Collapse
Affiliation(s)
- Song-Yuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - En-Ming You
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Martin Moskovits
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- California
- USA
| |
Collapse
|