1
|
Bertalan É, Rodrigues MJ, Schertler GFX, Bondar AN. Graph-based algorithms to dissect long-distance water-mediated H-bond networks for conformational couplings in GPCRs. Br J Pharmacol 2024. [PMID: 38636539 DOI: 10.1111/bph.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/03/2024] [Accepted: 03/02/2024] [Indexed: 04/20/2024] Open
Abstract
Changes in structure and dynamics elicited by agonist ligand binding at the extracellular side of G protein coupled receptors (GPCRs) must be relayed to the cytoplasmic G protein binding side of the receptors. To decipher the role of water-mediated hydrogen-bond networks in this relay mechanism, we have developed graph-based algorithms and analysis methodologies applicable to datasets of static structures of distinct GPCRs. For a reference dataset of static structures of bovine rhodopsin solved at the same resolution, we show that graph analyses capture the internal protein-water hydrogen-bond network. The extended analyses of static structures of rhodopsins and opioid receptors suggest a relay mechanism whereby inactive receptors have in place much of the internal core hydrogen-bond network required for long-distance relay of structural change, with extensive local H-bond clusters observed in structures solved at high resolution and with internal water molecules.
Collapse
Affiliation(s)
- Éva Bertalan
- Physikzentrum, RWTH-Aachen University, Aachen, Germany
| | | | | | - Ana-Nicoleta Bondar
- Forschungszentrum Jülich, Institute of Computational Biomedicine, Jülich, Germany
- Faculty of Physics, University of Bucharest, Măgurele, Romania
| |
Collapse
|
2
|
Hong JD, Palczewski K. A short story on how chromophore is hydrolyzed from rhodopsin for recycling. Bioessays 2023; 45:e2300068. [PMID: 37454357 PMCID: PMC10614701 DOI: 10.1002/bies.202300068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023]
Abstract
The photocycle of visual opsins is essential to maintain the light sensitivity of the retina. The early physical observations of the rhodopsin photocycle by Böll and Kühne in the 1870s inspired over a century's worth of investigations on rhodopsin biochemistry. A single photon isomerizes the Schiff-base linked 11-cis-retinylidene chromophore of rhodopsin, converting it to the all-trans agonist to elicit phototransduction through photoactivated rhodopsin (Rho*). Schiff base hydrolysis of the agonist is a key step in the photocycle, not only diminishing ongoing phototransduction but also allowing for entry and binding of fresh 11-cis chromophore to regenerate the rhodopsin pigment and maintain light sensitivity. Many challenges have been encountered in measuring the rate of this hydrolysis, but recent advancements have facilitated studies of the hydrolysis within the native membrane environment of rhodopsin. These techniques can now be applied to study hydrolysis of agonist in other opsin proteins that mediate phototransduction or chromophore turnover. In this review, we discuss the progress that has been made in characterizing the rhodopsin photocycle and the journey to characterize the hydrolysis of its all-trans-retinylidene agonist.
Collapse
Affiliation(s)
- John D. Hong
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
3
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
4
|
Louet M, Casiraghi M, Damian M, Costa MGS, Renault P, Gomes AAS, Batista PR, M'Kadmi C, Mary S, Cantel S, Denoyelle S, Ben Haj Salah K, Perahia D, Bisch PM, Fehrentz JA, Catoire LJ, Floquet N, Banères JL. Concerted conformational dynamics and water movements in the ghrelin G protein-coupled receptor. eLife 2021; 10:e63201. [PMID: 34477105 PMCID: PMC8416020 DOI: 10.7554/elife.63201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/23/2021] [Indexed: 12/03/2022] Open
Abstract
There is increasing support for water molecules playing a role in signal propagation through G protein-coupled receptors (GPCRs). However, exploration of the hydration features of GPCRs is still in its infancy. Here, we combined site-specific labeling with unnatural amino acids to molecular dynamics to delineate how local hydration of the ghrelin receptor growth hormone secretagogue receptor (GHSR) is rearranged upon activation. We found that GHSR is characterized by a specific hydration pattern that is selectively remodeled by pharmacologically distinct ligands and by the lipid environment. This process is directly related to the concerted movements of the transmembrane domains of the receptor. These results demonstrate that the conformational dynamics of GHSR are tightly coupled to the movements of internal water molecules, further enhancing our understanding of the molecular bases of GPCR-mediated signaling.
Collapse
Affiliation(s)
- Maxime Louet
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
| | - Marina Casiraghi
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (FRC 550)ParisFrance
| | | | - Mauricio GS Costa
- Laboratoire de Biologie et Pharmacologie Appliquées, UMR 8113 CNRS, Ecole Normale Supérieure Paris-SaclayGif-sur-YvetteFrance
- Programa de Computação Científica, Fundação Oswaldo CruzRio de JaneiroBrazil
| | - Pedro Renault
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
| | - Antoniel AS Gomes
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Paulo R Batista
- Programa de Computação Científica, Fundação Oswaldo CruzRio de JaneiroBrazil
| | | | - Sophie Mary
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
| | - Sonia Cantel
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
| | | | | | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquées, UMR 8113 CNRS, Ecole Normale Supérieure Paris-SaclayGif-sur-YvetteFrance
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | | | - Laurent J Catoire
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (FRC 550)ParisFrance
| | | | | |
Collapse
|
5
|
Bada Juarez JF, Judge PJ, Adam S, Axford D, Vinals J, Birch J, Kwan TOC, Hoi KK, Yen HY, Vial A, Milhiet PE, Robinson CV, Schapiro I, Moraes I, Watts A. Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization. Nat Commun 2021; 12:629. [PMID: 33504778 PMCID: PMC7840839 DOI: 10.1038/s41467-020-20596-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Many transmembrane receptors have a desensitized state, in which they are unable to respond to external stimuli. The family of microbial rhodopsin proteins includes one such group of receptors, whose inactive or dark-adapted (DA) state is established in the prolonged absence of light. Here, we present high-resolution crystal structures of the ground (light-adapted) and DA states of Archaerhodopsin-3 (AR3), solved to 1.1 Å and 1.3 Å resolution respectively. We observe significant differences between the two states in the dynamics of water molecules that are coupled via H-bonds to the retinal Schiff Base. Supporting QM/MM calculations reveal how the DA state permits a thermodynamic equilibrium between retinal isomers to be established, and how this same change is prevented in the ground state in the absence of light. We suggest that the different arrangement of internal water networks in AR3 is responsible for the faster photocycle kinetics compared to homologs.
Collapse
Affiliation(s)
- Juan F Bada Juarez
- Biochemistry Department, Oxford University, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter J Judge
- Biochemistry Department, Oxford University, South Parks Road, Oxford, OX1 3QU, UK
| | - Suliman Adam
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Javier Vinals
- Biochemistry Department, Oxford University, South Parks Road, Oxford, OX1 3QU, UK
| | - James Birch
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Tristan O C Kwan
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
- National Physical Laboratory, Hampton Road, Teddington, London, TW11 0LW, UK
| | - Kin Kuan Hoi
- Chemistry Research Laboratory, Oxford University, Mansfield Road, Oxford, OX1 3TA, UK
| | - Hsin-Yung Yen
- OMass Therapeutics, The Schrodinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Anthony Vial
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Pierre-Emmanuel Milhiet
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Carol V Robinson
- Chemistry Research Laboratory, Oxford University, Mansfield Road, Oxford, OX1 3TA, UK
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Isabel Moraes
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK.
- National Physical Laboratory, Hampton Road, Teddington, London, TW11 0LW, UK.
| | - Anthony Watts
- Biochemistry Department, Oxford University, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
6
|
Katayama K, Takeyama Y, Enomoto A, Imai H, Kandori H. Disruption of Hydrogen-Bond Network in Rhodopsin Mutations Cause Night Blindness. J Mol Biol 2020; 432:5378-5389. [PMID: 32795534 DOI: 10.1016/j.jmb.2020.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 01/09/2023]
Abstract
Rhodopsin is the photosensitive protein, which binds to 11-cis-retinal as its chromophore. In the dark, rhodopsin exists as a stable complex between the opsin moiety and 11-cis-retinal. The absorption of a light photon converts 11-cis-retinal to all-trans-retinal and initiates our vision. As a result, the increase in the rate of dark activation of rhodopsin reduces its photosensitivity resulting in night blindness. The mutations, G90D and T94I are night blindness-causing mutations that exhibit completely different physicochemical characteristics associated with the dark activation of rhodopsin, such as a high rate of thermal isomerization of 11-cis-retinal and a slow pigment regeneration. To elucidate the molecular mechanism by which G90D and T94I mutations affect rhodopsin dark activation and regeneration, we performed light-induced difference FTIR spectroscopy on dark and primary photo-intermediate states of G90D and T94I mutants. The FTIR spectra clearly show that both charged G90D and hydrophobic T94I mutants alter the H-bond network at the Schiff base region of the chromophore, which weakens the electrostatic interaction with Glu113 counterion. Our results further show an altered water-mediated H-bond network around the central transmembrane region of mutant rhodopsin, which is reminiscent of the active Meta-II state. This altered water-mediated H-bond network may cause thermal isomerization of the chromophore and facilitate rhodopsin dark activation.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Yuri Takeyama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Akiko Enomoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroo Imai
- Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
7
|
Lesca E. Light-Sensitive Membrane Proteins as Tools to Generate Precision Treatments. J Membr Biol 2020; 253:81-86. [PMID: 32248246 DOI: 10.1007/s00232-020-00115-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION BY ANA-NICOLETA BONDAR, BIOPHYSICS SECTION HEAD EDITOR: This issue of the Journal of Membrane Biology inaugurates Up-and-Coming Scientist, in which investigators at early career stages are invited to present recent research in the broad context of their discipline. We inaugurate Up-and-Coming Scientist with the essay by Dr. Elena Lesca of the ETH Zürich and the Paul Scherrer Institut, Switzerland. Dr. Lesca has completed her doctoral degree at the Technical University München, Germany, in 2014, and pursued postdoctoral research at the ETH Zürich and Paul Scherrer Institut, where she is Senior Assistant since 2019. Two recent papers by Dr. Lesca et al. (references 33 and 39) have used X-ray crystallography and experimental biophysics approaches to shed light on the mechanism of action of a membrane receptor from the G Protein-Coupled Receptor (GPCR) family, Jumping Spider Rhodopsin-1 (JSR-1). JSR-1 is a visual rhodopsin activated upon absorption of light by its covalently bound retinal chromophore. Unlike the better-understood bovine rhodopsin GPCR, which is monostable, JSR-1 is bistable (i.e., in JSR-1 the Schiff base that binds retinal to the protein stays protonated throughout the reaction cycle), and absorption of a second photon resets the retinal ligand to the resting state configuration. In her essay, Dr. Lesca discusses the implications of her work on JSR-1 and, more broadly, GPCR research, for state-of-the-art applications in optogenetics and drug design.
Collapse
Affiliation(s)
- Elena Lesca
- Department of Biology, ETH Zürich, 8093, Zurich, Switzerland. .,Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland.
| |
Collapse
|