1
|
Liu H, Chen H, Han T, Wang X, Dai J, Yang X, Chan S, Cannon RD, Yang Y, Mousa H, Chang S, Chang R, Han TL. Lipid imbalance and inflammatory oxylipin cascade at the maternal-fetal interface in recurrent spontaneous abortion. Heliyon 2024; 10:e40515. [PMID: 39759287 PMCID: PMC11700280 DOI: 10.1016/j.heliyon.2024.e40515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025] Open
Abstract
Background Recurrent spontaneous abortion (RSA) is intricately linked to metabolic dysregulation at the maternal-fetal interface during early gestation. Abnormal levels of essential fatty acids and downstream oxylipins in decidua and chorionic villi have been identified as potential risk factors for RSA. Oxylipins have been linked to excessive inflammation, which might disrupt maternal-fetal immune tolerance, potentially contributing to RSA. Nonetheless, the exact fatty acid-oxylipin metabolic pathway at the matrernal-fetal interface in RSA occurrence remains unknown. Therefore, this research aimed to explore the effect of essential fatty acids, their transport, and downstream oxylipins at the maternal-fetal interface on RSA pathogenesis. Methods Plasma, chorionic villus, and decidual tissue samples from the first trimester were collected from healthy pregnant women undergoing elective pregnancy terminations, as well as from patients experiencing spontaneous abortion. The concentrations of essential fatty acids and their downstream oxylipins in the villi and decidua were quantified using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS). The expression of enzymes related to metabolic pathways was investigated by q-PCR. The ratios of M1/M2 macrophages were assessed by flow cytometry (FCM). Results This study found elevated concentrations of omega-6 fatty acids, encompassing arachidonic acid (AA), linoleic acid (LA), and dihomo-gamma-linolenic acid (DGLA) in maternal plasma and chorionic villi, whereas lower concentrations were observed in the decidua, than in samples from normal pregnancies. Further analysis revealed that the transport of these fatty acids was dysregulated at the maternal-fetal interface in RSA women, possibly due to the aberrant expression of the fatty acid translocase (FAT/CD36). In addition, this study revealed that RSA patients displayed higher levels of downstream oxylipins, such as prostaglandin F2a (PGF2a), prostaglandin E2 (PGE2), and leukotriene B4 (LTB4) in chorionic villi and decidua. These compounds may contribute to M1 inflammatory macrophage polarization in RSA, thereby forming a highly inflammatory environment and influencing immunomodulation at the maternal-fetal interface. Conclusion The study revealed alterations in omega-6 fatty acids, CD36 transport, and AA downstream oxylipins in RSA, which in turn promote M1 macrophage polarization. Thus, this research has established a foundation for identifying potential biomarkers for, and providing novel insights into, the diagnosis and pathophysiology of RSA.
Collapse
Affiliation(s)
- Hao Liu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huijia Chen
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xin Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Jingcong Dai
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojia Yang
- Department of Occupational and Environmental Hygiene, School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | | | - Richard D. Cannon
- Department of Oral Sciences, Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Yang Yang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hatem Mousa
- University of Leicester, NHS Trust, Leicester, UK
| | - Shufang Chang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruiqi Chang
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Lab for Reproduction and Development, Ministry of Education, Chongqing, China
- Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Rabotnick MH, Haidari A, Dolinoy DC, Meijer JL, Harris SM, Burant CF, Padmanabhan V, Goodrich JM. Early pregnancy serum PFAS are associated with alterations in the maternal lipidome. ENVIRONMENTAL RESEARCH 2024; 263:120183. [PMID: 39426451 PMCID: PMC11639123 DOI: 10.1016/j.envres.2024.120183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been detected in the blood of humans and animals worldwide. Exposure to some PFAS are associated with multiple adverse pregnancy outcomes. Existing literature has identified a strong association with PFAS exposure and metabolic dysfunction in humans, including modification of lipid metabolism. Using a subset of the Michigan Mother-Infant Pairs cohort (n = 95), this study investigated associations between first trimester plasma levels of PFAS and maternal lipids and metabolites in the first trimester (T1), at the time of delivery (T3), and in the infant cord blood (CB) using untargeted shotgun lipidomics and metabolomics. Identifying PFAS-induced alterations in the maternal lipid- or metabolome at specific timepoints may help elucidate windows of susceptibility to adverse pregnancy outcomes. Out of 9 PFAS measured, 7 were detected in at least 20% of samples and were used for further analyses. PFOS and PFHxS were measured at the highest concentrations with medians of 5.76 ng/mL and 3.33 ng/mL, respectively. PFOA, PFNA, and PFDA had lower measured values with medians of <1.2 ng/mL. PFHxS concentrations were positively associated with monounsaturated sphingomyelins (SMs) in T1 maternal plasma in adjusted models, determined by an adjusted p-value (q) < 0.1. PFHxS was positively associated with saturated and polyunsaturated SMs and inversely associated with saturated diacylglycerols in T1. Following metabolite-specific analysis, two mono-unsaturated diacylglycerols with carbon chain lengths of 32 and 35 were inversely associated with PFHxS in T1. In T3, only the association between PFHxS and SMs remained, but was attenuated. In addition, PFDA was associated with an increase in polyunsaturated plasmenyl-phosphatidylethanolamines in T3. No associations were identified between PFAS and infant cord blood lipids. Continued research into PFAS associated disruptions in lipid metabolism at sensitive stages of gestation may provide insight into the mechanisms that lead to adverse birth and pregnancy outcomes.
Collapse
Affiliation(s)
- Margaret H Rabotnick
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Ariana Haidari
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jennifer L Meijer
- Department of Medicine, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Chen J, Yin T, Hu X, Chang L, Sang Y, Xu L, Zhao W, Liu L, Xu C, Lin Y, Li Y, Wu Q, Li D, Li Y, Du M. CD36-mediated arachidonic acid influx from decidual stromal cells increases inflammatory macrophages in miscarriage. Cell Rep 2024; 43:114881. [PMID: 39427314 DOI: 10.1016/j.celrep.2024.114881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Spontaneous abortion is associated with aberrant lipid metabolism, but the underlying mechanisms remain unclear. Here, we show that lipids are accumulated in decidual stromal cells (DSCs) and macrophages (dMφs) in women with miscarriage and mouse abortion-prone models. Moreover, we show that excessive lipids from DSCs are transferred to dMφs via a CD36-dependent mechanism that induces inflammation in dMφs. In particular, DSC-derived arachidonic acid (AA) is internalized by dMφs via CD36, which activates cyclooxygenase 2-dependent prostaglandin E2 production and interleukin (IL)-1β expression. In mice, AA injection induces miscarriage, whereas conditional knockout of Cd36 in dMφs ameliorates AA-induced embryo loss. Additionally, DSC-derived prolactin (PRL) inhibits CD36-mediated lipid intake in dMφs, and PRL administration reduces embryo loss in pregnant mice treated with CD36+ Mφs. Our findings reveal a critical interplay between DSCs and dMφs in dysregulated lipid metabolism that may contribute to miscarriage, in which PRL may be harnessed as a therapeutic agent.
Collapse
Affiliation(s)
- Jiajia Chen
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Tingxuan Yin
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xianyang Hu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Lingyu Chang
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yifei Sang
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Ling Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Weijie Zhao
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Lu Liu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Chunfang Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yikong Lin
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yue Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215031, China
| | - Dajin Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China.
| | - Yanhong Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China.
| | - Meirong Du
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China; Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
4
|
Shi R, Tian X, Zhang T, Ji A, Xu H, Qi Z, Zhao C, Li D. The consumption of lard oil during pregnancy and postpartum periods has negative effects on cognitive function by altering the fatty acid profile and activating neuroinflammation via calcium signaling pathway in the maternal mice brain. Curr Res Food Sci 2024; 9:100797. [PMID: 39005495 PMCID: PMC11246016 DOI: 10.1016/j.crfs.2024.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
It has been suggested that dietary intake of lipids and fatty acids may influence cognitive function, however, the effect of lard intake during pregnancy and postpartum periods on cognitive function of mother remains to be elucidated. We investigated the effect and mechanism of consuming soybean oil (SO), the mixed oil of lard and soybean oil at the ratio of 1:1 (LS) and lard oil (LO) during the pregnancy and postpartum periods on cognitive function of the maternal mice. All pregnant C57BL/6JNifdc mice were fed with soybean oil diet during day 0-10 (the day when vaginal plugs appeared in female mice was recorded as day 0), and then randomly assigned to SO, LS and LO groups (n = 10) from day 11 to day 44. The time in center zone and the number of times to enter in center zone were significantly higher in the SO group than in the LO group detected by the open-field test. The levels of neuroglial cells, NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex and pyroptosis related proteins in brain of the LO group were significantly higher than those in the SO group. RNA-sequencing results showed that the calcium signaling pathway related genes in brain, including Adcy8, Ntsr1, Trhr, Oxtr, Htr5b and Camk2d levels significantly higher in the LO group than in the SO group. Lipidomic analysis indicated that PG 18:2_18:2, PG 20:5_22:6, and CL 12:0_16:0_22:3_22:5 of glycerophospholipid metabolism in brain significantly connected with Htr5b of calcium signaling pathway. In conclusion, the intake of lard during the pregnancy and postpartum periods is detrimental to the cognitive function of maternal mice, which probably due to changes in the composition of fatty acid in the brain, thereby activating neuroinflammation via calcium signaling pathway in brain.
Collapse
Affiliation(s)
- Runjia Shi
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Xiaoying Tian
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Tianyu Zhang
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
- College of Life Sciences, Dezhou University, Dezhou, 253023, China
| | - Andong Ji
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Huina Xu
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Zhongshi Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Chunhui Zhao
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, China
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC3168, Australia
| |
Collapse
|
5
|
Pei J, Zhao S, Yin M, Wu F, Li J, Zhang G, Wu X, Bao P, Xiong L, Song W, Ba Y, Yan P, Song R, Guo X. Differential proteomics of placentas reveals metabolic disturbance and oxidative damage participate yak spontaneous miscarriage during late pregnancy. BMC Vet Res 2022; 18:248. [PMID: 35761325 PMCID: PMC9235108 DOI: 10.1186/s12917-022-03354-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background High spontaneous miscarriage rate in yak, especially during late pregnancy, have caused a great economic loss to herdsmen living in the Qinghai-Tibet plateau. However, the mechanism underlying spontaneous miscarriage is still poorly understood. In the present study, placenta protein markers were identified to elucidate the pathological reasons for yak spontaneous miscarriage through isobaric tags for relative and absolute quantification (iTRAQ) proteomic technology and bioinformatic approaches. Results Subsequently, a total of 415 differentially expressed proteins (DEPs) were identified between aborted and normal placentas. The up-regulated DEPs in the aborted placentas were significantly associated with “spinocerebellar ataxia”, “sphingolipid signalling”, “relaxin signalling”, “protein export”, “protein digestion and absorption” and “aldosterone synthesis and secretion” pathway. While the down-regulated DEPs in the aborted placentas mainly participated in “valine, leucine and isoleucine degradation”, “PPAR signalling”, “peroxisome”, “oxidative phosphorylation”, “galactose metabolism”, “fatty acid degradation”, “cysteine and methionine metabolism” and “citrate cycle” pathway. Conclusions The results implied that the identified DEPs could be considered as placental protein markers for yak miscarriage during late pregnancy, and biomacromolecule metabolic abnormality and oxidative damage might be responsible for the high spontaneous miscarriage rate in yak. These findings provide an important theoretical basis for deciphering the pathologic mechanism of late spontaneous miscarriage in yak. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03354-w.
Collapse
|
6
|
Wang Q, Zhang X, Li C, Xiong M, Bai W, Sun S, Chen C, Zhang X, Li M, Zhao A. Intracellular Lipid Accumulation Drives the Differentiation of Decidual Polymorphonuclear Myeloid-Derived Suppressor Cells via Arachidonic Acid Metabolism. Front Immunol 2022; 13:868669. [PMID: 35664000 PMCID: PMC9159278 DOI: 10.3389/fimmu.2022.868669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Decidual polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are essential to immune tolerance during pregnancy. A reduction in the number of these cells is associated with unexplained recurrent pregnancy loss (URPL). In our previous study, we reported that PMN-MDSCs are a group of mature neutrophils that are activated by the decidua microenvironment. In the present study, we show that the decidua microenvironment induces substantial lipid accumulation in neutrophils during their differentiation to PMN-MDSCs. Lower levels of lipid accumulation are detected in PMN-MDSCs from URPL patients, and the amount of lipid in the PMN-MDSCs is positively correlated with the proportion of PMN-MDSCs. Next, we demonstrate that decidua-derived IL6 with the presence of arachidonic acid upregulates fatty acid-binding protein 5 (FABP5) via the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Fy -60ABP5 then continuously stimulates intracellular lipid accumulation. Increased intracellular lipid accumulation mediates arachidonic acid metabolism, a pathway that is significantly activated by the induction of the decidua microenvironment, to stimulate the synthesis of prostaglandin E2 (PGE2) and finally induce the differentiation of PMN-MDSCs. To summarize, decidua-derived IL6 facilitates the differentiation of PMN-MDSCs from neutrophils via the pSTAT3/FABP5/PGE2 pathway. Defects in the process may result in impaired differentiation and dysfunction of PMN-MDSCs in URPL. These findings enhance our understanding of the physiological mechanisms of immune tolerance in pregnancy and provide therapeutic options for URPL.
Collapse
Affiliation(s)
- Qiaohong Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Xinyang Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Congcong Li
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Miao Xiong
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenxin Bai
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Si Sun
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Chao Chen
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Xiaoxin Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Mingyang Li
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Aimin Zhao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| |
Collapse
|
7
|
Zhang T, Chen L, Guo X, Li S, He X, Pei S, Li D. N-3 polyunsaturated fatty acids prevent the D-galactose-induced cognitive impairment by up-regulating the levels of 5-hydroxymethylcytosine in the mouse brain. Food Funct 2022; 13:4101-4113. [PMID: 35316827 DOI: 10.1039/d1fo04420f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Decreased 5-hydroxymethylcytosine (5hmC) levels caused by mitochondrial dysfunction in the brain are closely associated with the development of neurodegenerative disease. It has been reported that n-3 polyunsaturated fatty acids (PUFAs) prevent cognitive dysfunction by improving mitochondrial function in the brain. However, whether n-3 PUFA prevents cognitive dysfunction by increasing the levels of 5hmC in the brain is undisclosed. Mice were randomly divided into six groups (n = 10), injected with D-galactose (200 mg kg-1 day-1) for the model group and given different oils [0.1 mL per 10 g body weight per day, fish oil (FO), peony seed oil (PSO), corn oil (CO) and olive oil (OO)] for the prevention groups, and injected with the same dose of saline for the normal control group (NC) for 10 weeks, respectively. Peony seed oil and fish oil have shown preventive effects on D-galactose-induced cognitive dysfunction in behavioral tests. The content of docosahexaenoic acid (C22:6n-3, DHA content) in the brain was significantly higher in FO and PSO groups than in the other groups. Brain oxidative stress and neuronal apoptosis were significantly lower in PSO and FO groups than in the other groups. RNA-seq results showed that the different genes between PSO and FO compared with the model group were involved in the DNA demethylation process and the 5-methylcytosine metabolic process. The brain levels of 5hmC and the ten-eleven translocation family of dioxygenases (TETs) were significantly higher in FO and PSO groups compared with the model group, as analyzed by dot-blot and western blot. In conclusion, peony seed oil and fish oil increased the C22:6n-3 content, which activated the TET activity, led to up-regulation of the 5hmc level, resulted in inhibition of neuronal apoptosis, and then improved the cognitive function in D-gal-induced mice.
Collapse
Affiliation(s)
- Tianyu Zhang
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Lei Chen
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Xiaofei Guo
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Shan Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Xin He
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Shengjie Pei
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Zhu L, Jia W, Wang Q, Zhuang P, Wan X, Ren Y, Zhang Y. Nontargeted metabolomics-based mapping urinary metabolic fingerprints after exposure to acrylamide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112625. [PMID: 34411821 DOI: 10.1016/j.ecoenv.2021.112625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/31/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Acrylamide classified as a probable carcinogen to humans is a high production volume chemical in industrial applications released to aquatic and environmental ecosystems, and also widely found in the thermal processing of starch-rich foods. To gain insight into the urinary metabolomics that may induce physiological responses stimulated by acrylamide, rats were orally administered with a single dose of 13C3-acrylamide (10 mg/kg bw) in the treatment group and urine samples were continuously collected every 2 h during the first 18 h and every 3 h during the period from 18 h to 36 h. A reliable nontargeted screening method for the analysis of urinary metabolomics in rats was developed using ultra-high performance liquid chromatography coupled to quadrupole-Orbitrap high-resolution mass spectrometry. All metabolites in urine of rats receiving isotope-labeled acrylamide were screened by validated orthogonal partial least squares-discriminant analyses compared to the animals in the control group, while exposure biomarkers were further confirmed according to the characteristic fragmentation rules and time-dependent profiles. Here we identified 2 new specific exposure biomarkers, named N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine-sulfoxide and N-acetyl-S-(2-carboxyl)-L-cysteine, compared to 4 currently acknowledged mercapturic acid adducts of acrylamide. In addition, our findings on analysis of acrylamide metabolic pathway and identification of exposure biomarkers confirmed that acrylamide could significantly affect energy metabolism and amino acid metabolism by the Kyoto Encyclopedia of Genes and Genomes pathway analysis for key metabolites. Homocysteine thiolactone and hypoxanthine may be potential biomarkers for the cardiotoxicity, while methionine sulfoxide, hippuric acid and melatonin may be specifically related to the neurotoxicity. Thus, the current study provided new evidence on the identification of emerging exposure biomarkers and specific signature metabolites related to the toxicity of acrylamide, and shed light on how acrylamide affected energy and amino acid metabolism by further mapping urinary metabolic fingerprints.
Collapse
Affiliation(s)
- Li Zhu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wei Jia
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qiao Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xuzhi Wan
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yiping Ren
- Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
9
|
Li L, Lv L, Zhang G, Zhang H. Associations between the exposure to organophosphate flame retardants during early pregnancy and the risk of spontaneous abortion based on metabolomics combined with tandem mass spectrometry. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1305. [PMID: 34532442 PMCID: PMC8422145 DOI: 10.21037/atm-21-3109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/11/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND As potential substitutes for polybrominated diphenyl ethers (PBDEs), organophosphate flame retardants (OPFRs) have been frequently detected in the environment. They have been suggested to impair fetal growth and development in toxicological studies. However, there are few studies on their maternal effects before or during early pregnancy. METHODS This study was designed to investigate whether exposure to OPFRs before or during early pregnancy is associated with the risk of spontaneous abortion (SAB), using a nested case-control design based on the case data from clinical examinations in Shanghai, China. A total of 110 cases from this cohort project in 2019-2020 were included. The concentrations of OPFRs in maternal urine samples collected in early pregnancy were determined using Ultra high performance liquid chromatography- triple quadrupole mass spectrometer (UHPLC-MS/MS), and pregnancy outcomes were extracted from the medical records. Meanwhile, ultra high performance liquid chromatography time-of-flight mass spectrometer (UHPLC-Q-TOF/MS)-based metabonomics was used to obtain urine metabolic profiles of 110 women in early pregnancy. RESULTS According to the quantitative results, the content of bis(1-chloro-2-propyl)phosphate (BCIPP) in urine was significantly different between the SAB patients and the healthy pregnant women. Besides, metabolic profile analysis showed a significant difference in the urine metabolism profile in early pregnancy between SAB cases and controls. Twenty-five different metabolites were screened out, which showed different degrees of correlation with the urinary BCIPP concentration. CONCLUSIONS Based on these results, it suggests that there may be a certain correlation between BCIPP concentration in the urine and the risk of SAB from a metabolomics perspective, and its effect may be related to the metabolism of tryptophan and fatty acids.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Lei Lv
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Guoqing Zhang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
The metabolic landscape of decidua in recurrent pregnancy loss using a global metabolomics approach. Placenta 2021; 112:45-53. [PMID: 34273713 DOI: 10.1016/j.placenta.2021.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Maternal metabolism undergoes dynamic changes during pregnancy. A deviation from this physiological metabolic status might be involved in the pathogenesis of pregnancy complications, such as recurrent pregnancy loss (RPL). Decidua is an important uterine tissue, which provides immunological protection as well as nutritional support to the developing embryo during early pregnancy. Previous studies have shown that aberrant metabolism of the decidua is related to the etiology of RPL. However, the metabolic profile of the decidua in RPL has not yet been fully elucidated. METHODS In the current study, decidual samples from RPL patients (n = 23) and normal pregnancy (NP) women (n = 30) were collected, and hydrophilic and hydrophobic metabolites were extracted and measured using a liquid chromatography electrospray ionization tandem mass spectrometry system. Besides, the mRNA expression of several critical enzymes involved in sphingolipid metabolism and glycerophospholipid metabolism was detected. RESULTS The OSC-PLS-DA scores plot illustrates that metabolic differences are present in the decidual tissue of RPL patients compared with that of NP women. Combining multivariate analysis with univariate statistical analysis, a total of 62 metabolites related to RPL were selected, including carnitine, glycerophospholipids, sphingomyelin (SM), ceramide, organic acids and their derivatives, and amino acid metabolomics. KEGG analysis showed that abnormalities in multiple metabolic pathways occurred in RPL decidua, including vitamin digestion and absorption, tryptophan metabolism, citrate cycle, arginine biosynthesis, glycerophospholipid metabolism, sphingolipid metabolism, and sphingolipid signaling pathway. Increased SM synthase and decreased Phospholipase A2 Group IIE mRNA levels were detected in RPL compared with NP group. DISCUSSION Disruption of decidual metabolism, especially glycerophospholipid metabolism and sphingolipid metabolism, might be involved in the occurrence of RPL.
Collapse
|
11
|
Lan Y, Yang X, Liang Y, Lei L, Li Y, Wang S. Vasomotor tone-associated factors and pregnancy outcomes of women who undergo in vitro fertilization. Growth Factors 2021; 39:28-36. [PMID: 34969347 DOI: 10.1080/08977194.2021.2021899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vasomotor tone-associated factors play important roles in normal pregnancy, but their roles in the pregnancy outcome of women who undergo in vitro fertilization and embryo transfer (IVF-ET) remain unclear. A total of 82 infertile women who underwent successful IVF-ET were enrolled, including 18 pregnancy losses, 11 complications, and 53 normal deliveries. The serum NO and iNOS levels were significantly higher in the pregnancy loss group and significantly lower in the complication group than in the normal delivery group (p < 0.05). Significantly increased ET-1 and decreased PGI2 were found in both the pregnancy loss and complication groups compared with those in the normal delivery group (p < 0.05). NO, iNOS, and ET-1 are risk factors and PGI2 is a protective factor for pregnancy loss. ET-1 + PGI2 (AUC, 0.897; sensitivity, 90.6%; specificity, 83.3%) showed a relatively good predictive value for pregnancy loss following IVF-ET.
Collapse
Affiliation(s)
- Yonglian Lan
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yu Liang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Lingling Lei
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ying Li
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Shuyu Wang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Comparison of endometrial prostanoid profiles in three infertile subgroups: the missing part of receptivity? Fertil Steril 2020; 113:670-678.e1. [PMID: 32061358 DOI: 10.1016/j.fertnstert.2019.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To study the prostanoid profile of the endometria of patients with recurrent implantation failure (RIF), unexplained infertility (UIF), and recurrent miscarriages (RM), and to compare them with the endometria of healthy fertile controls. DESIGN Prospective cohort study. SETTING University hospital. PATIENT(S) Fifteen patients with RIF, 18 patients with UIF, 16 patients with RM, and 23 fertile controls were recruited. INTERVENTION(S) Endometrial samples were taken during the window of implantation. After tissue homogenization and extraction, analysis with ultra-performance liquid chromatography diode array detector electrospray ionisation tandem mass spectrometry was performed. MAIN OUTCOME MEASURES Concentrations of prostaglandin (PG) D1, PGE1, PGF1α, 6-ketoPGF1α, PGD2, PGE2, PGF2α, 15-deoxy-Δ12,14-PGJ2, PGD3, PGE3, PGF3α, thromboxane B2, 13,14-dihydro-PGE1, 13,14-dihydro-PGF1α, 13,14-dihydro-PGF2α, 13,14-dihydro-15-keto-PGE1, 13,14-dihydro-15-keto-PGE2, and 13,14-dihydro-15-keto-PGF2α were assessed. RESULT(S) Comparison of the endometria of patients with UIF and the controls showed no statistically significant differences. When the endometria of patients with RIF were compared with the controls, thromboxane B2 (TXB2) was found significantly higher (843.1 pg/mg vs. 133.5 pg/mg). When the endometria of patients with RM were compared with controls, 13,14-dihydro-15-keto PGF2α and TXB2 were found significantly higher (3907.30 pg/mg vs. 17.80 pg/mg and 858.7 pg/mg vs. 133.5 pg/mg respectively). CONCLUSION(S) We identified increased endometrial presence of TXB2 in patients with RM and RIF, and 13,14-dihydro-15-keto PGF2α in patients with RM. Although common ground is observed for RM and RIF, prostanoids, on the other hand, might make their own contribution to endometrial receptivity as important as genes and proteins. Attempts to normalize the prostaglandin profile of the endometrium via enzymatic activity can open new therapeutic options.
Collapse
|
13
|
Oliver KF, Wahl AM, Dick M, Toenges JA, Kiser JN, Galliou JM, Moraes JGN, Burns GW, Dalton J, Spencer TE, Neibergs HL. Genomic Analysis of Spontaneous Abortion in Holstein Heifers and Primiparous Cows. Genes (Basel) 2019; 10:genes10120954. [PMID: 31766405 PMCID: PMC6969913 DOI: 10.3390/genes10120954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Background: The objectives of this study were to identify loci, positional candidate genes, gene-sets, and pathways associated with spontaneous abortion (SA) in cattle and compare these results with previous human SA studies to determine if cattle are a good SA model for humans. Pregnancy was determined at gestation day 35 for Holstein heifers and cows. Genotypes from 43,984 SNPs of 499 pregnant heifers and 498 pregnant cows that calved at full term (FT) were compared to 62 heifers and 28 cows experiencing SA. A genome-wide association analysis, gene-set enrichment analysis–single nucleotide polymorphism, and ingenuity pathway analysis were used to identify regions, pathways, and master regulators associated with SA in heifers, cows, and a combined population. Results: Twenty-three loci and 21 positional candidate genes were associated (p < 1 × 10−5) with SA and one of these (KIR3DS1) has been associated with SA in humans. Eight gene-sets (NES > 3.0) were enriched in SA and one was previously reported as enriched in human SA. Four master regulators (p < 0.01) were associated with SA within two populations. Conclusions: One locus associated with SA was validated and 39 positional candidate and leading-edge genes and 2 gene-sets were enriched in SA in cattle and in humans.
Collapse
Affiliation(s)
- Kayleen F. Oliver
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 646310, USA; (K.F.O.); (A.M.W.); (M.D.); (J.A.T.); (J.N.K.); (J.M.G.)
| | - Alexandria M. Wahl
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 646310, USA; (K.F.O.); (A.M.W.); (M.D.); (J.A.T.); (J.N.K.); (J.M.G.)
| | - Mataya Dick
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 646310, USA; (K.F.O.); (A.M.W.); (M.D.); (J.A.T.); (J.N.K.); (J.M.G.)
| | - Jewel A. Toenges
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 646310, USA; (K.F.O.); (A.M.W.); (M.D.); (J.A.T.); (J.N.K.); (J.M.G.)
| | - Jennifer N. Kiser
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 646310, USA; (K.F.O.); (A.M.W.); (M.D.); (J.A.T.); (J.N.K.); (J.M.G.)
| | - Justine M. Galliou
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 646310, USA; (K.F.O.); (A.M.W.); (M.D.); (J.A.T.); (J.N.K.); (J.M.G.)
| | - Joao G. N. Moraes
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO S158A, USA (G.W.B.); (T.E.S.)
| | - Gregory W. Burns
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO S158A, USA (G.W.B.); (T.E.S.)
| | - Joseph Dalton
- Department of Animal and Veterinary Sciences, University of Idaho, Caldwell, ID 1904 E, USA;
| | - Thomas E. Spencer
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO S158A, USA (G.W.B.); (T.E.S.)
| | - Holly L. Neibergs
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 646310, USA; (K.F.O.); (A.M.W.); (M.D.); (J.A.T.); (J.N.K.); (J.M.G.)
- Correspondence: ; Tel.: +1-1509-335-6491
| |
Collapse
|