1
|
Elhassan MM, Mahmoud AM, Hegazy MA, Mowaka S, Bell JG. New trends in potentiometric sensors: From design to clinical and biomedical applications. Talanta 2025; 287:127623. [PMID: 39893726 DOI: 10.1016/j.talanta.2025.127623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Potentiometry, a well-established electrochemical technique, provides a powerful and versatile method for the sensitive and selective measurement of a variety of analytes by measuring the potential difference between two electrodes, allowing for a direct and rapid readout of ion concentrations. This makes it a valuable tool in a variety of applications including industry, agriculture, forensics, medical, environmental assessment, and pharmaceutical drug analysis, therefore it has received significant attention from the scientific community. Their broad implementation in sensing applications arises through their many benefits, including ease of design, fabrication, and modification; rapid response time; high selectivity; suitability for use with colored and/or turbid solutions; and potential for integration into embedded systems interfaces. Owing to these advantages and diverse applicability, sustained research and development in the field has resulted in the emergence of several notable trends in the field. 3D printing is the most recent technique used in potentiometry which offers many benefits such as improved flexibility and precision in the manufacturing of ion-selective electrodes and rapid prototyping decreases the time needed during optimization of important electrochemical parameters. Additionally, paper-based sensors are cost-effective and versatile platforms for in-field (point-of-care, POC) analysis, permitting rapid determination of a variety of analytes. One of the most interesting applications of potentiometry are wearable sensors which allow for the continuous monitoring of biomarkers, electrolytes and even pharmaceuticals, especially those with a narrow therapeutic index. Herein this review, we discuss several recent trends in potentiometric sensors since 2010, including 3D printing, paper-based devices, and other emerging techniques and the translation of potentiometric systems to wearable devices for the determination of ionic species or pharmaceuticals in biological fluids paving the way to various clinical and biomedical uses.
Collapse
Affiliation(s)
- Manar M Elhassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837, Egypt
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt.
| | - Maha A Hegazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Shereen Mowaka
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837, Egypt; Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| | - Jeffrey G Bell
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA.
| |
Collapse
|
2
|
Childs A, Mayol B, Lasalde-Ramírez JA, Song Y, Sempionatto JR, Gao W. Diving into Sweat: Advances, Challenges, and Future Directions in Wearable Sweat Sensing. ACS NANO 2024; 18:24605-24616. [PMID: 39185844 DOI: 10.1021/acsnano.4c10344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Sweat analysis has advanced from diagnosing cystic fibrosis and testing for illicit drugs to noninvasive monitoring of health biomarkers. This article introduces the rapid development of wearable and flexible sweat sensors, highlighting key milestones and various sensing strategies for real-time monitoring of analytes. We discuss challenges such as developing high-performance nanomaterial-based biosensors, ensuring continuous sweat production and sampling, achieving high sweat/blood correlation, and biocompatibility. The potential of machine learning to enhance these sensors for personalized healthcare is presented, enabling real-time tracking and prediction of physiological changes and disease onset. Leveraging advancements in flexible electronics, nanomaterials, biosensing, and data analytics, wearable sweat biosensors promise to revolutionize disease management, prevention, and prediction, promoting healthier lifestyles and transforming medical practices globally.
Collapse
Affiliation(s)
- Andre Childs
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Beatriz Mayol
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - José A Lasalde-Ramírez
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Juliane R Sempionatto
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Konno S, Kudo H. Fundamental Study of a Wristwatch Sweat Lactic Acid Monitor. BIOSENSORS 2024; 14:187. [PMID: 38667180 PMCID: PMC11048019 DOI: 10.3390/bios14040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
A lactic acid (LA) monitoring system aimed at sweat monitoring was fabricated and tested. The sweat LA monitoring system uses a continuous flow of phosphate buffer saline, instead of chambers or cells, for collecting and storing sweat fluid excreted at the skin surface. To facilitate the use of the sweat LA monitoring system by subjects when exercising, the fluid control system, including the sweat sampling device, was designed to be unaffected by body movements or muscle deformation. An advantage of our system is that the skin surface condition is constantly refreshed by continuous flow. A real sample test was carried out during stationary bike exercise, which showed that LA secretion increased by approximately 10 μg/cm2/min compared to the baseline levels before exercise. The LA levels recovered to baseline levels after exercise due to the effect of continuous flow. This indicates that the wristwatch sweat LA monitor has the potential to enable a detailed understanding of the LA distribution at the skin surface.
Collapse
Affiliation(s)
| | - Hiroyuki Kudo
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Tokyo 214-8571, Kanagawa, Japan
| |
Collapse
|
4
|
Huang X, Yao C, Huang S, Zheng S, Liu Z, Liu J, Wang J, Chen HJ, Xie X. Technological Advances of Wearable Device for Continuous Monitoring of In Vivo Glucose. ACS Sens 2024; 9:1065-1088. [PMID: 38427378 DOI: 10.1021/acssensors.3c01947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Managing diabetes is a chronic challenge today, requiring monitoring and timely insulin injections to maintain stable blood glucose levels. Traditional clinical testing relies on fingertip or venous blood collection, which has facilitated the emergence of continuous glucose monitoring (CGM) technology to address data limitations. Continuous glucose monitoring technology is recognized for tracking long-term blood glucose fluctuations, and its development, particularly in wearable devices, has given rise to compact and portable continuous glucose monitoring devices, which facilitates the measurement of blood glucose and adjustment of medication. This review introduces the development of wearable CGM-based technologies, including noninvasive methods using body fluids and invasive methods using implantable electrodes. The advantages and disadvantages of these approaches are discussed as well as the use of microneedle arrays in minimally invasive CGM. Microneedle arrays allow for painless transdermal puncture and are expected to facilitate the development of wearable CGM devices. Finally, we discuss the challenges and opportunities and look forward to the biomedical applications and future directions of wearable CGM-based technologies in biological research.
Collapse
Affiliation(s)
- Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shantao Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
5
|
Watkins Z, McHenry A, Heikenfeld J. Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:223-282. [PMID: 38273210 DOI: 10.1007/10_2023_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.
Collapse
Affiliation(s)
- Zach Watkins
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Adam McHenry
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
6
|
Min J, Demchyshyn S, Sempionatto JR, Song Y, Hailegnaw B, Xu C, Yang Y, Solomon S, Putz C, Lehner L, Schwarz JF, Schwarzinger C, Scharber M, Sani ES, Kaltenbrunner M, Gao W. An autonomous wearable biosensor powered by a perovskite solar cell. NATURE ELECTRONICS 2023; 6:630-641. [PMID: 38465017 PMCID: PMC10923186 DOI: 10.1038/s41928-023-00996-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/15/2023] [Indexed: 03/12/2024]
Abstract
Wearable sweat sensors can potentially be used to continuously and non-invasively monitor physicochemical biomarkers that contain information related to disease diagnostics and fitness tracking. However, the development of such autonomous sensors faces a number of challenges including achieving steady sweat extraction for continuous and prolonged monitoring, and addressing the high power demands of multifunctional and complex analysis. Here we report an autonomous wearable biosensor that is powered by a perovskite solar cell and can provide continuous and non-invasive metabolic monitoring. The device uses a flexible quasi-two-dimensional perovskite solar cell module that provides ample power under outdoor and indoor illumination conditions (power conversion efficiency exceeding 31% under indoor light illumination). We show that the wearable device can continuously collect multimodal physicochemical data - glucose, pH, sodium ions, sweat rate, and skin temperature - across indoor and outdoor physical activities for over 12 hours.
Collapse
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
- These authors contributed equally to this work
| | - Stepan Demchyshyn
- Division of Soft Matter Physics, Institute of Experimental Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
- Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
- These authors contributed equally to this work
| | - Juliane R. Sempionatto
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Bekele Hailegnaw
- Division of Soft Matter Physics, Institute of Experimental Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
- Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Samuel Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Christoph Putz
- Division of Soft Matter Physics, Institute of Experimental Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
- Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Lukas Lehner
- Division of Soft Matter Physics, Institute of Experimental Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
- Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Julia Felicitas Schwarz
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Clemens Schwarzinger
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Markus Scharber
- Linz Institute for Organic Solar Cells, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Ehsan Shirzaei Sani
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Martin Kaltenbrunner
- Division of Soft Matter Physics, Institute of Experimental Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
- Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
7
|
Zhang S, Zhao W, Zeng J, He Z, Wang X, Zhu Z, Hu R, Liu C, Wang Q. Wearable non-invasive glucose sensors based on metallic nanomaterials. Mater Today Bio 2023; 20:100638. [PMID: 37128286 PMCID: PMC10148187 DOI: 10.1016/j.mtbio.2023.100638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
The development of wearable non-invasive glucose sensors provides a convenient technical means to monitor the glucose concentration of diabetes patients without discomfortability and risk of infection. Apart from enzymes as typical catalytic materials, the active catalytic materials of the glucose sensor are mainly composed of polymers, metals, alloys, metal compounds, and various metals that can undergo catalytic oxidation with glucose. Among them, metallic nanomaterials are the optimal materials applied in the field of wearable non-invasive glucose sensing due to good biocompatibility, large specific surface area, high catalytic activity, and strong adsorption capacity. This review summarizes the metallic nanomaterials used in wearable non-invasive glucose sensors including zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) monometallic nanomaterials, bimetallic nanomaterials, metal oxide nanomaterials, etc. Besides, the applications of wearable non-invasive biosensors based on these metallic nanomaterials towards glucose detection are summarized in detail and the development trend of the wearable non-invasive glucose sensors based on metallic nanomaterials is also outlook.
Collapse
Affiliation(s)
- Sheng Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- NingboTech University, Ningbo, 315100, China
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Wenjie Zhao
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Junyan Zeng
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaotao He
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiang Wang
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Zehui Zhu
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
| | - Runqing Hu
- NingboTech University, Ningbo, 315100, China
| | - Chen Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
- Corresponding author. Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China.
| | - Qianqian Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- NingboTech University, Ningbo, 315100, China
- Corresponding author. Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
8
|
Min J, Tu J, Xu C, Lukas H, Shin S, Yang Y, Solomon SA, Mukasa D, Gao W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem Rev 2023; 123:5049-5138. [PMID: 36971504 PMCID: PMC10406569 DOI: 10.1021/acs.chemrev.2c00823] [Citation(s) in RCA: 182] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Wearable sensors hold great potential in empowering personalized health monitoring, predictive analytics, and timely intervention toward personalized healthcare. Advances in flexible electronics, materials science, and electrochemistry have spurred the development of wearable sweat sensors that enable the continuous and noninvasive screening of analytes indicative of health status. Existing major challenges in wearable sensors include: improving the sweat extraction and sweat sensing capabilities, improving the form factor of the wearable device for minimal discomfort and reliable measurements when worn, and understanding the clinical value of sweat analytes toward biomarker discovery. This review provides a comprehensive review of wearable sweat sensors and outlines state-of-the-art technologies and research that strive to bridge these gaps. The physiology of sweat, materials, biosensing mechanisms and advances, and approaches for sweat induction and sampling are introduced. Additionally, design considerations for the system-level development of wearable sweat sensing devices, spanning from strategies for prolonged sweat extraction to efficient powering of wearables, are discussed. Furthermore, the applications, data analytics, commercialization efforts, challenges, and prospects of wearable sweat sensors for precision medicine are discussed.
Collapse
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Soyoung Shin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Daniel Mukasa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
9
|
Kuswandi B, Irsyad LH, Puspaningtyas AR. Cloth-based microfluidic devices integrated onto the patch as wearable colorimetric sensors for simultaneous sweat analysis. BIOIMPACTS : BI 2023; 13:347-353. [PMID: 37645027 PMCID: PMC10460771 DOI: 10.34172/bi.2023.24195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 08/31/2023]
Abstract
Introduction In this work, a flexible, and wearable point-of-care (POC) device integrated on a pain relief patch as wearable colorimetric sensors have been developed for sweat analysis, such as lactic acid, sodium ions, and pH simultaneously. Herein, the patch has still functioned as pain relief, while it allows for sweat monitoring during exercise, and in daily activities. Methods It was constructed on cotton cloth using wax printing technology (batik stamp) as cloth-based microfluidic devices (CMDs). Here, it uses micro volumes of samples to perform the reaction in the sensing zones, where the sensitive reagents are immobilized so that it can collect and analyze the sweat (lactic acid, sodium ions, and pH) as the model for sweat analytes. The colorimetric analysis was conducted via a smartphone camera by using a free app (Color Grab) for a color image analysis that uses for quantitative analysis or naked eye for semi-qualitative analysis. Results The ∆RGB value of the CMDS shows the excellent linear correlation vs analytes concentration, where the coefficient of correlations was found for lactic acid (R2 = 0.994), sodium ion (R2 = 0.998), and pH (R2 = 0.994). The ∆RGB value shows the appropriate color value for the linear correlation of the analyte target concentrations in the sweat samples. Here, the limit of detection (LOD) was found at 45.73 µg/mL for lactic acid and 56.46 µg/mL for sodium ions. The reproducibility was found at 0.79% and 0.89%, for lactic acid and sodium ions respectively. Conclusion It was applied for sweat analysis during exercise, and the results show in agreement with the standard methods used in a clinical laboratory.
Collapse
Affiliation(s)
- Bambang Kuswandi
- Chemo and Biosensors Group, Faculty of Pharmacy, University of Jember, Jl. Kalimantan 37, Jember, East Java, 68121, Indonesia
| | - Lukman H Irsyad
- Chemo and Biosensors Group, Faculty of Pharmacy, University of Jember, Jl. Kalimantan 37, Jember, East Java, 68121, Indonesia
| | - Ayik R. Puspaningtyas
- Chemo and Biosensors Group, Faculty of Pharmacy, University of Jember, Jl. Kalimantan 37, Jember, East Java, 68121, Indonesia
| |
Collapse
|
10
|
Shen G, Moua KTY, Perkins K, Johnson D, Li A, Curtin P, Gao W, McCune JS. Precision sirolimus dosing in children: The potential for model-informed dosing and novel drug monitoring. Front Pharmacol 2023; 14:1126981. [PMID: 37021042 PMCID: PMC10069443 DOI: 10.3389/fphar.2023.1126981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/14/2023] [Indexed: 04/07/2023] Open
Abstract
The mTOR inhibitor sirolimus is prescribed to treat children with varying diseases, ranging from vascular anomalies to sporadic lymphangioleiomyomatosis to transplantation (solid organ or hematopoietic cell). Precision dosing of sirolimus using therapeutic drug monitoring (TDM) of sirolimus concentrations in whole blood drawn at the trough (before the next dose) time-point is the current standard of care. For sirolimus, trough concentrations are only modestly correlated with the area under the curve, with R 2 values ranging from 0.52 to 0.84. Thus, it should not be surprising, even with the use of sirolimus TDM, that patients treated with sirolimus have variable pharmacokinetics, toxicity, and effectiveness. Model-informed precision dosing (MIPD) will be beneficial and should be implemented. The data do not suggest dried blood spots point-of-care sampling of sirolimus concentrations for precision dosing of sirolimus. Future research on precision dosing of sirolimus should focus on pharmacogenomic and pharmacometabolomic tools to predict sirolimus pharmacokinetics and wearables for point-of-care quantitation and MIPD.
Collapse
Affiliation(s)
- Guofang Shen
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | - Kao Tang Ying Moua
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kathryn Perkins
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Deron Johnson
- Clinical Informatics, City of Hope Medical Center, Duarte, CA, United States
| | - Arthur Li
- Division of Biostatistics, City of Hope, Duarte, CA, United States
| | - Peter Curtin
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | - Wei Gao
- Division of Engineering and Applied Science, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jeannine S. McCune
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| |
Collapse
|
11
|
Drexelius A, Fehr D, Vescoli V, Heikenfeld J, Bonmarin M. A simple non-contact optical method to quantify in-vivo sweat gland activity and pulsation. IEEE Trans Biomed Eng 2022; 69:2638-2645. [PMID: 35171763 DOI: 10.1109/tbme.2022.3151938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Most methods for monitoring sweat gland activity use simple gravimetric methods, which merely measure the average sweat rate of multiple sweat glands over a region of skin. It would be extremely useful to have a method which could quantify individual gland activity in order to improve the treatment of conditions which use sweat tests as a diagnostic tool, such as hyperhidrosis, cystic fibrosis, and peripheral nerve degeneration. METHODS An optical method using an infrared camera to monitor the skin surface temperature was developed. A thermodynamics computer model was then implemented to utilize these skin temperature values along with other environmental parameters, such as ambient temperature and relative humidity, to calculate the sweat rates of individual glands using chemically stimulated and unstimulated sweating. The optical method was also used to monitor sweat pulsation patterns of individual sweat glands. RESULTS In this preliminary study, the feasibility of the optical approach was demonstrated by measuring sweat rates of individual glands at various bodily locations. Calculated values from this method agree with expected sweat rates given values found in literature. In addition, a lack of pulsatile sweat expulsion was observed during chemically stimulated sweating, and a potential explanation for this phenomenon was proposed. CONCLUSION A simple, non-contact optical method to quantify sweat gland activity in-vivo was presented. SIGNIFICANCE This method allows researchers and clinicians to investigate several sweat glands simultaneously, which has the potential to provide more accurate diagnoses and treatment as well as increase the potential utility for wearable sweat sensors.
Collapse
|
12
|
Bolat G, De la Paz E, Azeredo NF, Kartolo M, Kim J, de Loyola E Silva AN, Rueda R, Brown C, Angnes L, Wang J, Sempionatto JR. Wearable soft electrochemical microfluidic device integrated with iontophoresis for sweat biosensing. Anal Bioanal Chem 2022; 414:5411-5421. [PMID: 35015101 DOI: 10.1007/s00216-021-03865-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022]
Abstract
A soft and flexible wearable sweat epidermal microfluidic device capable of simultaneously stimulating, collecting, and electrochemically analyzing sweat is demonstrated. The device represents the first system integrating an iontophoretic pilocarpine delivery system around the inlet channels of epidermal polydimethylsiloxane (PDMS) microfluidic device for sweat collection and analysis. The freshly generated sweat is naturally pumped into the fluidic inlet without the need of exercising. Soft skin-mounted systems, incorporating non-invasive, on-demand sweat sampling/analysis interfaces for tracking target biomarkers, are in urgent need. Existing skin conformal microfluidic-based sensors for continuous monitoring of target sweat biomarkers rely on assays during intense physical exercising. This work demonstrates the first example of combining sweat stimulation, through transdermal pilocarpine delivery, with sample collection through a microfluidic channel for real-time electrochemical monitoring of sweat glucose, in a fully integrated soft and flexible multiplexed device which eliminates the need of exercising. The on-body operational performance and layout of the device were optimized considering the fluid dynamics and evaluated for detecting sweat glucose in several volunteers. Furthermore, the microfluidic monitoring device was integrated with a real-time wireless data transmission system using a flexible electronic board PCB conformal with the body. The new microfluidic platform paves the way to real-time non-invasive monitoring of biomarkers in stimulated sweat samples for diverse healthcare and wellness applications.
Collapse
Affiliation(s)
- Gulcin Bolat
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ernesto De la Paz
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nathalia F Azeredo
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Michael Kartolo
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jayoung Kim
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Ricardo Rueda
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Christopher Brown
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Joseph Wang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Juliane R Sempionatto
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Xu J, Fang Y, Chen J. Wearable Biosensors for Non-Invasive Sweat Diagnostics. BIOSENSORS 2021; 11:245. [PMID: 34436047 PMCID: PMC8391966 DOI: 10.3390/bios11080245] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in microfluidics, microelectronics, and electrochemical sensing methods have steered the way for the development of novel and potential wearable biosensors for healthcare monitoring. Wearable bioelectronics has received tremendous attention worldwide due to its great a potential for predictive medical modeling and allowing for personalized point-of-care-testing (POCT). They possess many appealing characteristics, for example, lightweight, flexibility, good stretchability, conformability, and low cost. These characteristics make wearable bioelectronics a promising platform for personalized devices. In this paper, we review recent progress in flexible and wearable sensors for non-invasive biomonitoring using sweat as the bio-fluid. Real-time and molecular-level monitoring of personal health states can be achieved with sweat-based or perspiration-based wearable biosensors. The suitability of sweat and its potential in healthcare monitoring, sweat extraction, and the challenges encountered in sweat-based analysis are summarized. The paper also discusses challenges that still hinder the full-fledged development of sweat-based wearables and presents the areas of future research.
Collapse
Affiliation(s)
- Jing Xu
- School of Electrical & Electronic Engineering, North China Electric Power University, Beijing 102206, China;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA;
| | - Yunsheng Fang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA;
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA;
| |
Collapse
|
14
|
Wang Y, Li Z, Hu Q. Emerging self-regulated micro/nano drug delivery devices: A step forward towards intelligent diagnosis and therapy. NANO TODAY 2021; 38:101127. [DOI: 10.1016/j.nantod.2021.101127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Saha T, Fang J, Mukherjee S, Dickey MD, Velev OD. Wearable Osmotic-Capillary Patch for Prolonged Sweat Harvesting and Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8071-8081. [PMID: 33587589 DOI: 10.1021/acsami.0c22730] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biomarkers in sweat are a largely untapped source of health information. Most of the currently available sweat harvesting and testing devices are incapable of operating under low-sweat rates such as those experienced by humans at rest. Here we analyze the in vitro and in vivo sampling of sweat through osmosis via the use of a hydrogel interfaced with the skin, without need for active perspiration. The hydrogel also interfaces with paper-based microfluidics to transport the fluid via capillary forces toward a testing zone and then evaporation pad. We show that the hydrogel solute content and area of the evaporation pad regulate the long-term extraction of sweat and its associated biomarkers. The results indicate that the platform can sample biomarkers from a model skin system continuously for approximately 12 h. On-skin testing of the platform on both resting and exercising human subjects confirms that it can sample sweat lactate directly from the surface of skin. The results highlight that lactate in sweat increases with exercise and as a direct result of muscle activity. Implementation of such new principles for sweat fluid harvesting and management via wearable patch devices can contribute toward the advancement of next generation wearables.
Collapse
Affiliation(s)
- Tamoghna Saha
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Jennifer Fang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Sneha Mukherjee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| |
Collapse
|
16
|
Min J, Sempionatto JR, Teymourian H, Wang J, Gao W. Wearable electrochemical biosensors in North America. Biosens Bioelectron 2021; 172:112750. [DOI: 10.1016/j.bios.2020.112750] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
|
17
|
Lin PH, Chang WL, Sheu SC, Li BR. A Noninvasive Wearable Device for Real-Time Monitoring of Secretion Sweat Pressure by Digital Display. iScience 2020; 23:101658. [PMID: 33117969 PMCID: PMC7582050 DOI: 10.1016/j.isci.2020.101658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023] Open
Abstract
Sweat-based wearable devices have attracted increasing attention by providing abundant physiological information and continuous measurement through noninvasive healthcare monitoring. Sweat pressure generated via sweat glands to the skin surface associated with osmotic effects may help to elucidate such parameters as physiological conditions and psychological factors. This study introduces a wearable device for measuring secretion sweat pressure through noninvasive, continuous monitoring. Secretion pressure is detected by a microfluidic chip that shows the resistance variance from a paired electrode pattern and transfers digital signals to a smartphone for real-time display. A human study demonstrates this measurement with different exercise activities, showing the pressure ranges from 1.3 to 2.5 kPa. This device is user-friendly and applicable to exercise training and personal health care. The convenience and easy-to-wear characteristics of this device may establish a foundation for future research investigating sweat physiology and personal health care.
Collapse
Affiliation(s)
- Pei-Heng Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Lun Chang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Sian-Chen Sheu
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
18
|
Jankovskaja S, Labrousse A, Prévaud L, Holmqvist B, Brinte A, Engblom J, Rezeli M, Marko-Varga G, Ruzgas T. Visualisation of H 2O 2 penetration through skin indicates importance to develop pathway-specific epidermal sensing. Mikrochim Acta 2020; 187:656. [PMID: 33188446 PMCID: PMC7666278 DOI: 10.1007/s00604-020-04633-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/01/2020] [Indexed: 01/07/2023]
Abstract
Elevated amounts of reactive oxygen species (ROS) including hydrogen peroxide (H2O2) are observed in the epidermis in different skin disorders. Thus, epidermal sensing of H2O2 should be useful to monitor the progression of skin pathologies. We have evaluated epidermal sensing of H2O2 in vitro, by visualising H2O2 permeation through the skin. Skin membranes were mounted in Franz cells, and a suspension of Prussian white microparticles was deposited on the stratum corneum face of the skin. Upon H2O2 permeation, Prussian white was oxidised to Prussian blue, resulting in a pattern of blue dots. Comparison of skin surface images with the dot patterns revealed that about 74% of the blue dots were associated with hair shafts. The degree of the Prussian white to Prussian blue conversion strongly correlated with the reciprocal resistance of the skin membranes. Together, the results demonstrate that hair follicles are the major pathways of H2O2 transdermal penetration. The study recommends that the development of H2O2 monitoring on skin should aim for pathway-specific epidermal sensing, allowing micrometre resolution to detect and quantify this ROS biomarker at hair follicles.Graphical abstract.
Collapse
Affiliation(s)
- Skaidre Jankovskaja
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden
- Biofilms - Research Center for Biointerfaces, Malmö University, 205 06, Malmö, Sweden
| | - Anaïs Labrousse
- Department of Biological Engineering, Clermont Auvergne University, 63100, Aubiere, France
| | - Léa Prévaud
- Faculty of Sciences, University of Montpellier, 34085, Montpellier, France
| | - Bo Holmqvist
- ImaGene-iT, Medicon Village, 223 81, Lund, Sweden
| | | | - Johan Engblom
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden
- Biofilms - Research Center for Biointerfaces, Malmö University, 205 06, Malmö, Sweden
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Tautgirdas Ruzgas
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden.
- Biofilms - Research Center for Biointerfaces, Malmö University, 205 06, Malmö, Sweden.
| |
Collapse
|
19
|
Moonen EJ, Haakma JR, Peri E, Pelssers E, Mischi M, den Toonder JM. Wearable sweat sensing for prolonged, semicontinuous, and nonobtrusive health monitoring. VIEW 2020. [DOI: 10.1002/viw.20200077] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Emma J.M. Moonen
- Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology Eindhoven The Netherlands
| | - Jelte R. Haakma
- Department of Electrical Engineering, Laboratory of Biomedical Diagnostics Eindhoven University of Technology Eindhoven The Netherlands
| | - Elisabetta Peri
- Department of Electrical Engineering, Laboratory of Biomedical Diagnostics Eindhoven University of Technology Eindhoven The Netherlands
| | - Eduard Pelssers
- Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands
- Philips Research Royal Philips High Tech Campus Eindhoven The Netherlands
| | - Massimo Mischi
- Department of Electrical Engineering, Laboratory of Biomedical Diagnostics Eindhoven University of Technology Eindhoven The Netherlands
| | - Jaap M.J. den Toonder
- Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
20
|
Teymourian H, Parrilla M, Sempionatto JR, Montiel NF, Barfidokht A, Van Echelpoel R, De Wael K, Wang J. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sens 2020; 5:2679-2700. [PMID: 32822166 DOI: 10.1021/acssensors.0c01318] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wearable electrochemical sensors capable of noninvasive monitoring of chemical markers represent a rapidly emerging digital-health technology. Recent advances toward wearable continuous glucose monitoring (CGM) systems have ignited tremendous interest in expanding such sensor technology to other important fields. This article reviews for the first time wearable electrochemical sensors for monitoring therapeutic drugs and drugs of abuse. This rapidly emerging class of drug-sensing wearable devices addresses the growing demand for personalized medicine, toward improved therapeutic outcomes while minimizing the side effects of drugs and the related medical expenses. Continuous, noninvasive monitoring of therapeutic drugs within bodily fluids empowers clinicians and patients to correlate the pharmacokinetic properties with optimal outcomes by realizing patient-specific dose regulation and tracking dynamic changes in pharmacokinetics behavior while assuring the medication adherence of patients. Furthermore, wearable electrochemical drug monitoring devices can also serve as powerful screening tools in the hands of law enforcement agents to combat drug trafficking and support on-site forensic investigations. The review covers various wearable form factors developed for noninvasive monitoring of therapeutic drugs in different body fluids and toward on-site screening of drugs of abuse. The future prospects of such wearable drug monitoring devices are presented with the ultimate goals of introducing accurate real-time drug monitoring protocols and autonomous closed-loop platforms toward precise dose regulation and optimal therapeutic outcomes. Finally, current unmet challenges and existing gaps are discussed for motivating future technological innovations regarding personalized therapy. The current pace of developments and the tremendous market opportunities for such wearable drug monitoring platforms are expected to drive intense future research and commercialization efforts.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Marc Parrilla
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Juliane R. Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Noelia Felipe Montiel
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Abbas Barfidokht
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Robin Van Echelpoel
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Karolien De Wael
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
21
|
Bariya M, Li L, Ghattamaneni R, Ahn CH, Nyein HYY, Tai LC, Javey A. Glove-based sensors for multimodal monitoring of natural sweat. SCIENCE ADVANCES 2020; 6:eabb8308. [PMID: 32923646 PMCID: PMC7455190 DOI: 10.1126/sciadv.abb8308] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/15/2020] [Indexed: 05/18/2023]
Abstract
Sweat sensors targeting exercise or chemically induced sweat have shown promise for noninvasive health monitoring. Natural thermoregulatory sweat is an attractive alternative as it can be accessed during routine and sedentary activity without impeding user lifestyles and potentially preserves correlations between sweat and blood biomarkers. We present simple glove-based sensors to accumulate natural sweat with minimal evaporation, capitalizing on high sweat gland densities to collect hundreds of microliters in just 30 min without active sweat stimulation. Sensing electrodes are patterned on nitrile gloves and finger cots for in situ detection of diverse biomarkers, including electrolytes and xenobiotics, and multiple gloves or cots are worn in sequence to track overarching analyte dynamics. Direct integration of sensors into gloves represents a simple and low-overhead scheme for natural sweat analysis, enabling sweat-based physiological monitoring to become practical and routine without requiring highly complex or miniaturized components for analyte collection and signal transduction.
Collapse
Affiliation(s)
- Mallika Bariya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lu Li
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rahul Ghattamaneni
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Christine Heera Ahn
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Hnin Yin Yin Nyein
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Li-Chia Tai
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ali Javey
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Padash M, Enz C, Carrara S. Microfluidics by Additive Manufacturing for Wearable Biosensors: A Review. SENSORS 2020; 20:s20154236. [PMID: 32751404 PMCID: PMC7435802 DOI: 10.3390/s20154236] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/04/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022]
Abstract
Wearable devices are nowadays at the edge-front in both academic research as well as in industry, and several wearable devices have been already introduced in the market. One of the most recent advancements in wearable technologies for biosensing is in the area of the remote monitoring of human health by detection on-the-skin. However, almost all the wearable devices present in the market nowadays are still providing information not related to human ‘metabolites and/or disease’ biomarkers, excluding the well-known case of the continuous monitoring of glucose in diabetic patients. Moreover, even in this last case, the glycaemic level is acquired under-the-skin and not on-the-skin. On the other hand, it has been proven that human sweat is very rich in molecules and other biomarkers (e.g., ions), which makes sweat a quite interesting human liquid with regards to gathering medical information at the molecular level in a totally non-invasive manner. Of course, a proper collection of sweat as it is emerging on top of the skin is required to correctly convey such liquid to the molecular biosensors on board of the wearable system. Microfluidic systems have efficiently come to the aid of wearable sensors, in this case. These devices were originally built using methods such as photolithographic and chemical etching techniques with rigid materials. Nowadays, fabrication methods of microfluidic systems are moving towards three-dimensional (3D) printing methods. These methods overcome some of the limitations of the previous method, including expensiveness and non-flexibility. The 3D printing methods have a high speed and according to the application, can control the textures and mechanical properties of an object by using multiple materials in a cheaper way. Therefore, the aim of this paper is to review all the most recent advancements in the methods for 3D printing to fabricate wearable fluidics and provide a critical frame for the future developments of a wearable device for the remote monitoring of the human metabolism directly on-the-skin.
Collapse
Affiliation(s)
- Mahshid Padash
- Laboratory of Integrated Circuits, École Polytechnique Fédérale de Lausanne, CH-2002 Neuchâtel, Switzerland or (M.P.); (C.E.)
- Chemistry Department, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran
| | - Christian Enz
- Laboratory of Integrated Circuits, École Polytechnique Fédérale de Lausanne, CH-2002 Neuchâtel, Switzerland or (M.P.); (C.E.)
| | - Sandro Carrara
- Laboratory of Integrated Circuits, École Polytechnique Fédérale de Lausanne, CH-2002 Neuchâtel, Switzerland or (M.P.); (C.E.)
- Correspondence:
| |
Collapse
|
23
|
Rodrigues D, Barbosa AI, Rebelo R, Kwon IK, Reis RL, Correlo VM. Skin-Integrated Wearable Systems and Implantable Biosensors: A Comprehensive Review. BIOSENSORS-BASEL 2020; 10:bios10070079. [PMID: 32708103 PMCID: PMC7400150 DOI: 10.3390/bios10070079] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Biosensors devices have attracted the attention of many researchers across the world. They have the capability to solve a large number of analytical problems and challenges. They are future ubiquitous devices for disease diagnosis, monitoring, treatment and health management. This review presents an overview of the biosensors field, highlighting the current research and development of bio-integrated and implanted biosensors. These devices are micro- and nano-fabricated, according to numerous techniques that are adapted in order to offer a suitable mechanical match of the biosensor to the surrounding tissue, and therefore decrease the body’s biological response. For this, most of the skin-integrated and implanted biosensors use a polymer layer as a versatile and flexible structural support, combined with a functional/active material, to generate, transmit and process the obtained signal. A few challenging issues of implantable biosensor devices, as well as strategies to overcome them, are also discussed in this review, including biological response, power supply, and data communication.
Collapse
Affiliation(s)
- Daniela Rodrigues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
| | - Ana I. Barbosa
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Rita Rebelo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Il Keun Kwon
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Vitor M. Correlo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
24
|
Dually functional hollow ceria nanoparticle platform for intraocular drug delivery: A push beyond the limits of static and dynamic ocular barriers toward glaucoma therapy. Biomaterials 2020; 243:119961. [DOI: 10.1016/j.biomaterials.2020.119961] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/15/2020] [Accepted: 03/06/2020] [Indexed: 12/30/2022]
|
25
|
Wearable capillary microfluidics for continuous perspiration sensing. Talanta 2020; 212:120786. [DOI: 10.1016/j.talanta.2020.120786] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/03/2020] [Accepted: 01/25/2020] [Indexed: 12/24/2022]
|
26
|
Shay T, Saha T, Dickey MD, Velev OD. Principles of long-term fluids handling in paper-based wearables with capillary-evaporative transport. BIOMICROFLUIDICS 2020; 14:034112. [PMID: 32566070 PMCID: PMC7286699 DOI: 10.1063/5.0010417] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/11/2020] [Indexed: 05/24/2023]
Abstract
We construct and investigate paper-based microfluidic devices, which model long-term fluid harvesting, transport, sensing, and analysis in new wearables for sweat analysis. Such devices can continuously wick fluid mimicking sweat and dispose of it on evaporation pads. We characterize and analyze how the action of capillarity and evaporation can cooperatively be used to transport and process sweat mimics containing dissolved salts and model analytes. The results point out that non-invasive osmotic extraction combined with paper microfluidics and evaporative disposal can enable sweat collection and monitoring for durations longer than 10 days. We model the fluid flow in the new capillary-evaporative devices and identify the parameters enabling their long-term operation. We show that the transport rates are sufficiently large to handle natural sweat rates, while we envision that such handling can be interfaced with osmotic harvesting of sweat, a concept that we demonstrated recently. Finally, we illustrate that the salt film deposited at the evaporation pad would eventually lead to cessation of the process but at the same time will preserve a record of analytes that may be used for long-term biomarker monitoring in sweat. These principles can be implemented in future platforms for wearable skin-interfacing assays or electronic biomarker monitors.
Collapse
Affiliation(s)
- Timothy Shay
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | - Tamoghna Saha
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | - Michael D. Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | - Orlin D. Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| |
Collapse
|
27
|
Park HJ, Jeong JM, Yoon JH, Son SG, Kim YK, Kim DH, Lee KG, Choi BG. Preparation of ultrathin defect-free graphene sheets from graphite via fluidic delamination for solid-contact ion-to-electron transducers in potentiometric sensors. J Colloid Interface Sci 2020; 560:817-824. [DOI: 10.1016/j.jcis.2019.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 02/01/2023]
|
28
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
29
|
Khattab TA, Dacrory S, Abou-Yousef H, Kamel S. Smart microfibrillated cellulose as swab sponge-like aerogel for real-time colorimetric naked-eye sweat monitoring. Talanta 2019; 205:120166. [DOI: 10.1016/j.talanta.2019.120166] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/25/2023]
|
30
|
Ferreira PC, Ataíde VN, Silva Chagas CL, Angnes L, Tomazelli Coltro WK, Longo Cesar Paixão TR, Reis de Araujo W. Wearable electrochemical sensors for forensic and clinical applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115622] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Legner C, Kalwa U, Patel V, Chesmore A, Pandey S. Sweat sensing in the smart wearables era: Towards integrative, multifunctional and body-compliant perspiration analysis. SENSORS AND ACTUATORS A: PHYSICAL 2019; 296:200-221. [DOI: 10.1016/j.sna.2019.07.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Mayer M, Baeumner AJ. A Megatrend Challenging Analytical Chemistry: Biosensor and Chemosensor Concepts Ready for the Internet of Things. Chem Rev 2019; 119:7996-8027. [DOI: 10.1021/acs.chemrev.8b00719] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael Mayer
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Antje J. Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
33
|
Zeglio E, Rutz AL, Winkler TE, Malliaras GG, Herland A. Conjugated Polymers for Assessing and Controlling Biological Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806712. [PMID: 30861237 DOI: 10.1002/adma.201806712] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/15/2019] [Indexed: 05/20/2023]
Abstract
The field of organic bioelectronics is advancing rapidly in the development of materials and devices to precisely monitor and control biological signals. Electronics and biology can interact on multiple levels: organs, complex tissues, cells, cell membranes, proteins, and even small molecules. Compared to traditional electronic materials such as metals and inorganic semiconductors, conjugated polymers (CPs) have several key advantages for biological interactions: tunable physiochemical properties, adjustable form factors, and mixed conductivity (ionic and electronic). Herein, the use of CPs in five biologically oriented research topics, electrophysiology, tissue engineering, drug release, biosensing, and molecular bioelectronics, is discussed. In electrophysiology, implantable devices with CP coating or CP-only electrodes are showing improvements in signal performance and tissue interfaces. CP-based scaffolds supply highly favorable static or even dynamic interfaces for tissue engineering. CPs also enable delivery of drugs through a variety of mechanisms and form factors. For biosensing, CPs offer new possibilities to incorporate biological sensing elements in a conducting matrix. Molecular bioelectronics is today used to incorporate (opto)electronic functions in living tissue. Under each topic, the limits of the utility of CPs are discussed and, overall, the major challenges toward implementation of CPs and their devices to real-world applications are highlighted.
Collapse
Affiliation(s)
- Erica Zeglio
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Alexandra L Rutz
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge, CB3 0FA, UK
| | - Thomas E Winkler
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge, CB3 0FA, UK
| | - Anna Herland
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| |
Collapse
|
34
|
Sweat-Based in Vitro Diagnostics (IVD): From Sample Collection to Point-of-Care Testing (POCT). JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00097-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Yang Y, Gao W. Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev 2019; 48:1465-1491. [PMID: 29611861 DOI: 10.1039/c7cs00730b] [Citation(s) in RCA: 536] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wearable biosensors have received tremendous attention over the past decade owing to their great potential in predictive analytics and treatment toward personalized medicine. Flexible electronics could serve as an ideal platform for personalized wearable devices because of their unique properties such as light weight, low cost, high flexibility and great conformability. Unlike most reported flexible sensors that mainly track physical activities and vital signs, the new generation of wearable and flexible chemical sensors enables real-time, continuous and fast detection of accessible biomarkers from the human body, and allows for the collection of large-scale information about the individual's dynamic health status at the molecular level. In this article, we review and highlight recent advances in wearable and flexible sensors toward continuous and non-invasive molecular analysis in sweat, tears, saliva, interstitial fluid, blood, wound exudate as well as exhaled breath. The flexible platforms, sensing mechanisms, and device and system configurations employed for continuous monitoring are summarized. We also discuss the key challenges and opportunities of the wearable and flexible chemical sensors that lie ahead.
Collapse
Affiliation(s)
- Yiran Yang
- Division of Engineering and Applied Science, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| | | |
Collapse
|
36
|
Accessing analytes in biofluids for peripheral biochemical monitoring. Nat Biotechnol 2019; 37:407-419. [DOI: 10.1038/s41587-019-0040-3] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023]
|
37
|
Cuartero M, Parrilla M, Crespo GA. Wearable Potentiometric Sensors for Medical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E363. [PMID: 30658434 PMCID: PMC6359219 DOI: 10.3390/s19020363] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 01/26/2023]
Abstract
Wearable potentiometric sensors have received considerable attention owing to their great potential in a wide range of physiological and clinical applications, particularly involving ion detection in sweat. Despite the significant progress in the manner that potentiometric sensors are integrated in wearable devices, in terms of materials and fabrication approaches, there is yet plenty of room for improvement in the strategy adopted for the sample collection. Essentially, this involves a fluidic sampling cell for continuous sweat analysis during sport performance or sweat accumulation via iontophoresis induction for one-spot measurements in medical settings. Even though the majority of the reported papers from the last five years describe on-body tests of wearable potentiometric sensors while the individual is practicing a physical activity, the medical utilization of these devices has been demonstrated on very few occasions and only in the context of cystic fibrosis diagnosis. In this sense, it may be important to explore the implementation of wearable potentiometric sensors into the analysis of other biofluids, such as saliva, tears and urine, as herein discussed. While the fabrication and uses of wearable potentiometric sensors vary widely, there are many common issues related to the analytical characterization of such devices that must be consciously addressed, especially in terms of sensor calibration and the validation of on-body measurements. After the assessment of key wearable potentiometric sensors reported over the last five years, with particular attention paid to those for medical applications, the present review offers tentative guidance regarding the characterization of analytical performance as well as analytical and clinical validations, thereby aiming at generating debate in the scientific community to allow for the establishment of well-conceived protocols.
Collapse
Affiliation(s)
- María Cuartero
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-10044 Stockholm, Sweden.
| | - Marc Parrilla
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-10044 Stockholm, Sweden.
| | - Gaston A Crespo
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-10044 Stockholm, Sweden.
| |
Collapse
|
38
|
Ortega L, Llorella A, Esquivel JP, Sabaté N. Self-powered smart patch for sweat conductivity monitoring. MICROSYSTEMS & NANOENGINEERING 2019; 5:3. [PMID: 31057930 PMCID: PMC6348283 DOI: 10.1038/s41378-018-0043-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/05/2018] [Accepted: 11/13/2018] [Indexed: 05/04/2023]
Abstract
A self-powered skin patch for the measurement of sweat conductivity is presented. The key component of the patch consists of a paper battery that is activated upon absorption of sweat. This body fluid acts as the battery electrolyte, the conductivity of which has a direct impact on the battery-generated output power and voltage. This particular behaviour enables the operation of a very simple and robust conductivity sensor in direct current mode without needing an external power source. The device presented in this paper takes advantage of this new measurement method to develop a sweat patch for screening cystic fibrosis that operates with an extremely simple electronic circuit that minimizes its cost and environmental impact. The patch provides an unambiguous digital result that can be read in an electrochromic display and yields 95% sensitivity and 100% specificity when tested with artificial eccrine perspiration samples.
Collapse
Affiliation(s)
- Laura Ortega
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/del Til·lers. Campus Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona Spain
| | - Anna Llorella
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/del Til·lers. Campus Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona Spain
| | - Juan Pablo Esquivel
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/del Til·lers. Campus Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona Spain
| | - Neus Sabaté
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/del Til·lers. Campus Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
39
|
|
40
|
La Count TD, Jajack A, Heikenfeld J, Kasting GB. Modeling Glucose Transport From Systemic Circulation to Sweat. J Pharm Sci 2019; 108:364-371. [DOI: 10.1016/j.xphs.2018.09.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/30/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
|
41
|
Garcia-Cordero E, Bellando F, Zhang J, Wildhaber F, Longo J, Guérin H, Ionescu AM. Three-Dimensional Integrated Ultra-Low-Volume Passive Microfluidics with Ion-Sensitive Field-Effect Transistors for Multiparameter Wearable Sweat Analyzers. ACS NANO 2018; 12:12646-12656. [PMID: 30543395 DOI: 10.1021/acsnano.8b07413] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wearable systems could offer noninvasive and real-time solutions for monitoring of biomarkers in human sweat as an alternative to blood testing. Recent studies have demonstrated that the concentration of certain biomarkers in sweat can be directly correlated to their concentrations in blood, making sweat a trusted biofluid candidate for noninvasive diagnostics. We introduce a fully on-chip integrated wearable sweat sensing system to track biochemical information at the surface of the skin in real time. This system heterogeneously integrates, on a single silicon chip, state-of-the-art ultrathin body (UTB) fully depleted silicon-on-insulator (FD-SOI) ISFET sensors with a biocompatible microfluidic interface, to deliver a "lab-on-skin" sensing platform. A full process for the fabrication of this system is proposed in this work and is demonstrated by standard semiconductor fabrication procedures. The system is capable of collecting small volumes of sweat from the skin of a human and posteriorly passively driving the biofluid, by capillary action, to a set of functionalized ISFETs for analysis of pH level and Na+ and K+ concentrations. Drop-casted ion-sensing membranes on different sets of sensors on the same substrate enable multiparameter analysis on the same chip, with small and controlled cross-sensitivities, whereas a miniaturized quasireference electrodes set a stable analyte potential, avoiding the use of a cumbersome external reference electrode. The progress of lab-on-skin technology reported here can lead to autonomous wearable systems enabling real-time continuous monitoring of sweat composition, with applications ranging from medicine to lifestyle behavioral engineering and sports.
Collapse
Affiliation(s)
- Erick Garcia-Cordero
- Nanoelectronic Devices Laboratory , École Polytechnique Fédérale de Lausanne , Lausanne 1015 , Switzerland
| | - Francesco Bellando
- Nanoelectronic Devices Laboratory , École Polytechnique Fédérale de Lausanne , Lausanne 1015 , Switzerland
| | - Junrui Zhang
- Nanoelectronic Devices Laboratory , École Polytechnique Fédérale de Lausanne , Lausanne 1015 , Switzerland
| | | | - Johan Longo
- Xsensio SA , Innovation Park , Lausanne 1015 , Switzerland
| | - Hoël Guérin
- Xsensio SA , Innovation Park , Lausanne 1015 , Switzerland
| | - Adrian M Ionescu
- Nanoelectronic Devices Laboratory , École Polytechnique Fédérale de Lausanne , Lausanne 1015 , Switzerland
- Xsensio SA , Innovation Park , Lausanne 1015 , Switzerland
| |
Collapse
|
42
|
Christodouleas DC, Kaur B, Chorti P. From Point-of-Care Testing to eHealth Diagnostic Devices (eDiagnostics). ACS CENTRAL SCIENCE 2018; 4:1600-1616. [PMID: 30648144 PMCID: PMC6311959 DOI: 10.1021/acscentsci.8b00625] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 05/09/2023]
Abstract
Point-of-care devices were originally designed to allow medical testing at or near the point of care by health-care professionals. Some point-of-care devices allow medical self-testing at home but cannot fully cover the growing diagnostic needs of eHealth systems that are under development in many countries. A number of easy-to-use, network-connected diagnostic devices for self-testing are needed to allow remote monitoring of patients' health. This Outlook highlights the essential characteristics of diagnostic devices for eHealth settings and indicates point-of-care technologies that may lead to the development of new devices. It also describes the most representative examples of simple-to-use, point-of-care devices that have been used for analysis of untreated biological samples.
Collapse
Affiliation(s)
| | - Balwinder Kaur
- Department of Chemistry, University
of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Parthena Chorti
- Department of Chemistry, University
of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
43
|
Hauke A, Simmers P, Ojha YR, Cameron BD, Ballweg R, Zhang T, Twine N, Brothers M, Gomez E, Heikenfeld J. Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation. LAB ON A CHIP 2018; 18:3750-3759. [PMID: 30443648 DOI: 10.1039/c8lc01082j] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A wearable sweat biosensing device is demonstrated that stimulates sweat and continuously measures sweat ethanol concentrations at 25 s intervals, which is then correlated with blood ethanol during a >3 hour testing phase. The testing involves a baseline condition (no ethanol) followed by a rapid blood and sweat rise of ethanol (oral bolus), and finally, the physiological response of the body as ethanol concentrations return to baseline (metabolized). Data sets include multiple in vivo validation trials and careful in vitro characterization of the electrochemical enzymatic ethanol sensor against likely interferents. Furthermore, the data is analyzed through known pharmacokinetic models with a strong linear Pearson correlation of 0.9474-0.9996. The continuous nature of the data also allows analysis of blood-to-sweat lag times that range between 2.3 to 11.41 min for ethanol signal onset and 19.32 to 34.44 min for the overall pharmacokinetic curve lag time. This work represents a significant advance that builds upon a continuum of previous work. However, unresolved questions include operation for 24 hours or greater and with analytes beyond those commonly explored for sweat (electrolytes and metabolites). Regardless, this work validates that sweat biosensing can provide continuous and blood-correlated data in an integrated wearable device.
Collapse
Affiliation(s)
- A Hauke
- Novel Devices Laboratory, College of Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Autonomic Nervous System Dysregulation in Monozygous Twins With Nephropathic Cystinosis. Kidney Int Rep 2018; 3:1489-1496. [PMID: 30450477 PMCID: PMC6224624 DOI: 10.1016/j.ekir.2018.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Twine NB, Norton RM, Brothers MC, Hauke A, Gomez EF, Heikenfeld J. Open nanofluidic films with rapid transport and no analyte exchange for ultra-low sample volumes. LAB ON A CHIP 2018; 18:2816-2825. [PMID: 30027962 DOI: 10.1039/c8lc00186c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Moving to ultra-low (<100 nL) sample volumes presents numerous challenges, many of which can be resolved by implementation of open nanofluidic films. These nanofluidic films are fabricated using a hexagonal network of gold-coated open microchannels which capture all of the following innovative advantages: (1) sample volumes of <100 nL cm-2; (2) zero analyte exchange and loss with the film materials; (3) rapid and omni-directional wicking transport of >500 nL min-1 per square of film; (4) ultra-simple roll-to-roll fabrication; (5) stable and bio-compatible super-hydrophilicity for weeks in air by peptide surface modification. Validation includes both detailed in vitro characterization and in vivo validation with sweat transport from the human skin. Sampling times (skin-to-sensor) of <3 min were achieved, setting new benchmarks for the field of wearable sweat sensing. This work addresses significant challenges for sweat biosensing, or for any other nano-liter regime (<100 nL) fluid sampling and sensing application.
Collapse
Affiliation(s)
- N B Twine
- Department of Electrical Engineering & Computer Science, University of Cincinnati, Cincinnati, OH 45221, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Alizadeh A, Burns A, Lenigk R, Gettings R, Ashe J, Porter A, McCaul M, Barrett R, Diamond D, White P, Skeath P, Tomczak M. A wearable patch for continuous monitoring of sweat electrolytes during exertion. LAB ON A CHIP 2018; 18:2632-2641. [PMID: 30063233 DOI: 10.1039/c8lc00510a] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Implementation of wearable sweat sensors for continuous measurement of fluid based biomarkers (including electrolytes, metabolites and proteins) is an attractive alternative to common, yet intrusive and invasive, practices such as urine or blood analysis. Recent years have witnessed several key demonstrations of sweat based electrochemical sensing in wearable formats, however, there are still significant challenges and opportunities in this space for clinical acceptance, and thus mass implementation of these devices. For instance, there are inherent challenges in establishing direct correlations between sweat-based and gold-standard plasma-based biomarker concentrations for clinical decision-making. In addition, the wearable sweat monitoring devices themselves may exacerbate these challenges, as they can significantly alter sweat physiology (example, sweat rate and composition). Reported here is the demonstration of a fully integrated, wireless, wearable and flexible sweat sensing device for non-obtrusive and continuous monitoring of electrolytes during moderate to intense exertion as a metric for hydration status. The focus of this work is twofold: 1- design of a conformable fluidics systems to suit conditions of operation for sweat collection (to minimize sensor lag) with rapid removal of sweat from the sensing site (to minimize effects on sweat physiology). 2- integration of Na+ and K+ ion-selective electrodes (ISEs) with flexible microfluidics and low noise small footprint electronics components to enable wireless, wearable sweat monitoring. While this device is specific to electrolyte analysis during intense perspiration, the lessons in microfluidics and overall system design are likely applicable across a broad range of analytes.
Collapse
|
47
|
Bariya M, Shahpar Z, Park H, Sun J, Jung Y, Gao W, Nyein HYY, Liaw TS, Tai LC, Ngo QP, Chao M, Zhao Y, Hettick M, Cho G, Javey A. Roll-to-Roll Gravure Printed Electrochemical Sensors for Wearable and Medical Devices. ACS NANO 2018; 12:6978-6987. [PMID: 29924589 DOI: 10.1021/acsnano.8b02505] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
As recent developments in noninvasive biosensors spearhead the thrust toward personalized health and fitness monitoring, there is a need for high throughput, cost-effective fabrication of flexible sensing components. Toward this goal, we present roll-to-roll (R2R) gravure printed electrodes that are robust under a range of electrochemical sensing applications. We use inks and electrode morphologies designed for electrochemical and mechanical stability, achieving devices with uniform redox kinetics printed on 150 m flexible substrate rolls. We show that these electrodes can be functionalized into consistently high performing sensors for detecting ions, metabolites, heavy metals, and other small molecules in noninvasively accessed biofluids, including sensors for real-time, in situ perspiration monitoring during exercise. This development of robust and versatile R2R gravure printed electrodes represents a key translational step in enabling large-scale, low-cost fabrication of disposable wearable sensors for personalized health monitoring applications.
Collapse
Affiliation(s)
- Mallika Bariya
- Department of Electrical Engineering and Computer Sciences , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Ziba Shahpar
- Department of Electrical Engineering and Computer Sciences , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Hyejin Park
- Department of Printed Electronics Engineering , Sunchon National University , Sunchon , Jeonnam 540-742 , South Korea
| | - Junfeng Sun
- Department of Printed Electronics Engineering , Sunchon National University , Sunchon , Jeonnam 540-742 , South Korea
| | - Younsu Jung
- Department of Printed Electronics Engineering , Sunchon National University , Sunchon , Jeonnam 540-742 , South Korea
| | - Wei Gao
- Department of Electrical Engineering and Computer Sciences , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Hnin Yin Yin Nyein
- Department of Electrical Engineering and Computer Sciences , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Tiffany Sun Liaw
- Department of Electrical Engineering and Computer Sciences , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Li-Chia Tai
- Department of Electrical Engineering and Computer Sciences , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Quynh P Ngo
- Department of Electrical Engineering and Computer Sciences , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Minghan Chao
- Department of Electrical Engineering and Computer Sciences , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Yingbo Zhao
- Department of Electrical Engineering and Computer Sciences , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Mark Hettick
- Department of Electrical Engineering and Computer Sciences , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Gyoujin Cho
- Department of Printed Electronics Engineering , Sunchon National University , Sunchon , Jeonnam 540-742 , South Korea
| | - Ali Javey
- Department of Electrical Engineering and Computer Sciences , University of California , Berkeley , California 94720 , United States
- Berkeley Sensor and Actuator Center , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
48
|
Simmers P, Yuan Y, Sonner Z, Heikenfeld J. Membrane isolation of repeated-use sweat stimulants for mitigating both direct dermal contact and sweat dilution. BIOMICROFLUIDICS 2018; 12:034101. [PMID: 30867858 PMCID: PMC6404941 DOI: 10.1063/1.5023396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/04/2018] [Indexed: 05/27/2023]
Abstract
With the device integration of sweat stimulation, sweat becomes a stronger candidate for non-invasive continuous biochemical sensing. However, sweat stimulants are cholinergenic agents and non-selective to just the sweat glands, and so, direct placement of sweat stimulants poses additional challenges in the possibility for uncontrollable transport of the stimulant into the body and challenges in contamination of the sweat sample. Reported here is membrane isolation of repeated-use sweat stimulants for mitigating direct dermal contact, dilution of the sweat stimulant, and contamination of the sweat sample. The membrane dramatically reduces passive diffusion of the sweat stimulant carbachol by roughly two orders of magnitude, while still allowing repeated sweat stimulation by iontophoretic delivery of the carbachol through the membrane and into the skin. Both in-vivo and in-vitro validation reveal feasibility for reliable integration of sweat stimulants within a wearable device for use periods of 24 h or more. In addition, advanced topics and confounding issues such as stimulant gel design, osmotic pressure, and ionic impurities are speculatively and theoretically discussed.
Collapse
Affiliation(s)
- P. Simmers
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | | | - Z. Sonner
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - J. Heikenfeld
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221, USA
| |
Collapse
|
49
|
Choi J, Ghaffari R, Baker LB, Rogers JA. Skin-interfaced systems for sweat collection and analytics. SCIENCE ADVANCES 2018; 4:eaar3921. [PMID: 29487915 PMCID: PMC5817925 DOI: 10.1126/sciadv.aar3921] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/16/2018] [Indexed: 05/09/2023]
Abstract
Recent interdisciplinary advances in materials, mechanics, and microsystem designs for biocompatible electronics, soft microfluidics, and electrochemical biosensors establish the foundations for emerging classes of thin, skin-interfaced platforms capable of capturing, storing, and performing quantitative, spatiotemporal measurements of sweat chemistry, instantaneous local sweat rate, and total sweat loss. This review summarizes scientific and technical progress in this area and highlights the implications in real time and ambulatory modes of deployment during physical activities across a broad range of contexts in clinical health, physiology research, fitness/wellness, and athletic performance.
Collapse
Affiliation(s)
- Jungil Choi
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Roozbeh Ghaffari
- Epicore Biosystems Inc., Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Lindsay B. Baker
- Gatorade Sports Science Institute, 617 W. Main St., Barrington, IL 60010, USA
| | - John A. Rogers
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Biomedical Engineering, Mechanical Engineering, and Electrical Engineering and Computer Science, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Feinberg School of Medicine, and Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
50
|
Heikenfeld J, Jajack A, Rogers J, Gutruf P, Tian L, Pan T, Li R, Khine M, Kim J, Wang J, Kim J. Wearable sensors: modalities, challenges, and prospects. LAB ON A CHIP 2018; 18:217-248. [PMID: 29182185 PMCID: PMC5771841 DOI: 10.1039/c7lc00914c] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Wearable sensors have recently seen a large increase in both research and commercialization. However, success in wearable sensors has been a mix of both progress and setbacks. Most of commercial progress has been in smart adaptation of existing mechanical, electrical and optical methods of measuring the body. This adaptation has involved innovations in how to miniaturize sensing technologies, how to make them conformal and flexible, and in the development of companion software that increases the value of the measured data. However, chemical sensing modalities have experienced greater challenges in commercial adoption, especially for non-invasive chemical sensors. There have also been significant challenges in making significant fundamental improvements to existing mechanical, electrical, and optical sensing modalities, especially in improving their specificity of detection. Many of these challenges can be understood by appreciating the body's surface (skin) as more of an information barrier than as an information source. With a deeper understanding of the fundamental challenges faced for wearable sensors and of the state-of-the-art for wearable sensor technology, the roadmap becomes clearer for creating the next generation of innovations and breakthroughs.
Collapse
Affiliation(s)
- J Heikenfeld
- Department of Electrical Engineering & Computer Science, Novel Devices Laboratory, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|