1
|
Atta AM, Rihan N, Abdelwaly AM, Nafie MS, Elgawish MS, Moustafa SM, Helal MA, Darwish KM. Development, biological evaluation, and molecular modelling of novel isocytosine and guanidine derivatives as BACE1 inhibitors using a fragment growing strategy. RSC Med Chem 2025:d4md00698d. [PMID: 40093519 PMCID: PMC11904611 DOI: 10.1039/d4md00698d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition characterized by significant synaptic loss and neuronal death in brain regions critical for cognitive functions. The disease is characterized by the formation of amyloid plaques, which are extracellular constructs consisting mainly of aggregated Aβ42. The latter is a peptide formed by the proteolytic cleavage of β-amyloid precursor protein (APP) by two enzymes, β- and γ-secretase. Therefore, inhibition of the aspartic protease β-secretase (BACE1) is considered a promising therapeutic approach for the treatment and prevention of Alzheimer's disease. Unfortunately, a limited number of β-secretase inhibitors have reached human trials and eventually failed due to inconclusive therapeutic and/or safety profiles. In this study, we developed drug-like molecules with a β-secretase inhibitory activity using a fragment growing strategy on isocytosine and acyl guanidine warheads. Our approach is based on optimizing the hydrophobic part of the molecules to obtain a conformationally restrained scaffold complementary to the hydrophobic pockets within the enzyme active site. We developed 32 compounds with promising in vitro inhibitory activity against BACE1 down to sub-micromolar IC50. Docking simulation studies were performed to understand the mode of binding of the prepared compounds. We demonstrated that compounds with superior activities, such as 16b and 16g, are able to provide the best balance between the steric shape and position of the polar substituent for achieving preferential anchoring into the S1, S3, S1', and S2' sub-pockets. Further, in vivo characterization of selected drug-like candidates of the benzimidazole series AMK-IV, namely 16a and 16k, demonstrated their ability to reduce oxidation stress and their safety within brain and liver tissues.
Collapse
Affiliation(s)
- Asmaa M Atta
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Cairo (BUC) Badr City Cairo (P.O. 11829) Egypt
| | - Nouran Rihan
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology Giza (P.O. 12587) Egypt
| | - Ahmad M Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology Giza (P.O. 12587) Egypt
- Institute for Computational Molecular Science, and, Department of Chemistry, Temple University Philadelphia Pennsylvania (P.O. 19122) USA
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah Sharjah (P.O. 27272) United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University Ismailia (P.O. 41522) Egypt
| | - Mohamed S Elgawish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia (P.O. 41522) Egypt
- Center for Molecular Spectroscopy and Dynamics, Institute of Basic Science, Korea University Seoul (P.O. 02841) Republic of South Korea
| | - Samia M Moustafa
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia (P.O. 41522) Egypt
| | - Mohamed A Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology Giza (P.O. 12587) Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia (P.O. 41522) Egypt
| | - Khaled M Darwish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia (P.O. 41522) Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala (P.O. 43713) Egypt
| |
Collapse
|
2
|
Coimbra JRM, Resende R, Custódio JBA, Salvador JAR, Santos AE. BACE1 Inhibitors for Alzheimer's Disease: Current Challenges and Future Perspectives. J Alzheimers Dis 2024; 101:S53-S78. [PMID: 38943390 DOI: 10.3233/jad-240146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Disease-modifying therapies (DMT) for Alzheimer's disease (AD) are highly longed-for. In this quest, anti-amyloid therapies take center stage supported by genetic facts that highlight an imbalance between production and clearance of amyloid-β peptide (Aβ) in AD patients. Indeed, evidence from basic research, human genetic and biomarker studies, suggests the accumulation of Aβ as a driver of AD pathogenesis and progression. The aspartic protease β-site AβPP cleaving enzyme (BACE1) is the initiator for Aβ production. Underpinning a critical role for BACE1 in AD pathophysiology are the elevated BACE1 concentration and activity observed in the brain and body fluids of AD patients. Therefore, BACE1 is a prime drug target for reducing Aβ levels in early AD. Small-molecule BACE1 inhibitors have been extensively developed for the last 20 years. However, clinical trials with these molecules have been discontinued for futility or safety reasons. Most of the observed adverse side effects were due to other aspartic proteases cross-inhibition, including the homologue BACE2, and to mechanism-based toxicity since BACE1 has substrates with important roles for synaptic plasticity and synaptic homeostasis besides amyloid-β protein precursor (AβPP). Despite these setbacks, BACE1 persists as a well-validated therapeutic target for which a specific inhibitor with high substrate selectivity may yet to be found. In this review we provide an overview of the evolution in BACE1 inhibitors design pinpointing the molecules that reached advanced phases of clinical trials and the liabilities that precluded adequate trial effects. Finally, we ponder on the challenges that anti-amyloid therapies must overcome to achieve clinical success.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Rosa Resende
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - José B A Custódio
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Armanda E Santos
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Bao LQ, Baecker D, Mai Dung DT, Phuong Nhung N, Thi Thuan N, Nguyen PL, Phuong Dung PT, Huong TTL, Rasulev B, Casanola-Martin GM, Nam NH, Pham-The H. Development of Activity Rules and Chemical Fragment Design for In Silico Discovery of AChE and BACE1 Dual Inhibitors against Alzheimer's Disease. Molecules 2023; 28:molecules28083588. [PMID: 37110831 PMCID: PMC10142303 DOI: 10.3390/molecules28083588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Multi-target drug development has become an attractive strategy in the discovery of drugs to treat of Alzheimer's disease (AzD). In this study, for the first time, a rule-based machine learning (ML) approach with classification trees (CT) was applied for the rational design of novel dual-target acetylcholinesterase (AChE) and β-site amyloid-protein precursor cleaving enzyme 1 (BACE1) inhibitors. Updated data from 3524 compounds with AChE and BACE1 measurements were curated from the ChEMBL database. The best global accuracies of training/external validation for AChE and BACE1 were 0.85/0.80 and 0.83/0.81, respectively. The rules were then applied to screen dual inhibitors from the original databases. Based on the best rules obtained from each classification tree, a set of potential AChE and BACE1 inhibitors were identified, and active fragments were extracted using Murcko-type decomposition analysis. More than 250 novel inhibitors were designed in silico based on active fragments and predicted AChE and BACE1 inhibitory activity using consensus QSAR models and docking validations. The rule-based and ML approach applied in this study may be useful for the in silico design and screening of new AChE and BACE1 dual inhibitors against AzD.
Collapse
Affiliation(s)
- Le-Quang Bao
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| | - Do Thi Mai Dung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Nguyen Phuong Nhung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Nguyen Thi Thuan
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Phuong Linh Nguyen
- College of Computing & Informatics, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA
| | - Phan Thi Phuong Dung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Tran Thi Lan Huong
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| | | | - Nguyen-Hai Nam
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Hai Pham-The
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| |
Collapse
|
4
|
Machauer R, Lueoend R, Hurth K, Veenstra SJ, Rueeger H, Voegtle M, Tintelnot-Blomley M, Rondeau JM, Jacobson LH, Laue G, Beltz K, Neumann U. Discovery of Umibecestat (CNP520): A Potent, Selective, and Efficacious β-Secretase (BACE1) Inhibitor for the Prevention of Alzheimer's Disease. J Med Chem 2021; 64:15262-15279. [PMID: 34648711 DOI: 10.1021/acs.jmedchem.1c01300] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
After identification of lead compound 6, 5-amino-1,4-oxazine BACE1 inhibitors were optimized in order to improve potency, brain penetration, and metabolic stability. Insertion of a methyl and a trifluoromethyl group at the 6-position of the 5-amino-1,4-oxazine led to 8 (NB-360), an inhibitor with a pKa of 7.1, a very low P-glycoprotein efflux ratio, and excellent pharmacological profile, enabling high central nervous system penetration and exposure. Fur color changes observed with NB-360 in efficacy studies in preclinical animal models triggered further optimization of the series. Herein, we describe the steps leading to the discovery of 3-chloro-5-trifluoromethyl-pyridine-2-carboxylic acid [6-((3R,6R)-5-amino-3,6-dimethyl-6-trifluoromethyl-3,6-dihydro-2H-[1,4]oxazin-3-yl)-5-fluoro-pyridin-2-yl]amide 15 (CNP520, umibecestat), an inhibitor with superior BACE1/BACE2 selectivity and pharmacokinetics. CNP520 reduced significantly Aβ levels in mice and rats in acute and chronic treatment regimens without any side effects and thus qualified for Alzheimer's disease prevention studies in the clinic.
Collapse
Affiliation(s)
- Rainer Machauer
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Rainer Lueoend
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Konstanze Hurth
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Siem J Veenstra
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Heinrich Rueeger
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Markus Voegtle
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | | | - Jean-Michel Rondeau
- Chemical Biology and Therapeutics, Structural Biology Platform, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Laura H Jacobson
- Department of Neuroscience, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Grit Laue
- Pharmacokinetic-Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Karen Beltz
- Pharmacokinetic-Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Ulf Neumann
- Department of Neuroscience, Novartis Pharma AG, CH-4056 Basel, Switzerland
| |
Collapse
|
5
|
Wu T, Zhou Q, Tang W. Enantioselective α-Carbonylative Arylation for Facile Construction of Chiral Spirocyclic β,β'-Diketones. Angew Chem Int Ed Engl 2021; 60:9978-9983. [PMID: 33599064 DOI: 10.1002/anie.202101668] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 01/03/2023]
Abstract
We herein describe the first enantioselective α-carbonylative arylation, providing a diverse set of chiral spiro β,β'-diketones bearing various ring sizes and functionalities in high yields and good to excellent enantioselectivities. Calculations suggest the transformation proceeds through reductive elimination instead of nucleophilic addition pathway.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai, 200032, China
| | - Qinghai Zhou
- College of Chemistry and Materials Science, Shanghai Normal University, 106 Guilin Road, Shanghai, 200233, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai, 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
6
|
Wu T, Zhou Q, Tang W. Enantioselective α‐Carbonylative Arylation for Facile Construction of Chiral Spirocyclic β,β′‐Diketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| | - Qinghai Zhou
- College of Chemistry and Materials Science Shanghai Normal University 106 Guilin Road Shanghai 200233 China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
7
|
Privat C, Granadino-Roldán JM, Bonet J, Santos Tomas M, Perez JJ, Rubio-Martinez J. Fragment dissolved molecular dynamics: a systematic and efficient method to locate binding sites. Phys Chem Chem Phys 2021; 23:3123-3134. [PMID: 33491698 DOI: 10.1039/d0cp05471b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diverse computational methods to support fragment-based drug discovery (FBDD) are available in the literature. Despite their demonstrated efficacy in supporting FBDD campaigns, they exhibit some drawbacks such as protein denaturation or ligand aggregation that have not yet been clearly overcome in the framework of biomolecular simulations. In the present work, we discuss a systematic semi-automatic novel computational procedure, designed to surpass these difficulties. The method, named fragment dissolved Molecular Dynamics (fdMD), utilizes simulation boxes of solvated small fragments, adding a repulsive Lennard-Jones potential term to avoid aggregation, which can be easily used to solvate the targets of interest. This method has the advantage of solvating the target with a low number of ligands, thus preventing the denaturation of the target, while simultaneously generating a database of ligand-solvated boxes that can be used in further studies. A number of scripts are made available to analyze the results and obtain the descriptors proposed as a means to trustfully discard spurious binding sites. To test our method, four test cases of different complexity have been solvated with ligand boxes and four molecular dynamics runs of 200 ns length have been run for each system, which have been extended up to 1 μs when needed. The reported results point out that the selected number of replicas are enough to identify the correct binding sites irrespective of the initial structure, even in the case of proteins having several close binding sites for the same ligand. We also propose a set of descriptors to analyze the results, among which the average MMGBSA and the average KDEEP energies have emerged as the most robust ones.
Collapse
Affiliation(s)
- Cristian Privat
- Departament de Ciència dels Materials i Química Física, Universitat de Barcelona (UB) and the Institut de Quimica Teorica i Computacional (IQTCUB), Martí i Franqués 1, 08028 Barcelona, Spain.
| | - José M Granadino-Roldán
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus "Las Lagunillas" s/n, 23071, Jaén, Spain
| | - Jordi Bonet
- Departament de Ciència dels Materials i Química Física, Universitat de Barcelona (UB) and the Institut de Quimica Teorica i Computacional (IQTCUB), Martí i Franqués 1, 08028 Barcelona, Spain.
| | - Maria Santos Tomas
- Department of Architecture Technology, Universitat Politecnica de Catalunya, Av. Diagonal 649, 08028 Barcelona, Spain
| | - Juan J Perez
- Deparment of Chemical Engineering, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
| | - Jaime Rubio-Martinez
- Departament de Ciència dels Materials i Química Física, Universitat de Barcelona (UB) and the Institut de Quimica Teorica i Computacional (IQTCUB), Martí i Franqués 1, 08028 Barcelona, Spain.
| |
Collapse
|
8
|
Rombouts F, Kusakabe KI, Hsiao CC, Gijsen HJM. Small-molecule BACE1 inhibitors: a patent literature review (2011 to 2020). Expert Opin Ther Pat 2020; 31:25-52. [PMID: 33006491 DOI: 10.1080/13543776.2021.1832463] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) has been extensively pursued as potential disease-modifying treatment for Alzheimer's disease (AD). Clinical failures with BACE inhibitors have progressively raised the bar forever cleaner candidates with reduced cardiovascular liability, toxicity risk, and increased selectivity over cathepsin D (CatD) and BACE2. AREAS COVERED This review provides an overview of patented BACE1 inhibitors between 2011 and 2020 per pharmaceutical company or research group and highlights the progress that was made in dialing out toxicity liabilities. EXPERT OPINION Despite an increasingly crowded IP situation, significant progress was made using highly complex chemistry in avoiding toxicity liabilities, with BACE1/BACE2 selectivity being the most remarkable achievement. However, clinical trial data suggest on-target toxicity is likely a contributing factor, which implies the only potential future of BACE1 inhibitors lies in careful titration of highly selective compounds in early populations where the amyloid burden is still minimal as prophylactic therapy, or as an affordable oral maintenance therapy following amyloid-clearing therapies.
Collapse
Affiliation(s)
- Frederik Rombouts
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| | - Ken-Ichi Kusakabe
- Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd ., Toyonaka, Osaka, Japan
| | - Chien-Chi Hsiao
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| | - Harrie J M Gijsen
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| |
Collapse
|
9
|
Maia M, Resende DISP, Durães F, Pinto MMM, Sousa E. Xanthenes in Medicinal Chemistry - Synthetic strategies and biological activities. Eur J Med Chem 2020; 210:113085. [PMID: 33310284 DOI: 10.1016/j.ejmech.2020.113085] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Xanthenes are a special class of oxygen-incorporating tricyclic compounds. Structurally related to xanthones, the presence of different substituents in position 9 strongly influences their physical and chemical properties, as well as their biological applications. This review explores the synthetic methodologies developed to obtain 9H-xanthene, 9-hydroxyxanthene and xanthene-9-carboxylic acid, as well as respective derivatives, from simple starting materials or through modification of related structures. Azaxanthenes, bioisosteres of xanthenes, are also explored. Efficiency, safety, ecological impact and applicability of the described synthetic methodologies are discussed. Synthesis of multi-functionalized derivatives with drug-likeness properties are also reported and their activities explored. Synthetic methodologies for obtaining (aza)xanthenes from simple building blocks are available, and electrochemical and/or metal free procedures recently developed arise as greener and efficient methodologies. Nonetheless, the synthesis of xanthenes through the modification of the carbonyl in position 9 of xanthones represents the most straightforward procedure to easily obtain a variety of (aza)xanthenes. (Aza)xanthene derivatives displayed biological activity as neuroprotector, antitumor, antimicrobial, among others, proving the versatility of this nucleus for different biological applications. However, in some cases their chemical structures suggest a lack of pharmacokinetic properties being associated with safety concerns, which should be overcome if intended for clinical evaluation.
Collapse
Affiliation(s)
- Miguel Maia
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Diana I S P Resende
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Fernando Durães
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Madalena M M Pinto
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Emília Sousa
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
10
|
Novel peptide ligands for antibody purification provide superior clearance of host cell protein impurities. J Chromatogr A 2020; 1625:461237. [DOI: 10.1016/j.chroma.2020.461237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 11/19/2022]
|
11
|
Frohn M, Liu L, Siegmund AC, Qian W, Amegadzie A, Chen N, Tan H, Hickman D, Wood S, Wen PH, Bartberger MD, Whittington DA, Allen JR, Bourbeau MP. The development of a structurally distinct series of BACE1 inhibitors via the (Z)-fluoro-olefin amide bioisosteric replacement. Bioorg Med Chem Lett 2020; 30:127240. [DOI: 10.1016/j.bmcl.2020.127240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 01/02/2023]
|
12
|
Pettus LH, Bourbeau MP, Bradley J, Bartberger MD, Chen K, Hickman D, Johnson M, Liu Q, Manning JR, Nanez A, Siegmund AC, Wen PH, Whittington DA, Allen JR, Wood S. Discovery of AM-6494: A Potent and Orally Efficacious β-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitor with in Vivo Selectivity over BACE2. J Med Chem 2019; 63:2263-2281. [DOI: 10.1021/acs.jmedchem.9b01034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Oehlrich D, Peschiulli A, Tresadern G, Van Gool M, Vega JA, De Lucas AI, Alonso de Diego SA, Prokopcova H, Austin N, Van Brandt S, Surkyn M, De Cleyn M, Vos A, Rombouts FJR, Macdonald G, Moechars D, Gijsen HJM, Trabanco AA. Evaluation of a Series of β-Secretase 1 Inhibitors Containing Novel Heteroaryl-Fused-Piperazine Amidine Warheads. ACS Med Chem Lett 2019; 10:1159-1165. [PMID: 31413800 DOI: 10.1021/acsmedchemlett.9b00181] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023] Open
Abstract
Despite several years of research, only a handful of β-secretase (BACE) 1 inhibitors have entered clinical trials as potential therapeutics against Alzheimer's disease. The intrinsic basic nature of low molecular weight, amidine-containing BACE 1 inhibitors makes them far from optimal as central nervous system drugs. Herein we present a set of novel heteroaryl-fused piperazine amidine inhibitors designed to lower the basicity of the key, enzyme binding, amidine functionality. This study resulted in the identification of highly potent (IC50 ≤ 10 nM), permeable lead compounds with a reduced propensity to suffer from P-glycoprotein-mediated efflux.
Collapse
Affiliation(s)
| | | | | | - Michiel Van Gool
- Discovery Sciences Medicinal Chemistry, Janssen Research & Development, Janssen−Cilag S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Juan Antonio Vega
- Discovery Sciences Medicinal Chemistry, Janssen Research & Development, Janssen−Cilag S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Ana Isabel De Lucas
- Discovery Sciences Medicinal Chemistry, Janssen Research & Development, Janssen−Cilag S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Sergio A. Alonso de Diego
- Discovery Sciences Medicinal Chemistry, Janssen Research & Development, Janssen−Cilag S.A., C/Jarama 75A, 45007 Toledo, Spain
| | | | | | | | | | | | | | | | | | | | | | - Andrés A. Trabanco
- Discovery Sciences Medicinal Chemistry, Janssen Research & Development, Janssen−Cilag S.A., C/Jarama 75A, 45007 Toledo, Spain
| |
Collapse
|
14
|
New evolutions in the BACE1 inhibitor field from 2014 to 2018. Bioorg Med Chem Lett 2019; 29:761-777. [DOI: 10.1016/j.bmcl.2018.12.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
|
15
|
Diastereoselective synthesis of fused cyclopropyl-3-amino-2,4-oxazine β-amyloid cleaving enzyme (BACE) inhibitors and their biological evaluation. Bioorg Med Chem Lett 2018; 28:1111-1115. [DOI: 10.1016/j.bmcl.2018.01.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 11/19/2022]
|