1
|
Wang B, Guo Y, Li X, Dong C, Sha H, Li H, Zhao Z, Li T. Phytostabilization potential and microbial response to the reclamation of native Cynodon dactylon in spoil heaps from a multiple-metal mining site in Southwest China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124758. [PMID: 40031421 DOI: 10.1016/j.jenvman.2025.124758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Phytocapping offers a sustainable approach for managing exposed tailings by mitigating pollutant spread and enhancing phytoremediation. This study investigates the potential of Bermudagrass (Cynodon dactylon) as a pioneering plant for rehabilitating tailings from an open-pit lead-zinc mine in Southwest China. Our findings demonstrate that Bermudagrass significantly improved soil quality and multifunctionality compared to adjacent bare tailings. Soil improvements included increases in organic matter (107%), total and available nitrogen (50% and 110%, respectively), available phosphorus (170%), and soil enzyme activities, including β-glucosidase (170%), sucrase (1729%), alkaline phosphatase (3722%), and acid phosphatase (168%). The reclamation process also promoted microbial community succession, altering community composition, improving microbial diversity, and enhancing bacterial biomass from (0.89 ± 0.54) × 1015 to (9.06 ± 3.25) × 1015 copies/g in rhizosphere soils. Greenhouse experiments further confirmed Bermudagrass's resilience to cadmium (Cd), with both mining and non-mining ecotypes thriving in tailing soils and Cd2+ hydroponic solutions (up to 44.5 μM) without evident phytotoxicity. Bermudagrass roots exhibited exceptional Cd accumulation (bioconcentration factor: 181-1006) while minimizing Cd translocation to shoots (translocation factor: <0.13). Inoculation with Funneliformis mosseae, a restored root-mutually symbiotic fungus, further mitigated Cd-induced phytotoxicity and enhanced plant growth. These findings highlight Bermudagrass as a promising pioneer species for phytostabilization in severely contaminated mining environments, with its rhizosphere microbiome playing a critical role in facilitating ecosystem restoration. Sustainable plant establishment in mine waste rock requires concurrent development of belowground fertility and healthy rhizospheric soil. Ultimately, successful revegetation depends on integrated above and belowground development to achieve long-term ecological restoration.
Collapse
Affiliation(s)
- Bowen Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Yanying Guo
- Kunming Dianchi & Plateau Lake Research Institute, Kunming, 650228, China
| | - Xuejiao Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Chaoqin Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Haixian Sha
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Haiyan Li
- Medical School of Kunming University of Science and Technology, Kunming, 650504, China
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| | - Tao Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
2
|
Gu Y, Wang H, Yang Y, Chen H, Chen C, Cheng W. Metabonomics reveals the mechanism of stress resistance in Vetiveria zizanioides inoculated with AMF under copper stress. Sci Rep 2025; 15:6005. [PMID: 39966475 PMCID: PMC11836362 DOI: 10.1038/s41598-025-90595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
Vetiveria zizanioides, renowned for its robust stability and exceptional capacity to sequester heavy metals, has garnered widespread application in tailings ecological restoration efforts. Arbuscular mycorrhizal fungi (AMF), which are capable of forming symbiotic relationships with more than 80% of terrestrial plant roots, play a pivotal role in enhancing plant nutrient uptake and bolstering resilience. In this study, we conducted a comprehensive investigation into the physiological and biochemical responses of Vetiveria zizanioides subjected to varying levels of copper stress (with copper concentrations ranging from 0 mg/kg to 400 mg/kg), with or without AMF inoculation. Additionally, we performed nontargeted metabonomic analyses to gain deeper insights into the metabolic changes that occur in vetiver grass under AMF inoculation and copper stress. Our findings revealed that Vetiveria zizanioides inoculated with AMF consistently demonstrated superior growth performance across all copper stress levels compared with noninoculated counterparts. Using nontargeted metabonomic analyses, inoculation with AMF affects the metabolism of phenylalanine and related pathways in vetiver as well as contributing to the promotion of the formation of phytochelatins (PCs) from glutamate, thereby alleviating copper stress. The results highlight the potential of AMF-inoculated Vetiveria zizanioides as a promising bioremediation tool capable of effectively mitigating the adverse effects of heavy metal pollution.
Collapse
Affiliation(s)
- Yang Gu
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Huaqiu Wang
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yuanyuan Yang
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Hualiang Chen
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Chao Chen
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Wei Cheng
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Qiu LX, Xu KX, Guan DX, Liu YW, Luo Y, Zhu XY, Teng HH, Kuzyakov Y, Ma LQ. Contrasting effects of arsenic on mycorrhizal-mediated silicon and phosphorus uptake by rice. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:124005. [PMID: 39752939 DOI: 10.1016/j.jenvman.2024.124005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
Silicon (Si) and arbuscular mycorrhizal fungi (AMF) increase plant resistance to various environmental stresses, including heavy metal (and metalloid) toxicity. Although Si and AMF each independently enhance plant tolerance, the nature of their interactions and their combined impacts on nutrient uptake, especially in the context of toxic elements such as arsenic (As), remains to be elucidated. This study investigated AMF-mediated regulation of plant nutrient uptake under As stress using rice, a model Si-accumulating plant. Experiments were conducted under As-free and As stress conditions, incorporating AMF inoculation and silicic acid application, with a focus on nutrient uptake and transporter expression. Without As, AMF inoculation increased shoot Si content by 44%, while invariance was common under As toxicity stress (10 μM of As(III)). Despite As presence, AMF increased Lsi1 expression with Si application, elevating As content in roots and shoots by 38% and 55%, respectively. Introduction of As stress amplified AMF role in phosphorus (P) uptake from 13% to 38%, correlating with up-regulated P transporter expression. Three-way ANOVA of interactions among As, Si, and AMF on P and As uptake by rice revealed that As amplified AMF potential to increase P uptake while weakening promotive effect on Si uptake. Silicon reduced As absorption, while AMF increased As uptake, but the elevated As were potentially retained within fungal hyphae, limiting transfer to rice plants. Overall, As toxicity stress had contrasting effects on P- and Si-promoting roles of AMF. These findings contribute to our understanding of plant-fungal interactions under heavy metal stress.
Collapse
Affiliation(s)
- Li-Xue Qiu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ke-Xin Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yi-Wen Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Luo
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Yu Zhu
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - H Henry Teng
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Göttingen, 37077, Germany; Agro-Technological Institute, RUDN University, Moscow, 117198, Russia; Institute of Environmental Sciences, Kazan Federal University, 420049, Kazan, Russia
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Wu J, Fu X, Zhao L, Lv J, Lv S, Shang J, Lv J, Du S, Guo H, Ma F. Biochar as a partner of plants and beneficial microorganisms to assist in-situ bioremediation of heavy metal contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171442. [PMID: 38453085 DOI: 10.1016/j.scitotenv.2024.171442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Synergistic remediation of heavy metal (HM) contaminated soil using beneficial microorganisms (BM) and plants is a common and effective in situ bioremediation method. However, the shortcomings of this approach are the low colonisation of BM under high levels of heavy metal stress (HMS) and the poor state of plant growth. Previous studies have overlooked the potential of biochar to mitigate the above problems and aid in-situ remediation. Therefore, this paper describes the characteristics and physicochemical properties of biochar. It is proposed that biochar enhances plant resistance to HMS and aids in situ bioremediation by increasing colonisation of BM and HM stability. On this basis, the paper focuses on the following possible mechanisms: specific biochar-derived organic matter regulates the transport of HMs in plants and promotes mycorrhizal colonisation via the abscisic acid signalling pathway and the karrikin signalling pathway; promotes the growth-promoting pathway of indole-3-acetic acid and increases expression of the nodule-initiating gene NIN; improvement of soil HM stability by ion exchange, electrostatic adsorption, redox and complex precipitation mechanisms. And this paper summarizes guidelines on how to use biochar-assisted remediation based on current research for reference. Finally, the paper identifies research gaps in biochar in the direction of promoting beneficial microbial symbiotic mechanisms, recognition and function of organic molecules, and factors affecting practical applications.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, China.
| | - Xiaofan Fu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Sidi Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jing Shang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jiaxuan Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Shuxuan Du
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Haijuan Guo
- School of Environmental Science, Liaoning University, Shenyang 110036, China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Pan G, Li W, Huang L, Mo G, Wang X. Arbuscular mycorrhizal fungi promote arsenic accumulation in Pteris vittata L. through arsenic solubilization in rhizosphere soil and arsenic uptake by hyphae. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133579. [PMID: 38290333 DOI: 10.1016/j.jhazmat.2024.133579] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
The introduction of arbuscular mycorrhizal fungi (AMF) is considered an effective strategy for improving the arsenic phytoremediation efficiency of Pteris vittata L. (P. vittata). However, how hyphae take up arsenic and translocate it to the root cells of P. vittata in the symbiotic mycorrhizal structure is currently unclear. In this study, the role of hyphae in arsenic enrichment in P. vittata and the mechanism of arsenic species transformation in the rhizosphere were studied via a compartmented cultivation setup. After Claroidoglomus etunicatum (C. etunicatum) colonization, the arsenic content of P. vittata increased by 234%. Hyphae contributed 32% to the accumulation of arsenic in symbionts. C. etunicatum promoted the conversion of iron and aluminum oxides to crystalline states in rhizosphere soil, promoted the desorption of arsenic bound to iron and aluminum oxides, and increased the content of available arsenic in rhizosphere soil by 116%. The transfer of arsenic from arbuscular structures to root cells was confirmed by transmission electron microscopy (TEM)/scanning electron microscopy- energy dispersive X-ray spectroscopy (SEMEDS) analysis. This study demonstrated that C. etunicatum inoculation enhances the phytoremediation efficiency of P. vittata in arsenic-contaminated soils through hyphal uptake, plant growth promotion, and alteration of the rhizosphere environment.
Collapse
Affiliation(s)
- Guofei Pan
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Weizhen Li
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Liankang Huang
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Guizhen Mo
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xueli Wang
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
6
|
Domingo G, Vannini C, Bracale M, Bonfante P. Proteomics as a tool to decipher plant responses in arbuscular mycorrhizal interactions: a meta-analysis. Proteomics 2023; 23:e2200108. [PMID: 36571480 DOI: 10.1002/pmic.202200108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
The beneficial symbiosis between plants and arbuscular mycorrhizal (AM) fungi leads to a deep reprogramming of plant metabolism, involving the regulation of several molecular mechanisms, many of which are poorly characterized. In this regard, proteomics is a powerful tool to explore changes related to plant-microbe interactions. This study provides a comprehensive proteomic meta-analysis conducted on AM-modulated proteins at local (roots) and systemic (shoots/leaves) level. The analysis was implemented by an in-depth study of root membrane-associated proteins and by a comparison with a transcriptome meta-analysis. A total of 4262 differentially abundant proteins were retrieved and, to identify the most relevant AM-regulated processes, a range of bioinformatic studies were conducted, including functional enrichment and protein-protein interaction network analysis. In addition to several protein transporters which are present in higher amounts in AM plants, and which are expected due to the well-known enhancement of AM-induced mineral uptake, our analysis revealed some novel traits. We detected a massive systemic reprogramming of translation with a central role played by the ribosomal translational apparatus. On one hand, these new protein-synthesis efforts well support the root cellular re-organization required by the fungal penetration, and on the other they have a systemic impact on primary metabolism.
Collapse
Affiliation(s)
- Guido Domingo
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Candida Vannini
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Marcella Bracale
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
7
|
Zheng J, Xie X, Li C, Wang H, Yu Y, Huang B. Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1596-1613. [PMID: 36786203 DOI: 10.1080/15226514.2023.2176466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Endophytic fungi exist widely in plants and play an important role in the growth and adaptation of plants. They could be used in phytoremediation techniques against heavy metal contaminated soil since beneficial microbial symbionts can endow plants with resistance to external heavy metal stresses. This review summarized the regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. Potential endophytic fungi in enhancing plant's adaption to heavy metal stresses include arbuscular mycorrhizal fungi, dark septate endophytic fungi, plant growth promoting endophytic fungi. The mechanisms involve coevolution strategy, immune regulation and detoxification transport to improve the ability of plants to adapt to heavy metal stress. They can increase the synthesis of host hormones and maintaining the balance of endogenous hormones, strengthen osmotic regulation, regulate carbon and nitrogen metabolism, and increase immune activity, antioxidant enzyme and glutathione activity. They also help to improve the detoxification transport and heavy metal emission capacity of the host by significantly producing iron carrier, metallothionein and 1-aminocyclopropane-1-carboxylic acid deaminase. The combination of endophytic fungi and hyperaccumulation plants provides a promising technology for the ecological restoration of heavy metal contaminated soil. Endophytic fungi reserves further development on enhancing host plant's adaptability to heavy metal stresses.
Collapse
Affiliation(s)
- Jiadong Zheng
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xingguang Xie
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Chunyan Li
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Hongxia Wang
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yaru Yu
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Baokang Huang
- School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Quan L, Duan K, Wei Z, Li W, Chen Y, Duan W, Qin C, Shen Z, Xia Y. Beneficial effects of arbuscular mycorrhizae on Cu detoxification in Mimosa pudica L. grown in Cu-polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25755-25763. [PMID: 36348238 DOI: 10.1007/s11356-022-23919-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are known to have beneficial effects on host plants growing on contaminated soils. The present study aimed at investigating the influence of two different AM fungi (Rhizophagus intraradices and Funneliformis mosseae) on the growth of plants and Cu uptake by Mimosa pudica L. grown in polluted soils containing various levels of Cu (Control, 400, 500, or 600 mg kg-l soil) in pot experiments. Mycorrhizal colonisation rates by the two AM fungi decreased markedly with the increasing Cu levels in soils. This inhibition was more pronounced to F. mosseae than R. intraradices, indicating that R. intraradices was more tolerant to Cu than F. mosseae. Compared with non-mycorrhizal plants, R. intraradices inoculation increased plant growth (including shoot height, numbers of compound leaves and leaflets, and dry biomass) and P concentrations in the shoots and roots of M. pudica at all levels of Cu. Meanwhile, F. mosseae displayed a capability of growth promotion to M. pudica much later and lower than R. intraradices. F. mosseae and R. intraradices markedly decreased Cu concentration in shoots at 400-600 mg kg-1 Cu levels. However, R. intraradices was more efficient than F. mosseae in decreasing the shoot Cu concentrations. As for the increasing Cu tolerance by R. intraradices, possibly it was reached though the improvement of phosphorus nutrition and the decline of Cu transport from roots to shoots of M. pudica. R. intraradices showed a good potential for improving medicinal plants growth and declining toxic effects in Cu-contaminated soils.
Collapse
Affiliation(s)
- Lingtong Quan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun Duan
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Zhuangzhuang Wei
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Wenwei Li
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Yang Chen
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Weidong Duan
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Chun Qin
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Signaling and Detoxification Strategies in Plant-Microbes Symbiosis under Heavy Metal Stress: A Mechanistic Understanding. Microorganisms 2022; 11:microorganisms11010069. [PMID: 36677361 PMCID: PMC9865731 DOI: 10.3390/microorganisms11010069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Plants typically interact with a variety of microorganisms, including bacteria, mycorrhizal fungi, and other organisms, in their above- and below-ground parts. In the biosphere, the interactions of plants with diverse microbes enable them to acquire a wide range of symbiotic advantages, resulting in enhanced plant growth and development and stress tolerance to toxic metals (TMs). Recent studies have shown that certain microorganisms can reduce the accumulation of TMs in plants through various mechanisms and can reduce the bioavailability of TMs in soil. However, relevant progress is lacking in summarization. This review mechanistically summarizes the common mediating pathways, detoxification strategies, and homeostatic mechanisms based on the research progress of the joint prevention and control of TMs by arbuscular mycorrhizal fungi (AMF)-plant and Rhizobium-plant interactions. Given the importance of tripartite mutualism in the plant-microbe system, it is necessary to further explore key signaling molecules to understand the role of plant-microbe mutualism in improving plant tolerance under heavy metal stress in the contaminated soil environments. It is hoped that our findings will be useful in studying plant stress tolerance under a broad range of environmental conditions and will help in developing new technologies for ensuring crop health and performance in future.
Collapse
|
10
|
Guzmán-Cornejo L, Pacheco L, Camargo-Ricalde SL, González-Chávez MDC. Endorhizal fungal symbiosis in lycophytes and metal(loid)-accumulating ferns growing naturally in mine wastes in Mexico. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:538-549. [PMID: 35867895 DOI: 10.1080/15226514.2022.2092060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ferns and lycophytes are pioneer plants that can be useful for revegetation. Their natural distribution and interaction with soil fungal endophytes can increase plant fitness but have received little attention. This study aimed to identify these plant species in mine wastes, and determine colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE). The pseudo-total and diethylenetriamine pentaacetic acid (DTPA)-extractable rhizosphere concentrations of As, Cu, Cd, Pb, and Zn, bioavailability index (BI), and bioconcentration factor (BCF) were analyzed. Six ferns and one lycophyte were identified. Arsenic and metal concentrations were high, which were plant and site-dependent. All species showed hyperaccumulation of As in fronds, especially Argyrochosma formosa (2,883) and Notholaena affinis (2,160) had the highest concentrations (mg kg-1). All plants were colonized by AMF (3%-24%) and DSE (2%-33%). Astrolepis sinuata and Myriopteris notholaenoides had the maximum colonization by AMF and A. formosa by DSE. This study identifies for the first time five ferns and one lycophyte species on mine wastes, their As hyperaccumulation capacity and the simultaneous fungal colonization by AMF and DSE. These are relevant plant traits for phytoremediation. However, fungal identification and the role colonization by AMF and DSE requires full analysis.
Collapse
Affiliation(s)
- Laura Guzmán-Cornejo
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Leticia Pacheco
- Departamento de Biología, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, México
| | | | | |
Collapse
|
11
|
Chamkhi I, El Omari N, Balahbib A, El Menyiy N, Benali T, Ghoulam C. Is the rhizosphere a source of applicable multi-beneficial microorganisms for plant enhancement? Saudi J Biol Sci 2022; 29:1246-1259. [PMID: 35241967 PMCID: PMC8864493 DOI: 10.1016/j.sjbs.2021.09.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023] Open
Abstract
The plant faces different pedological and climatic challenges that influence its growth and enhancement. While, plant-microbes interactions throught the rhizosphere offer several privileges to this hotspot in the service of plant, by attracting multi-beneficial mutualistic and symbiotic microorganisms as plant growth-promoting bacteria (PGPB), archaea, mycorrhizal fungi, endophytic fungi, and others…). Currently, numerous investigations showed the beneficial effects of these microbes on growth and plant health. Indeed, rhizospheric microorganisms offer to host plants the essential assimilable nutrients, stimulate the growth and development of host plants, and induce antibiotics production. They also attributed to host plants numerous phenotypes involved in the increase the resistance to abiotic and biotic stresses. The investigations and the studies on the rhizosphere can offer a way to find a biological and sustainable solution to confront these environmental problems. Therefore, the interactions between microbes and plants may lead to interesting biotechnological applications on plant improvement and the adaptation in different climates to obtain a biological sustainable agricultures without the use of chemical fertilizers.
Collapse
Key Words
- AMF, Arbuscular Mycorrhizal Fungi
- AOA, Ammonia-Oxidizing Archaea
- BMV, Brome Mosaic Virus
- C, Carbon
- CMV, Cucumber mosaic virus
- LDH, Layered double hydroxides
- MF, Mycorrhizal fungi
- Microorganisms
- P, Phosphorus
- PAL, L-Phenylalanine Ammonia Lyase
- PCA, Phenazine-1-Carboxylic Acid
- PGPR, Plant Growth-Promoting Rhizobacteria
- POX, Peroxidase
- PPO, Polyphenol Oxidase
- Plant growth promoting microbes
- Plant-microbes interactions
- Rhizosphere
Collapse
Affiliation(s)
- Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Morocco.,University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Naoual El Menyiy
- Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Cherki Ghoulam
- University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.,Cadi Ayyad University, Faculty of Sciences and Techniques, PO Box 549, Gueliz, Marrakech,Morocco
| |
Collapse
|
12
|
Fu L, Zhang L, Dong P, Wang J, Shi L, Lian C, Shen Z, Chen Y. Remediation of copper-contaminated soils using Tagetes patula L., earthworms and arbuscular mycorrhizal fungi. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:1107-1119. [PMID: 34775850 DOI: 10.1080/15226514.2021.2002809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and earthworms have potential uses in the bioremediation of contaminated soils. In recent years, heavy metal-contaminated sites have been remediated by adding plants and AMF or earthworms to the soil. However, there are few studies on remediation using combinations of plants, animals, and microbes, especially for the remediation of Cu-contaminated soil. The present study investigated the separate and combined effects of AMF and earthworms on Cu-contaminated soil in which Tagetes patula L. was grown. The results show that the combined application of AMF and earthworms markedly increased the biomass of plant shoots and roots by more than 100%. It also increased Cu extraction by T. patula by 270%. The combined treatment was effective in increasing the CEC, contents of OM, and available Cu, P and K, but reduced the soil pH. Furthermore, the combined treatment significantly increased the abundance and diversity of the soil microbial community. In particular, the abundances of the bacteria Bacteroides, Proteobacteria, and Actinobacteria were increased, with the genera Flavobacterium, Pedobacter, Algoriphagus, Gaetbulibacter, Pseudomonas, Luteimonas, and Arthrobacter dominating. Meanwhile, the abundance of the fungus Zygomycota was increased, with Mortierella dominating. Moreover, inoculation with earthworms greatly improved the structure of the soil microbial community.
Collapse
Affiliation(s)
- Lei Fu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Long Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Pengcheng Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jie Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| | - Chunlan Lian
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Kumar V, Pandita S, Singh Sidhu GP, Sharma A, Khanna K, Kaur P, Bali AS, Setia R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. CHEMOSPHERE 2021; 262:127810. [PMID: 32763578 DOI: 10.1016/j.chemosphere.2020.127810] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 05/04/2023]
Abstract
Copper (Cu) is an essential element for humans and plants when present in lesser amount, while in excessive amounts it exerts detrimental effects. There subsists a narrow difference amid the indispensable, positive and detrimental concentration of Cu in living system, which substantially alters with Cu speciation, and form of living organisms. Consequently, it is vital to monitor its bioavailability, speciation, exposure levels and routes in the living organisms. The ingestion of Cu-laced food crops is the key source of this heavy metal toxicity in humans. Hence, it is necessary to appraise the biogeochemical behaviour of Cu in soil-plant system with esteem to their quantity and speciation. On the basis of existing research, this appraisal traces a probable connexion midst: Cu levels, sources, chemistry, speciation and bioavailability in the soil. Besides, the functions of protein transporters in soil-plant Cu transport, and the detrimental effect of Cu on morphological, physiological and nutrient uptake in plants has also been discussed in the current manuscript. Mechanisms related to detoxification strategies like antioxidative response and generation of glutathione and phytochelatins to combat Cu-induced toxicity in plants is discussed as well. We also delimits the Cu accretion in food crops and allied health perils from soils encompassing less or high Cu quantity. Finally, an overview of various techniques involved in the reclamation and restoration of Cu-contaminated soils has been provided.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Botany, Government Degree College, Ramban, Jammu, 182144, India.
| | - Shevita Pandita
- Department of Botany, University of Jammu, Jammu and Kashmir, India
| | - Gagan Preet Singh Sidhu
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Kanika Khanna
- Independent Researcher, House No.282, Lane no. 3, Friends Colony, Opposite DAV College, Jalandhar, 144008, Punjab, India
| | - Parminder Kaur
- Independent Researcher, House No. 472, Ward No. 8, Dhariwal, Gurdaspur, 143519, Punjab, India
| | - Aditi Shreeya Bali
- Department of Botany, Dyal Singh College, Karnal, Haryana, 132001, India
| | - Raj Setia
- Punjab Remote Sensing Centre, Ludhiana, India
| |
Collapse
|
14
|
Santana NA, Ferreira PAA, Tarouco CP, Schardong IS, Antoniolli ZI, Nicoloso FT, Jacques RJS. Earthworms and mycorrhization increase copper phytoextraction by Canavalia ensiformis in sandy soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109383. [PMID: 31260919 DOI: 10.1016/j.ecoenv.2019.109383] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Phytoremediation is an alternative for remediating soil contamination by copper, and its efficiency has been shown to increase when arbuscular mycorrhizal fungi (AMF) and earthworms are separately inoculated into the soil. This study evaluated the isolated and combined effects of inoculating earthworms and arbuscular mycorrhizal fungi into a sandy soil on copper phytoremediation by Canavalia ensiformis. The plants were grown in a greenhouse in soil contaminated with 100 mg Cu kg-1 with and without being inoculated with the arbuscular mycorrhizal fungus Rhizoglomus clarum and the earthworm Eisenia andrei. The availabilities of solid-phase Cu and other nutrients in the soil solution and plant growth were evaluated along with Cu phytotoxicity based on photochemical efficiency and oxidative stress enzyme activity. Accumulation of Cu and other nutrients in the shoots and roots; mycorrhizal colonization, nodulation, and reproduction; and Cu accumulation in the earthworm tissues were also evaluated. The copper caused photosynthetic and biochemical damage that reduced the shoot dry weight by 44% and the root dry weight by 29%. However, the arbuscular mycorrhizal fungus alleviated the Cu toxicity to the plant and increased the shoot dry weight by 81% in the contaminated soil. The earthworms increased the Cu uptake and translocation to the shoot by 31%. The combined presence of the arbuscular mycorrhizal fungus and earthworms in the contaminated soil increased the growth and Cu content of the aerial plant tissues, yielding a 200% increase in Cu accumulation (metal content × biomass) in the C. ensiformis shoots. Combined inoculation with earthworms and arbuscular mycorrhizal fungi increased copper phytoextraction by Canavalia ensiformis in a sandy soil.
Collapse
Affiliation(s)
- Natielo Almeida Santana
- Federal University of Santa Maria, Department of Soil Science, 97119-900, Santa Maria, RS, Brazil
| | | | | | | | - Zaida Inês Antoniolli
- Federal University of Santa Maria, Department of Soil Science, 97119-900, Santa Maria, RS, Brazil
| | | | | |
Collapse
|
15
|
Shi W, Zhang Y, Chen S, Polle A, Rennenberg H, Luo ZB. Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. PLANT, CELL & ENVIRONMENT 2019; 42:1087-1103. [PMID: 30375657 DOI: 10.1111/pce.13471] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Uptake, translocation, detoxification, and sequestration of heavy metals (HMs) are key processes in plants to deal with excess amounts of HM. Under natural conditions, plant roots often establish ecto- and/or arbuscular-mycorrhizae with their fungal partners, thereby altering HM accumulation in host plants. This review considers the progress in understanding the physiological and molecular mechanisms involved in HM accumulation in nonmycorrhizal versus mycorrhizal plants. In nonmycorrhizal plants, HM ions in the cells can be detoxified with the aid of several chelators. Furthermore, HMs can be sequestered in cell walls, vacuoles, and the Golgi apparatus of plants. The uptake and translocation of HMs are mediated by members of ZIPs, NRAMPs, and HMAs, and HM detoxification and sequestration are mainly modulated by members of ABCs and MTPs in nonmycorrhizal plants. Mycorrhizal-induced changes in HM accumulation in plants are mainly due to HM sequestration by fungal partners and improvements in the nutritional and antioxidative status of host plants. Furthermore, mycorrhizal fungi can trigger the differential expression of genes involved in HM accumulation in both partners. Understanding the molecular mechanisms that underlie HM accumulation in mycorrhizal plants is crucial for the utilization of fungi and their host plants to remediate HM-contaminated soils.
Collapse
Affiliation(s)
- Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuhong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Heinz Rennenberg
- Institute for Forest Sciences, University of Freiburg, 79110, Freiburg, Germany
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
16
|
Davies HS, Rosas-Moreno J, Cox F, Lythgoe P, Bewsher A, Livens FR, Robinson CH, Pittman JK. Multiple environmental factors influence 238U, 232Th and 226Ra bioaccumulation in arbuscular mycorrhizal-associated plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:921-934. [PMID: 30021326 DOI: 10.1016/j.scitotenv.2018.05.370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/16/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Ecological consequences of low-dose radioactivity from natural sources or radioactive waste are important to understand but knowledge gaps still remain. In particular, the soil transfer and bioaccumulation of radionuclides into plant roots is poorly studied. Furthermore, better knowledge of arbuscular mycorrhizal (AM) fungi association may help understand the complexities of radionuclide bioaccumulation within the rhizosphere. Plant bioaccumulation of uranium, thorium and radium was demonstrated at two field sites, where plant tissue concentrations reached up to 46.93 μg g-1 238U, 0.67 μg g-1 232Th and 18.27 kBq kg-1 226Ra. High root retention of uranium was consistent in all plant species studied. In contrast, most plants showed greater bioaccumulation of thorium and radium into above-ground tissues. The influence of specific soil parameters on root radionuclide bioaccumulation was examined. Total organic carbon significantly explained the variation in root uranium concentration, while other soil factors including copper concentration, magnesium concentration and pH significantly correlated with root concentrations of uranium, radium and thorium, respectively. All four orders of Glomeromycota were associated with root samples from both sites and all plant species studied showed varying association with AM fungi, ranging from zero to >60% root colonisation by fungal arbuscules. Previous laboratory studies using single plant-fungal species association had found a positive role of AM fungi in root uranium transfer, but no significant correlation between the amount of fungal infection and root uranium content in the field samples was found here. However, there was a significant negative correlation between AM fungal infection and radium accumulation. This study is the first to examine the role of AM fungi in radionuclide soil-plant transfer at a community level within the natural environment. We conclude that biotic factors alongside various abiotic factors influence the soil-plant transfer of radionuclides and future mechanistic studies are needed to explain these interactions in more detail.
Collapse
Affiliation(s)
- Helena S Davies
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jeanette Rosas-Moreno
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Filipa Cox
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Paul Lythgoe
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Alastair Bewsher
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Francis R Livens
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Centre for Radiochemistry Research, School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Clare H Robinson
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Jon K Pittman
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
17
|
Zhan F, Li B, Jiang M, Yue X, He Y, Xia Y, Wang Y. Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24338-24347. [PMID: 29948717 DOI: 10.1007/s11356-018-2487-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/04/2018] [Indexed: 05/08/2023]
Abstract
In this study, we investigated the effects of the arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae and Diversispora spurcum on the growth, antioxidant physiology, and uptake of phosphorus (P), sulfur (S), lead (Pb), zinc (Zn), cadmium (Cd), and arsenic (As) by maize (Zea mays L.) grown in heavy metal-polluted soils though a potted plant experiment. F. mosseae significantly increased the plant chlorophyll a content, height, and biomass; decreased the H2O2 and malondialdehyde (MDA) contents; and enhanced the superoxide dismutase (SOD) and catalase (CAT) activities and the total antioxidant capacity (T-AOC) in maize leaves; this effect was not observed with D. spurcum. Both F. mosseae and D. spurcum promoted the retention of heavy metals in roots and increased the uptake of Pb, Zn, Cd, and As, and both fungi restricted heavy metal transfer, resulting in decreased Pb, Zn, and Cd contents in shoots. Therefore, the fungi reduced the translocation factors for heavy metal content (TF) and uptake (TF') in maize. Additionally, F. mosseae promoted P and S uptake by shoots, and D. spurcum increased P and S uptake by roots. Moreover, highly significant negative correlations were found between antioxidant capacity and the H2O2, MDA, and heavy metal contents, and there was a positive correlation with the biomass of maize leaves. These results suggested that AMF alleviated plant toxicity and that this effect was closely related to antioxidant activation in the maize leaves and increased retention of heavy metals in the roots.
Collapse
Affiliation(s)
- Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Ming Jiang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Xianrong Yue
- School of Marxism, Yunnan Agricultural University, Kunming, 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| | - Yunsheng Xia
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| | - Youshan Wang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|