1
|
Singh N, Malik A, Sethi P, Mondal PC. Programmed Heterostructures for Enhanced Electrical Conductivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403108. [PMID: 39037401 DOI: 10.1002/smll.202403108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Interfacial electron transport in multicomponent systems plays a crucial role in controlling electrical conductivity. Organic-inorganic heterostructures electronic devices where all the entities are covalently bonded to each other can reduce interfacial electrical resistance, thus suitable for low-power consumption electronic operations. Programmed heterostructures of covalently bonded interfaces between ITO-ethynylbenzene (EB) and EB-zinc ferrite (ZF) nanoparticles, a programmed structure showing 67 978-fold enhancement of electrical current as compared to pristine NPs-based two terminal devices are created. An electrochemical approach is adopted to prepare nearly π-conjugated EB oligomer films of thickness ≈26 nm on ITO-electrode on which ZF NPs are chemically attached. A "flip-chip" method is employed to combine two EB-ZnFe2O4 NPs-ITO to probe electrical conductivity and charge conduction mechanism. The EB-ZnFe2O4 NPs exhibit strong electronic coupling at ITO-EB and EB-NPs with an energy barrier of 0.13 eV between the ITO Fermi level and the LUMO of EB-ZF NPs for efficient charge transport. Both the DC and AC-based electrical measurements manifest a low resistance at ITO-EB and EB-ZF NPs, revealing enhanced electrical current at ± 1.5 V. The programmed heterostructure devices can meet a strategy to create well-controlled molecular layers for electronic applications toward miniaturized components that shorten charge carrier distance, and interfacial resistance.
Collapse
Affiliation(s)
- Neha Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Ankur Malik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Paras Sethi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Prakash Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
2
|
Gupta R, Fereiro JA, Bayat A, Pritam A, Zharnikov M, Mondal PC. Nanoscale molecular rectifiers. Nat Rev Chem 2023; 7:106-122. [PMID: 37117915 DOI: 10.1038/s41570-022-00457-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 01/15/2023]
Abstract
The use of molecules bridged between two electrodes as a stable rectifier is an important goal in molecular electronics. Until recently, however, and despite extensive experimental and theoretical work, many aspects of our fundamental understanding and practical challenges have remained unresolved and prevented the realization of such devices. Recent advances in custom-designed molecular systems with rectification ratios exceeding 105 have now made these systems potentially competitive with existing silicon-based devices. Here, we provide an overview and critical analysis of recent progress in molecular rectification within single molecules, self-assembled monolayers, molecular multilayers, heterostructures, and metal-organic frameworks and coordination polymers. Examples of conceptually important and best-performing systems are discussed, alongside their rectification mechanisms. We present an outlook for the field, as well as prospects for the commercialization of molecular rectifiers.
Collapse
|
3
|
Liu Y, Zojer E, Zharnikov M. Sweep-Character-Dependent Switching of the Conductance State in Ferrocene-Substituted Thiofluorene Self-Assembled Monolayers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52499-52507. [PMID: 36355841 DOI: 10.1021/acsami.2c15308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Self-assembled monolayers (SAMs) of ferrocene-substituted thiofluorene on Au(111) exhibit two distinct conductance states (CSs) in two-terminal junctions featuring a sharp tip of eutectic GaIn as the top electrode. The occurrence of these states and the resulting effective rectification by the SAM depend on the way the bias voltage is swept; when the junction is only negatively biased, the original, high CS is preserved, whereas the junction is switched to a low CS when applying only positive biases. This results in an exceptionally high effective rectification ratio (RR) of ∼2100 already at voltages as low as 0.1 V. In contrast, when sweeping the junction alternatingly to the maximum positive and negative bias voltages (as usually performed in the literature), fully symmetric J-V curves are observed. That is, for the present SAM, rectification disappears, and the effective RR is ≈1. It is noteworthy that whether the junction in these symmetric sweeps is in the high or low CS depends on the polarity of the first sweep. We attribute the occurrence of the two CSs to a (quasi) non-reversible oxidation of the ferrocenes in combination with structural changes in the monolayer geometry. The observed sweeping dependence of the conductivity switching is an additional parameter that needs to be considered when interpreting experimental J-V curves, especially when dealing with redox-active systems.
Collapse
Affiliation(s)
- Yangbiao Liu
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Egbert Zojer
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Michael Zharnikov
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| |
Collapse
|
4
|
Gupta R, Jash P, Pritam A, Mondal PC. Electrochemically Deposited Molecular Thin Films on Transparent Conductive Oxide substrate: Combined DC and AC Approaches for Characterization. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transparent conductive oxides such as indium tin oxide (ITO) substrates are commonly employed as prime materials for optoelectronic applications. Enhancement in functions of such devices often compels stable and robust modification of the ITO substrate to improve its interfacial charge transfer characteristics. Thereby, in this work, naphthyl modifier multilayer films are fabricated on ITO substrate using conventional electrochemical reduction of 1-naphthyl diazonium salts (NAPH-D) via altering its concentration ranging from 2 mM to 12 mM with a step size of 2. Surface coverage was significantly tuned by varying NAPH-D concentration, keeping other parameters such as the number of scans and scan rate constant. For lower concentration (2 mM), the molecular thickness ~ 6 nm was obtained, whereas, with higher concentration (12 mM) produced around 15-18 nm thickness. Atomic force microscopy (AFM), cyclic voltammetry and electrochemical impedance spectroscopy (EIS) in the presence of a ferrocene redox probe also supports the formation of well packed molecular film grown on the ITO surface. Further, the wettability property of the grafted naphthyl film was investigated at different surface coverages and correlated with charge transfer resistance (Rct) obtained from EIS studies.
Collapse
Affiliation(s)
- Ritu Gupta
- Indian Institute of Technology Kanpur, 30077, Chemistry, Kanpur, Uttar Pradesh, India
| | - Priyajit Jash
- Indian Institute of Technology Kanpur, 30077, Chemistry, Kanpur, Uttar Pradesh, India,
| | - Anurag Pritam
- Indian Institute of Technology Kanpur, 30077, Chemistry, Kanpur, Uttar Pradesh, India,
| | - Prakash Chandra Mondal
- Indian Institute of Technology Kanpur, 30077, Chemistry, OLD SAC, BLOCK A, Office 5, Kanpur, Uttar Pradesh, India, 208016,
| |
Collapse
|
5
|
Gupta R, Jash P, Sachan P, Bayat A, Singh V, Mondal PC. Electrochemical Potential‐Driven High‐Throughput Molecular Electronic and Spintronic Devices: From Molecules to Applications. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ritu Gupta
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| | - Priyajit Jash
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| | - Pradeep Sachan
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| | - Akhtar Bayat
- Laboratoire Photonique Numérique et Nanosciences, UMR 5298 Université de Bordeaux 33400 Talence France
| | - Vikram Singh
- Department of Chemistry and National Science Research Institute Korea Advanced Institute of Science and Technology 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Prakash Chandra Mondal
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| |
Collapse
|
6
|
Médard J, Sun X, Pinson J, Li D, Mangeney C, Michel JP. Electrografting and Langmuir-Blodgett: Covalently Bound Nanometer-Thick Ordered Films on Graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12539-12547. [PMID: 34677986 DOI: 10.1021/acs.langmuir.1c01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present two different molecular organizations obtained from octadecylamine (ODA) molecules on a highly oriented pyrolytic graphite (HOPG) surface: (i) self-organized physisorbed ODA molecules lying flat on the surface and (ii) a strongly electrografted compact crystalline monolayer of ODA molecules standing up on the surface. This new structure is obtained by combining the Langmuir-Blodgett transfer of an ODA Langmuir film onto HOPG with oxidative electrografting. The presence of an organic film on HOPG is characterized by attenuated total reflectance-infrared spectroscopy and Raman spectroscopy, while atomic force microscopy and scanning tunneling microscopy allow the observation of the two molecular organizations with adsorbed molecules lying flat on HOPG or strongly grafted in an upright position on the HOPG surface. Interestingly, the second molecular organization preserves a hexagonal symmetry and its lattice parameters are intermediate between those of ODA Langmuir films and that of the HOPG underlying surface. The functionalization of surfaces with organic films is a major issue in the design of sensors with biomedical applications or organic electronics and energy storage devices and these structures may find applications in these fields.
Collapse
Affiliation(s)
- Jérôme Médard
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - Xiaonan Sun
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - Jean Pinson
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - Da Li
- Université de Paris, UMR 8601, CNRS, 45 rue des Saints Pères, 75006 Paris, France
| | - Claire Mangeney
- Université de Paris, UMR 8601, CNRS, 45 rue des Saints Pères, 75006 Paris, France
| | - Jean-Philippe Michel
- Université Paris Saclay, Institut Galien Paris Saclay, CNRS, UMR 8612, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
| |
Collapse
|
7
|
Gupta R, Jash P, Sachan P, Bayat A, Singh V, Mondal PC. Electrochemical Potential-Driven High-Throughput Molecular Electronic and Spintronic Devices: From Molecules to Applications. Angew Chem Int Ed Engl 2021; 60:26904-26921. [PMID: 34313372 DOI: 10.1002/anie.202104724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 01/25/2023]
Abstract
Molecules are fascinating candidates for constructing tunable and electrically conducting devices by the assembly of either a single molecule or an ensemble of molecules between two electrical contacts followed by current-voltage (I-V) analysis, which is often termed "molecular electronics". Recently, there has been also an upsurge of interest in spin-based electronics or spintronics across the molecules, which offer additional scope to create ultrafast responsive devices with less power consumption and lower heat generation using the intrinsic spin property rather than electronic charge. Researchers have been exploring this idea of utilizing organic molecules, organometallics, coordination complexes, polymers, and biomolecules (proteins, enzymes, oligopeptides, DNA) in integrating molecular electronics and spintronics devices. Although several methods exist to prepare molecular thin-films on suitable electrodes, the electrochemical potential-driven technique has emerged as highly efficient. In this Review we describe recent advances in the electrochemical potential driven growth of nanometric various molecular films on technologically relevant substrates, including non-magnetic and magnetic electrodes to investigate the stimuli-responsive charge and spin transport phenomena.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India
| | - Priyajit Jash
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India
| | - Pradeep Sachan
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India
| | - Akhtar Bayat
- Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Université de Bordeaux, 33400, Talence, France
| | - Vikram Singh
- Department of Chemistry and National Science Research Institute, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Prakash Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
8
|
Supur M, Saxena SK, McCreery RL. Ion-Assisted Resonant Injection and Charge Storage in Carbon-Based Molecular Junctions. J Am Chem Soc 2020; 142:11658-11662. [DOI: 10.1021/jacs.0c03943] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mustafa Supur
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Shailendra K. Saxena
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Richard L. McCreery
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
9
|
Liu Y, Zhong M, Downey EF, Chen X, Li T, Nørgaard K, Wei Z. Temperature dependence of charge transport in solid-state molecular junctions based on oligo(phenylene ethynylene)s. NANOTECHNOLOGY 2020; 31:164001. [PMID: 31891933 DOI: 10.1088/1361-6528/ab6681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ultimate goal of molecular electronics is to achieve practical applications. For approaching the target, we have successfully fabricated solid-state junctions based on oligo(phenylene ethynylene)s (OPEs) and cruciform OPEs with extended tetrathiafulvalene (TTF) (OPE3 and OPE3-TTF) self-assembled monolayers (SAMs) with a diamine anchoring group. SAMs were confined in micropores with gold substrates to ensure well-defined device surface areas. The transport properties were conducted on a double-junction layout, which the rGO films used for top contacts and interconnects between adjacent SAMs. The solid-state devices based on OPE3-TTF SAMs showed the expected higher conductance under ambient conditions because of the incorporation of a TTF moiety. The two devices displayed varying degrees of temperature dependence with decreasing temperature, which resulted from the cross-conjugated OPE3-TTF molecule exhibiting quantum interference while the linear-conjugated OPE3 molecule did not. This study shows the temperature dependence of the electrical properties of molecular devices based on cruciform OPEs, further enriching the research results of functional molecular devices.
Collapse
Affiliation(s)
- Yuqing Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100083, People's Republic of China. Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China. Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | | | | | | | | | | | | |
Collapse
|
10
|
Sachan P, Mondal PC. Versatile electrochemical approaches towards the fabrication of molecular electronic devices. Analyst 2020; 145:1563-1582. [DOI: 10.1039/c9an01948k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We highlight state-of-the-art electrochemical approaches for diazonium electroreduction on various electrodes that may be suitable for flexible molecular electronic junctions.
Collapse
Affiliation(s)
- Pradeep Sachan
- Department of Chemistry
- Indian Institute of Technology
- Kanpur
- India
| | | |
Collapse
|
11
|
Van Dyck C, Bergren AJ, Mukundan V, Fereiro JA, DiLabio GA. Extent of conjugation in diazonium-derived layers in molecular junction devices determined by experiment and modelling. Phys Chem Chem Phys 2019; 21:16762-16770. [PMID: 31328202 DOI: 10.1039/c9cp03509e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This paper shows that molecular layers grown using diazonium chemistry on carbon surfaces have properties indicative of the presence of a variety of structural motifs. Molecular layers grown with aromatic monomers with thickness between 1 and ∼15 nm display optical absorption spectra with significant broadening but no change in band gap or onsets of absorption as a function of layer thickness. This suggests that there is no extended conjugation in these layers, contrary to the conclusions of previous work. Density-functional theory modelling of the non-conjugated versions of the constituent aromatic monomers reveals that the experimental trends in optical spectra can be recovered, thereby establishing limits to the degree of conjugation and the nature of the order of as-grown molecular layers. We conclude that the absence of both shifts in band gap and changes in absorption onset is a consequence of resonant conjugation within the layers being less than 1.5 monomer units, and that film disorder is the main origin of the optical spectra. These findings have important implications for understanding charge transport mechanisms in molecular junction devices, as the layers cannot be expected to behave as ideal, resonantly conjugated films, but should be viewed as a collection of mixed nonresonantly- and resonantly-conjugated monomers.
Collapse
Affiliation(s)
- Colin Van Dyck
- Nanotechnology Research Centre, National Research Council of Canada, 11427 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada.
| | - Adam Johan Bergren
- Nanotechnology Research Centre, National Research Council of Canada, 11427 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada.
| | - Vineetha Mukundan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jerry A Fereiro
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gino A DiLabio
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, British Columbia V1V 1V7, Canada. and Faculty of Management, The University of British Columbia, 1137 Alumni Ave, Kelowna, British Columbia V1V 1V7, Canada
| |
Collapse
|
12
|
Chandra Mondal P, Tefashe UM, McCreery RL. Internal Electric Field Modulation in Molecular Electronic Devices by Atmosphere and Mobile Ions. J Am Chem Soc 2018; 140:7239-7247. [DOI: 10.1021/jacs.8b03228] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Ushula M. Tefashe
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Richard L. McCreery
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|