1
|
Li W, Tan CH, Baek JS, Jiang L, Ng NKJ, Chong KKL, Wong JJ, Gao L, Kline KA, Loo SCJ. Anti-Intracellular MRSA Activity of Antibiotic-Loaded Lipid-Polymer Hybrid Nanoparticles and Their Effectiveness in Murine Skin Wound Infection Models. ACS Infect Dis 2025; 11:750-761. [PMID: 39949070 DOI: 10.1021/acsinfecdis.4c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a significant concern for skin and soft tissue infections. Apart from biofilm formation, these bacteria can reside intracellularly in phagocytic and nonphagocytic mammalian cells, complicating treatment with conventional antibiotics. Lipid-polymer hybrid nanoparticle (LPN) systems, combining the advantages of polymeric nanoparticles and liposomes, represent a new generation of nanocarriers with the potential to address these therapeutic challenges. In this study, gentamicin (Gen) and vancomycin (Van) were encapsulated in LPNs and evaluated for their ability to eliminate intracellular MRSA in phagocytic macrophage RAW-Blue cells and nonphagocytic epithelial HaCaT cells. Compared to free antibiotics at 100 μg/mL, LPN formulations significantly reduced intracellular bacterial loads in both cell lines. Specifically, LPN-Van resulted in approximately 0.7 Log CFU/well reduction in RAW-Blue cells and 0.3 Log CFU/well reduction in HaCaT cells. LPN-Gen showed a more pronounced reduction, with approximately 1.26 Log CFU/well reduction in RAW-Blue cells and 0.45 Log CFU/well reduction in HaCaT cells. In vivo, LPN-Van at 500 μg/mL significantly reduced MRSA biofilm viability compared to untreated controls (p < 0.001), achieving 98% eradication based on median values. In comparison, free vancomycin achieved a nonstatistically significant 79.2% reduction in biofilm viability compared to control. Prophylactically, LPN-Van at 500 μg/mL decreased MRSA levels to the limit of detection, resulting in a ∼3.5 Log reduction in the median CFU/wound compared to free vancomycin. No acute dermal toxicity was observed for LPN-Van based on histological analysis. These data indicate that LPNs show promise as a drug delivery platform technology to address intracellular infections.
Collapse
Affiliation(s)
- Wenrui Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore
| | - Chuan Hao Tan
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jong-Suep Baek
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Lai Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Noele Kai Jing Ng
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Kelvin Kian Long Chong
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jun Jie Wong
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Liheng Gao
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kimberly A Kline
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
2
|
Bose S, Das SK. Biofilm Microenvironment-Sensitive Anti-Virulent and Immunomodulatory Nano-on-Nanodroplets to Combat Refractory Biofilm Infection Through Toxin Neutralization and Phagocytosis. Adv Healthc Mater 2025; 14:e2403528. [PMID: 39449220 DOI: 10.1002/adhm.202403528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Biofilm-associated wound infection is principally perceived as the bacterial defense mechanism that hinders antibiotic penetration, causes toxin impairment, and suppresses the immunological responses of the host immune system. Several antibiofilm agents have been developed, but the least of these agents can simultaneously cornerstone on the biofilm-associated immunosuppression and bacterial toxin-induced cellular dysfunction. Inspired by the fusogenic property of nanodroplets and immunomodulatory functions of metal nanoparticles, biofilm targeted anti-virulent immunomodulatory cationic nanoparticle shelled nanodroplets (C-AgND) is fabricated to completely disintegrate and eradicate the Staphylococcus aureus (S. aureus) biofilm. The specific binding of C-AgND neutralizes the negatively charged EPS layer, causing their destabilization followed by penetration of the nanoformulation into the biofilm matrix, killing the persister cells. Consequently, C-AgND eliminates the virulence property of the S. aureus biofilm through α-hemolysin neutralization. C-AgND promotes a strong immunomodulatory effect by polarizing macrophages into their M1 phenotype to induce phagocytosis of the disintegrated biofilm-released residual cells, rejuvenating the host's innate immune responses for the complete eradication of the biofilm. Moreover, the ex vivo skin wound infection model illustrates an excellent biofilm eradication efficacy of C-AgND in comparison to the commercial ones, rendering them to be a promising replacement of existing antibiofilm agents in clinical application.
Collapse
Affiliation(s)
- Somashree Bose
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sujoy K Das
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Blanco Massani M, To D, Meile S, Schmelcher M, Gintsburg D, Coraça-Huber DC, Seybold A, Loessner M, Bernkop-Schnürch A. Enzyme-responsive nanoparticles: enhancing the ability of endolysins to eradicate Staphylococcus aureus biofilm. J Mater Chem B 2024; 12:9199-9205. [PMID: 39263769 DOI: 10.1039/d4tb01122h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Stimuli-responsive nanomaterials show promise in eradicating Staphylococcus aureus biofilm from implants. Peptidoglycan hydrolases (PGHs) are cationic antimicrobials that can be bioengineered to improve the targeting of persisters and drug-resistant bacteria. However, these molecules can be degraded before reaching the target and/or present limited efficacy against biofilm. Therefore, there is an urgent need to improve their potency. Herein, PGH-polyphosphate nanoparticles (PGH-PP NPs) are formed by ionotropic gelation between cationic PGHs and anionic polyphosphate, with the aim of protecting PHGs and delivering them at the target site triggered by alkaline phosphatase (AP) from S. aureus biofilm. Optimized conditions for obtaining M23-PP NPs and GH15-PP NPs are presented. Size, zeta potential, and transmission electron microscopy imaging confirm the nanoscale size. The system demonstrates outstanding performance, as evidenced by a dramatic reduction in PGHs' minimum inhibitory concentration and minimum bactericidal concentration, together with protection against proteolytic effects, storage stability, and cytotoxicity towards the Caco-2 and HeLa cell lines. Time-kill experiments show the great potential of these negatively charged delivery systems in overcoming the staphylococcal biofilm barrier. Efficacy under conditions inhibiting AP proves the enzyme-triggered delivery of PGHs. The enzyme-responsive PGH-PP NPs significantly enhance the effectiveness of PGHs against bacteria residing in biofilm, offering a promising strategy for eradicating S. aureus biofilm.
Collapse
Affiliation(s)
- Mariana Blanco Massani
- Centre for Chemistry and Biomedicine (CCB), Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Dennis To
- Centre for Chemistry and Biomedicine (CCB), Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Susanne Meile
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - David Gintsburg
- Centre for Chemistry and Biomedicine (CCB), Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Débora C Coraça-Huber
- Biofilm Lab, Experimental Orthopedics, University Hospital for Orthopaedics and Traumatology, Medical University Innsbruck, Müllerstrasse 44, 1. Floor, 6020 Innsbruck, Austria
| | - Anna Seybold
- Department of Zoology, University of Innsbruck, 6020, Innsbruck, Austria
| | - Martin Loessner
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Andreas Bernkop-Schnürch
- Centre for Chemistry and Biomedicine (CCB), Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
4
|
Panthi VK, Fairfull-Smith KE, Islam N. Liposomal drug delivery strategies to eradicate bacterial biofilms: Challenges, recent advances, and future perspectives. Int J Pharm 2024; 655:124046. [PMID: 38554739 DOI: 10.1016/j.ijpharm.2024.124046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Typical antibiotic treatments are often ineffectual against biofilm-related infections since bacteria residing within biofilms have developed various mechanisms to resist antibiotics. To overcome these limitations, antimicrobial-loaded liposomal nanoparticles are a promising anti-biofilm strategy as they have demonstrated improved antibiotic delivery and eradication of bacteria residing in biofilms. Antibiotic-loaded liposomal nanoparticles revealed remarkably higher antibacterial and anti-biofilm activities than free drugs in experimental settings. Moreover, liposomal nanoparticles can be used efficaciously for the combinational delivery of antibiotics and other antimicrobial compounds/peptide which facilitate, for instance, significant breakdown of the biofilm matrix, increased bacterial elimination from biofilms and depletion of metabolic activity of various pathogens. Drug-loaded liposomes have mitigated recurrent infections and are considered a promising tool to address challenges associated to antibiotic resistance. Furthermore, it has been demonstrated that surface charge and polyethylene glycol modification of liposomes have a notable impact on their antibacterial biofilm activity. Future investigations should tackle the persistent hurdles associated with development of safe and effective liposomes for clinical application and investigate novel antibacterial treatments, including CRISPR-Cas gene editing, natural compounds, phages, and nano-mediated approaches. Herein, we emphasize the significance of liposomes in inhibition and eradication of various bacterial biofilms, their challenges, recent advances, and future perspectives.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kathryn E Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia; Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia; Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, Govaerts M, Aizawa J, Tammela P, Žalubovskis R. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem 2023; 38:2155816. [PMID: 36629427 PMCID: PMC9848314 DOI: 10.1080/14756366.2022.2155816] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.
Collapse
Affiliation(s)
- Aiva Plotniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| | | | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Carta
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Matthias Govaerts
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Juliana Aizawa
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
6
|
Colilla M, Vallet-Regí M. Organically Modified Mesoporous Silica Nanoparticles against Bacterial Resistance. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:8788-8805. [PMID: 38027542 PMCID: PMC10653088 DOI: 10.1021/acs.chemmater.3c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Bacterial antimicrobial resistance is posed to become a major hazard to global health in the 21st century. An aggravating issue is the stalled antibiotic research pipeline, which requires the development of new therapeutic strategies to combat antibiotic-resistant infections. Nanotechnology has entered into this scenario bringing up the opportunity to use nanocarriers capable of transporting and delivering antimicrobials to the target site, overcoming bacterial resistant barriers. Among them, mesoporous silica nanoparticles (MSNs) are receiving growing attention due to their unique features, including large drug loading capacity, biocompatibility, tunable pore sizes and volumes, and functionalizable silanol-rich surface. This perspective article outlines the recent research advances in the design and development of organically modified MSNs to fight bacterial infections. First, a brief introduction to the different mechanisms of bacterial resistance is presented. Then, we review the recent scientific approaches to engineer multifunctional MSNs conceived as an assembly of inorganic and organic building blocks, against bacterial resistance. These elements include specific ligands to target planktonic bacteria, intracellular bacteria, or bacterial biofilm; stimuli-responsive entities to prevent antimicrobial cargo release before arriving at the target; imaging agents for diagnosis; additional constituents for synergistic combination antimicrobial therapies; and aims to improve the therapeutic outcomes. Finally, this manuscript addresses the current challenges and future perspectives on this hot research area.
Collapse
Affiliation(s)
- Montserrat Colilla
- Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación
Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - María Vallet-Regí
- Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación
Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
7
|
Guo Y, Mao Z, Ran F, Sun J, Zhang J, Chai G, Wang J. Nanotechnology-Based Drug Delivery Systems to Control Bacterial-Biofilm-Associated Lung Infections. Pharmaceutics 2023; 15:2582. [PMID: 38004561 PMCID: PMC10674810 DOI: 10.3390/pharmaceutics15112582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Airway mucus dysfunction and impaired immunological defenses are hallmarks of several lung diseases, including asthma, cystic fibrosis, and chronic obstructive pulmonary diseases, and are mostly causative factors in bacterial-biofilm-associated respiratory tract infections. Bacteria residing within the biofilm architecture pose a complex challenge in clinical settings due to their increased tolerance to currently available antibiotics and host immune responses, resulting in chronic infections with high recalcitrance and high rates of morbidity and mortality. To address these unmet clinical needs, potential anti-biofilm therapeutic strategies are being developed to effectively control bacterial biofilm. This review focuses on recent advances in the development and application of nanoparticulate drug delivery systems for the treatment of biofilm-associated respiratory tract infections, especially addressing the respiratory barriers of concern for biofilm accessibility and the various types of nanoparticles used to combat biofilms. Understanding the obstacles facing pulmonary drug delivery to bacterial biofilms and nanoparticle-based approaches to combatting biofilm may encourage researchers to explore promising treatment modalities for bacterial-biofilm-associated chronic lung infections.
Collapse
Affiliation(s)
- Yutong Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang Ran
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jingfeng Zhang
- The Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315000, China
| | - Guihong Chai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| |
Collapse
|
8
|
Le H, Dé E, Le Cerf D, Karakasyan C. Using Targeted Nano-Antibiotics to Improve Antibiotic Efficacy against Staphylococcus aureus Infections. Antibiotics (Basel) 2023; 12:1066. [PMID: 37370385 DOI: 10.3390/antibiotics12061066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The poor bioavailability of antibiotics at infection sites is one of the leading causes of treatment failure and increased bacterial resistance. Therefore, developing novel, non-conventional antibiotic delivery strategies to deal with bacterial pathogens is essential. Here, we investigated the encapsulation of two fluoroquinolones, ciprofloxacin and levofloxacin, into polymer-based nano-carriers (nano-antibiotics), with the goal of increasing their local bioavailability at bacterial infection sites. The formulations were optimized to achieve maximal drug loading. The surfaces of nano-antibiotics were modified with anti-staphylococcal antibodies as ligand molecules to target S. aureus pathogens. The interaction of nano-antibiotics with the bacterial cells was investigated via fluorescent confocal microscopy. Conventional tests (MIC and MBC) were used to examine the antibacterial properties of nano-antibiotic formulations. Simultaneously, a bioluminescence assay model was employed, revealing the rapid and efficient assessment of the antibacterial potency of colloidal systems. In comparison to the free-form antibiotic, the targeted nano-antibiotic exhibited enhanced antimicrobial activity against both the planktonic and biofilm forms of S. aureus. Furthermore, our data suggested that the efficacy of a targeted nano-antibiotic treatment can be influenced by its antibiotic release profile.
Collapse
Affiliation(s)
- Hung Le
- Sciences & Technic Faculty, Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, 76000 Rouen, France
| | - Emmanuelle Dé
- Sciences & Technic Faculty, Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, 76000 Rouen, France
| | - Didier Le Cerf
- Sciences & Technic Faculty, Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, 76000 Rouen, France
| | - Carole Karakasyan
- Sciences & Technic Faculty, Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, 76000 Rouen, France
| |
Collapse
|
9
|
Elhassan E, Devnarain N, Mohammed M, Govender T, Omolo CA. Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections. J Control Release 2022; 351:598-622. [DOI: 10.1016/j.jconrel.2022.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 11/30/2022]
|
10
|
Lee H, Kharel S, Loo SCJ. Lipid-Coated Hybrid Nanoparticles for Enhanced Bacterial Biofilm Penetration and Antibiofilm Efficacy. ACS OMEGA 2022; 7:35814-35824. [PMID: 36249378 PMCID: PMC9558607 DOI: 10.1021/acsomega.2c04008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/23/2022] [Indexed: 06/01/2023]
Abstract
Up to 80% of all infections are biofilm-mediated and they are often challenging to treat as the underlying bacterial cells can become 100- to 1000-fold more tolerant toward antibiotics. Antibiotic-loaded nanoparticles have gained traction as a potential drug delivery system to treat biofilm infections. In particular, lipid-coated hybrid nanoparticles (LCHNPs) were investigated on their capability to deliver antibiotics into biofilms. In this study, LCHNPs composed of a poly(lactic-co-glycolic acid) (PLGA) core and dioleoyl-3-trimethylammonium propane (DOTAP) lipid shell were developed and loaded with vancomycin (Van). In vitro antibacterial and antibiofilm tests were performed to evaluate the antimicrobial efficacy of the LCHNPs. LCHNPs were successfully fabricated with high vancomycin encapsulation and loading efficiencies, and exhibited enhanced antibacterial effects against planktonic Staphylococcus aureus USA300 when compared against Free-Van and Van-PLGANPs. When used to treat USA300 biofilms, Van-LCHNPs eradicated up to 99.99% of the underlying biofilm cells, an effect which was not observed for Free-Van and Van-PLGANPs. Finally, we showed that by possessing a robust DOTAP shell, LCHNPs were able to penetrate deeply into the biofilms.
Collapse
Affiliation(s)
- Hiang
Wee Lee
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Sharad Kharel
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Say Chye Joachim Loo
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 308232, Singapore
| |
Collapse
|
11
|
Al-Wrafy FA, Al-Gheethi AA, Ponnusamy SK, Noman EA, Fattah SA. Nanoparticles approach to eradicate bacterial biofilm-related infections: A critical review. CHEMOSPHERE 2022; 288:132603. [PMID: 34678351 DOI: 10.1016/j.chemosphere.2021.132603] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Biofilm represents one of the crucial factors for the emergence of multi-drug resistance bacterial infections. The high mortality, morbidity and medical device-related infections are associated with biofilm formation, which requires primarily seek alternative treatment strategies. Recently, nanotechnology has emerged as a promising method for eradicating bacterial biofilm-related infection. The efficacy of nanoparticles (NPs) against bacterial infections interest great attention, and the researches on the subject are rapidly increasing. However, the majority of studies continue to focus on the antimicrobial effects of NPs in vitro, while only a few achieved in vivo and very few registered as clinical trials. The present review aimed to organize the scattered available information regarding NPs approach to eradicate bacterial biofilm-related infections. The current review highlighted the advantages and disadvantages associated with this approach, in addition to the challenges that prevent reaching the clinical applications. It was appeared that the production of NPs either as antimicrobials or as drug carriers requires further investigations to overcome the obstacles associated with their kinetic and biocompatibility.
Collapse
Affiliation(s)
- Fairoz Ali Al-Wrafy
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350, Taiz, Yemen.
| | - Adel Ali Al-Gheethi
- Civil Department, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, Malaysia.
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Efaq Ali Noman
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350, Taiz, Yemen
| | - Shaima Abdul Fattah
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350, Taiz, Yemen; Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
12
|
El-Hammadi MM, Arias JL. Recent Advances in the Surface Functionalization of PLGA-Based Nanomedicines. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:354. [PMID: 35159698 PMCID: PMC8840194 DOI: 10.3390/nano12030354] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
Therapeutics are habitually characterized by short plasma half-lives and little affinity for targeted cells. To overcome these challenges, nanoparticulate systems have entered into the disease arena. Poly(d,l-lactide-co-glycolide) (PLGA) is one of the most relevant biocompatible materials to construct drug nanocarriers. Understanding the physical chemistry of this copolymer and current knowledge of its biological fate will help in engineering efficient PLGA-based nanomedicines. Surface modification of the nanoparticle structure has been proposed as a required functionalization to optimize the performance in biological systems and to localize the PLGA colloid into the site of action. In this review, a background is provided on the properties and biodegradation of the copolymer. Methods to formulate PLGA nanoparticles, as well as their in vitro performance and in vivo fate, are briefly discussed. In addition, a special focus is placed on the analysis of current research in the use of surface modification strategies to engineer PLGA nanoparticles, i.e., PEGylation and the use of PEG alternatives, surfactants and lipids to improve in vitro and in vivo stability and to create hydrophilic shells or stealth protection for the nanoparticle. Finally, an update on the use of ligands to decorate the surface of PLGA nanomedicines is included in the review.
Collapse
Affiliation(s)
- Mazen M. El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, 18071 Granada, Spain
| |
Collapse
|
13
|
Ryu S, Jin M, Lee HK, Wang MH, Baek JS, Cho CW. Effects of lipid nanoparticles on physicochemical properties, cellular uptake, and lymphatic uptake of 6-methoxflavone. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-021-00557-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Mohanta YK, Chakrabartty I, Mishra AK, Chopra H, Mahanta S, Avula SK, Patowary K, Ahmed R, Mishra B, Mohanta TK, Saravanan M, Sharma N. Nanotechnology in combating biofilm: A smart and promising therapeutic strategy. Front Microbiol 2022; 13:1028086. [PMID: 36938129 PMCID: PMC10020670 DOI: 10.3389/fmicb.2022.1028086] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/19/2022] [Indexed: 03/06/2023] Open
Abstract
Since the birth of civilization, people have recognized that infectious microbes cause serious and often fatal diseases in humans. One of the most dangerous characteristics of microorganisms is their propensity to form biofilms. It is linked to the development of long-lasting infections and more severe illness. An obstacle to eliminating such intricate structures is their resistance to the drugs now utilized in clinical practice (biofilms). Finding new compounds with anti-biofilm effect is, thus, essential. Infections caused by bacterial biofilms are something that nanotechnology has lately shown promise in treating. More and more studies are being conducted to determine whether nanoparticles (NPs) are useful in the fight against bacterial infections. While there have been a small number of clinical trials, there have been several in vitro outcomes examining the effects of antimicrobial NPs. Nanotechnology provides secure delivery platforms for targeted treatments to combat the wide range of microbial infections caused by biofilms. The increase in pharmaceuticals' bioactive potential is one of the many ways in which nanotechnology has been applied to drug delivery. The current research details the utilization of several nanoparticles in the targeted medication delivery strategy for managing microbial biofilms, including metal and metal oxide nanoparticles, liposomes, micro-, and nanoemulsions, solid lipid nanoparticles, and polymeric nanoparticles. Our understanding of how these nanosystems aid in the fight against biofilms has been expanded through their use.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- *Correspondence: Yugal Kishore Mohanta,
| | - Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati, Assam, India
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Kaustuvmani Patowary
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ramzan Ahmed
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Bibhudutta Mishra
- Department of Gastroenterology and HNU, All India Institute of Medical Sciences, New Delhi, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Tapan Kumar Mohanta,
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal, Manipur, India
- Nanaocha Sharma,
| |
Collapse
|
15
|
Hajipour MJ, Saei AA, Walker ED, Conley B, Omidi Y, Lee K, Mahmoudi M. Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100556. [PMID: 34558234 PMCID: PMC8564466 DOI: 10.1002/advs.202100556] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/06/2021] [Indexed: 05/04/2023]
Abstract
The emergence of nanotechnology has created unprecedented hopes for addressing several unmet industrial and clinical issues, including the growing threat so-termed "antibiotic resistance" in medicine. Over the last decade, nanotechnologies have demonstrated promising applications in the identification, discrimination, and removal of a wide range of pathogens. Here, recent insights into the field of bacterial nanotechnology are examined that can substantially improve the fundamental understanding of nanoparticle and bacteria interactions. A wide range of developed nanotechnology-based approaches for bacterial detection and removal together with biofilm eradication are summarized. The challenging effects of nanotechnologies on beneficial bacteria in the human body and environment and the mechanisms of bacterial resistance to nanotherapeutics are also reviewed.
Collapse
Affiliation(s)
- Mohammad J. Hajipour
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| | - Amir Ata Saei
- Division of Physiological Chemistry IDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 65Sweden
| | - Edward D. Walker
- Department of EntomologyMichigan State UniversityEast LansingMI48824USA
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMI48824USA
| | - Brian Conley
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Yadollah Omidi
- Department of Pharmaceutical SciencesCollege of PharmacyNova Southeastern UniversityFort LauderdaleFL33328USA
| | - Ki‐Bum Lee
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
16
|
Abstract
Abstract
The rapid development of nanotechnology paved the way for further expansion of polymer chemistry and the fabrication of advanced polymeric membranes. Such modifications allowed enhancing or adding some unique properties, including mechanical strength, excellent biocompatibility, easily controlled degradability, and biological activity. This chapter discusses various applications of polymeric membranes in three significant areas of biomedicine, including tissue engineering, drug delivery systems, and diagnostics. It is intended to highlight here possible ways of improvement the properties of polymeric membranes, by modifying with other polymers, functional groups, compounds, drugs, bioactive components, and nanomaterials.
Collapse
Affiliation(s)
- Marta J. Woźniak-Budych
- NanoBioMedical Centre , Adam Mickiewicz University , Wszechnicy Piastowskiej 3 , Poznań 61-614 , Poland
| |
Collapse
|
17
|
Tan C, Jiang L, Li W, Chan SH, Baek JS, Ng NKJ, Sailov T, Kharel S, Chong KKL, Loo SCJ. Lipid-Polymer Hybrid Nanoparticles Enhance the Potency of Ampicillin against Enterococcus faecalis in a Protozoa Infection Model. ACS Infect Dis 2021; 7:1607-1618. [PMID: 33866781 PMCID: PMC8383308 DOI: 10.1021/acsinfecdis.0c00774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/21/2022]
Abstract
Enterococcus faecalis (E. faecalis) biofilms are implicated in endocarditis, urinary tract infections, and biliary tract infections. Coupled with E. faecalis internalization into host cells, this opportunistic pathogen poses great challenges to conventional antibiotic therapy. The inability of ampicillin (Amp) to eradicate bacteria hidden in biofilms and intracellular niches greatly reduces its efficacy against complicated E. faecalis infections. To enhance the potency of Amp against different forms of E. faecalis infections, Amp was loaded into Lipid-Polymer hybrid Nanoparticles (LPNs), a highly efficient nano delivery platform consisting of a unique combination of DOTAP lipid shell and PLGA polymeric core. The antibacterial activity of these nanoparticles (Amp-LPNs) was investigated in a protozoa infection model, achieving a much higher multiplicity of infection (MOI) compared with studies using animal phagocytes. A significant reduction of total E. faecalis was observed in all groups receiving 250 μg/mL Amp-LPNs compared with groups receiving the same concentration of free Amp during three different interventions, simulating acute and chronic infections and prophylaxis. In early intervention, no viable E. faecalis was observed after 3 h LPNs treatment whereas free Amp did not clear E. faecalis after 24 h treatment. Amp-LPNs also greatly enhanced the antibacterial activity of Amp at late intervention and boosted the survival rate of protozoa approaching 400%, where no viable protozoa were identified in the free Amp groups at the 40 h postinfection treatment time point. Prophylactic effectiveness with Amp-LPNs at a concentration of 250 μg/mL was exhibited in both bacteria elimination and protozoa survival toward subsequent infections. Using protozoa as a surrogate model for animal phagocytes to study high MOI infections, this study suggests that LPN-formulated antibiotics hold the potential to significantly improve the therapeutic outcome in highly complicated bacterial infections.
Collapse
Affiliation(s)
- Chuan
Hao Tan
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Lai Jiang
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798
| | - Wenrui Li
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798
- NTU
Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335
| | - Siew Herng Chan
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Jong-Suep Baek
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798
| | - Noele Kai Jing Ng
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Talgat Sailov
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Sharad Kharel
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798
| | - Kelvin Kian Long Chong
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Say Chye Joachim Loo
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798
- Harvard
T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| |
Collapse
|
18
|
Jiang L, Loo SCJ. Intelligent Nanoparticle-Based Dressings for Bacterial Wound Infections. ACS APPLIED BIO MATERIALS 2021; 4:3849-3862. [PMID: 34056562 PMCID: PMC8155196 DOI: 10.1021/acsabm.0c01168] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
Conventional wound dressing materials containing free antibiotics for bacterial wound infections are presented with several limitations, that is, lack of controlled and triggered release capabilities, and may often not be adequate to address the complex bacteria microenvironment of such infections. Additionally, the improper usage of antibiotics may also result in the emergence of drug resistant strains. While delivery systems (i.e., nanoparticles) that encapsulate antibiotics may potentially overcome some of these limitations, their therapeutic outcomes are still less than desirable. For example, premature drug release or unintended drug activation may occur, which would greatly reduce treatment efficacy. To address this, responsive nanoparticle-based antimicrobial therapies could be a promising strategy. Such nanoparticles can be functionalized to react to a single stimulus or multi stimulus within the bacteria microenvironment and subsequently elicit a therapeutic response. Such "intelligent" nanoparticles can be designed to respond to the microenvironment, that is, an acidic pH, the presence of specific enzymes, bacterial toxins, etc. or to an external stimulus, for example, light, thermal, etc. These responsive nanoparticles can be further incorporated into wound dressings to better promote wound healing. This review summarizes and highlights the recent progress on such intelligent nanoparticle-based dressings as potential wound dressings for bacteria-infected wounds, along with the current challenges and prospects for these technologies to be successfully translated into the clinic.
Collapse
Affiliation(s)
- Lai Jiang
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Say Chye Joachim Loo
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Harvard
T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
19
|
Huang Z, Kłodzińska SN, Wan F, Nielsen HM. Nanoparticle-mediated pulmonary drug delivery: state of the art towards efficient treatment of recalcitrant respiratory tract bacterial infections. Drug Deliv Transl Res 2021; 11:1634-1654. [PMID: 33694082 PMCID: PMC7945609 DOI: 10.1007/s13346-021-00954-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
Recalcitrant respiratory tract infections caused by bacteria have emerged as one of the greatest health challenges worldwide. Aerosolized antimicrobial therapy is becoming increasingly attractive to combat such infections, as it allows targeted delivery of high drug concentrations to the infected organ while limiting systemic exposure. However, successful aerosolized antimicrobial therapy is still challenged by the diverse biological barriers in infected lungs. Nanoparticle-mediated pulmonary drug delivery is gaining increasing attention as a means to overcome the biological barriers and accomplish site-specific drug delivery by controlling release of the loaded drug(s) at the target site. With the aim to summarize emerging efforts in combating respiratory tract infections by using nanoparticle-mediated pulmonary delivery strategies, this review provides a brief introduction to the bacterial infection-related pulmonary diseases and the biological barriers for effective treatment of recalcitrant respiratory tract infections. This is followed by a summary of recent advances in design of inhalable nanoparticle-based drug delivery systems that overcome the biological barriers and increase drug bioavailability. Finally, challenges for the translation from exploratory laboratory research to clinical application are also discussed and potential solutions proposed.
Collapse
Affiliation(s)
- Zheng Huang
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark
| | - Sylvia Natalie Kłodzińska
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark
| | - Feng Wan
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark.
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark.
| |
Collapse
|
20
|
Wang Y. Liposome as a delivery system for the treatment of biofilm-mediated infections. J Appl Microbiol 2021; 131:2626-2639. [PMID: 33650748 DOI: 10.1111/jam.15053] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Biofilm formation by pathogenic microorganisms has been a tremendous challenge for antimicrobial therapies due to various factors. The biofilm matrix sequesters bacterial cells from the exterior environment and therefore prevents antimicrobial agents from reaching the interior. In addition, biofilm surface extracellular polymeric substances can absorb antimicrobial agents and thus reduce their bioavailability. To conquer these protection mechanisms, liposomes have been developed into a drug delivery system for antimicrobial agents against biofilm-mediated infections. The unique characteristics of liposomes, including versatility for cargoes, target-specificity, nonimmunogenicity, low toxicity, and biofilm matrix-/cell membrane-fusogenicity, remarkably improve the effectiveness of antimicrobial agents and minimize recurrence of infections. This review summarizes current development of liposomal carriers for biofilm therapeutics, presents evidence in their practical applications and discusses their potential limitations.
Collapse
Affiliation(s)
- Y Wang
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Qld, Australia
| |
Collapse
|
21
|
Farouk F, El Shimy R, Abdel-Motaleb A, Essam S, Azzazy HM. Detection of Acinetobacter baumannii in fresh produce using modified magnetic nanoparticles and PCR. Anal Biochem 2020; 609:113890. [DOI: 10.1016/j.ab.2020.113890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
|
22
|
Pircalabioru GG, Chifiriuc MC. Nanoparticulate drug-delivery systems for fighting microbial biofilms: from bench to bedside. Future Microbiol 2020; 15:679-698. [PMID: 32495694 DOI: 10.2217/fmb-2019-0251] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biofilms are highly tolerant to antimicrobial agents and adverse environmental conditions being important reservoirs for chronic and hard-to-treat infections. Nanomaterials exhibit microbiostatic/microbicidal/antipathogenic properties and can be also used for the delivery of antibiofilm agents. However, few of the many promising leads offered by nanotechnology reach clinical studies and eventually, become available to clinicians. The aim of this paper was to review the progress and challenges in the development of nanotechnology-based antibiofilm drug-delivery systems. The main identified challenges are: most papers report only in vitro studies of the activity of different nanoformulations; lack of standardization in the methodological approaches; insufficient collaboration between material science specialists and clinicians; paucity of in vivo studies to test efficiency and safety.
Collapse
Affiliation(s)
- Gratiela G Pircalabioru
- University of Bucharest, Faculty of Biology, Research Institute of The University of Bucharest (ICUB), Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- University of Bucharest, Faculty of Biology, Research Institute of The University of Bucharest (ICUB), Bucharest, Romania
| |
Collapse
|
23
|
Jiang L, Lee HW, Loo SCJ. Therapeutic lipid-coated hybrid nanoparticles against bacterial infections. RSC Adv 2020; 10:8497-8517. [PMID: 35497832 PMCID: PMC9050015 DOI: 10.1039/c9ra10921h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 12/26/2022] Open
Abstract
One of the most important health concerns in society is the development of pathogen-causing nosocomial infections. Since the first discovery of antibiotics, bacterial infections have been highly treatable. However, with evolution and the nondiscretionary usage of antibiotics, pathogens have also found new ways to survive the onslaught of antibiotics by surviving intracellularly or through the formation of obstinate biofilms, and through these, the outcomes of regular antibiotic treatments may now be unsatisfactory. Lipid-coated hybrid nanoparticles (LCHNPs) are the next-generation core–shell structured nanodelivery system, where an inorganic or organic core, loaded with antimicrobials, is enveloped by lipid layers. This core–shell structure, with multifarious decorations, not only improves the loading capabilities of therapeutics but also has the potential to improve therapeutic delivery, especially for targeting biofilm-based and intracellular bacterial infections. Although there has been significant interest in the development of LCHNPs, they have yet to be widely exploited for bacterial infections. In this review, we will provide an overview on the latest development of LCHNPs and the various approaches in synthesizing this nano-delivery system. In addition, a discussion on future perspectives of LCHNPs, in combination with other novel anti-bacterial technologies, will be provided towards the end of this review. Lipid-coated hybrid nanoparticles are next-generation core–shell structured nanodelivery systems, which improve the loading capabilities of therapeutics and can improve therapeutic delivery, especially for targeting biofilm-based and intracellular bacterial infections.![]()
Collapse
Affiliation(s)
- Lai Jiang
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore
| | - Hiang Wee Lee
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore
| | - Say Chye Joachim Loo
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore
- Singapore Centre for Environmental Life Sciences Engineering
- Nanyang Technological University
| |
Collapse
|
24
|
Dai X, Zhao Y, Yu Y, Chen X, Wei X, Zhang X, Li C. All-in-one NIR-activated nanoplatforms for enhanced bacterial biofilm eradication. NANOSCALE 2018; 10:18520-18530. [PMID: 30211421 DOI: 10.1039/c8nr04748k] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The chronic infection of humans by antibiotic-resistant bacteria and their related biofilm have, so far, not been properly addressed. In the present work, we developed a novel antibacterial nanoplatform showing the most efficient antibiotic-resistant bacteria inhibition and biofilm eradication. This particular formulation contains tobramycin-conjugated graphene oxide, for efficiently capturing bacteria through electrostatic interactions and eliminating bacteria as a "nano-knife", and copper sulphide nanoparticles for enhancing the photothermal and photodynamic properties. This novel formulation can selectively eliminate bacteria over NIH 3T3 cells, and the biofilm eradication capacity was up to 70%. Importantly, the nanoplatforms can inhibit bacterial growth and promote the repair of antibiotic-resistant bacteria-infected wounds on rats without non-specific damage to normal tissue. This work provides an effective, simple, and rapid method for the design and fabrication of near-infrared light-induced nanoplatforms that offer possibilities to treat biofilm-related infections.
Collapse
Affiliation(s)
- Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | |
Collapse
|