1
|
Chen T, Qiu M, Peng Y, Yi C, Xu Z. Colloidal Polymer-Templated Formation of Inorganic Nanocrystals and their Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303282. [PMID: 37409416 DOI: 10.1002/smll.202303282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Indexed: 07/07/2023]
Abstract
Inorganic nanocrystals possess unique physicochemical properties compared to their bulk counterparts. Stabilizing agents are commonly used for the preparation of inorganic nanocrystals with controllable properties. Particularly, colloidal polymers have emerged as general and robust templates for in situ formation and confinement of inorganic nanocrystals. In addition to templating and stabilizing inorganic nanocrystals, colloidal polymers can tailor their physicochemical properties such as size, shape, structure, composition, surface chemistry, and so on. By incorporating functional groups into colloidal polymers, desired functions can be integrated with inorganic nanocrystals, advancing their potential applications. Here, recent advances in the colloidal polymer-templated formation of inorganic nanocrystals are reviewed. Seven types of colloidal polymers, including dendrimer, polymer micelle, stare-like block polymer, bottlebrush polymer, spherical polyelectrolyte brush, microgel, and single-chain nanoparticle, have been extensively applied for the synthesis of inorganic nanocrystals. Different strategies for the development of these colloidal polymer-templated inorganic nanocrystals are summarized. Then, their emerging applications in the fields of catalysis, biomedicine, solar cells, sensing, light-emitting diodes, and lithium-ion batteries are highlighted. Last, the remaining issues and future directions are discussed. This review will stimulate the development and application of colloidal polymer-templated inorganic nanocrystals.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
2
|
Chauhan S, Patel K, Jain P, Jangid AK, Patel S, Medicherla K, Limbad K, Mehta C, Kulhari H. Matrix Metalloproteinase Enzyme Responsive Delivery of 5-Fluorouracil Using Collagen-I Peptide Functionalized Dendrimer-Gold Nanocarrier. Drug Dev Ind Pharm 2022; 48:333-342. [PMID: 35983681 DOI: 10.1080/03639045.2022.2113404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
ObjectiveThe aim was to develop matrix metalloproteinase 1 (MMP1) responsive nanoparticle system for the delivery of 5-fluorouracil (5Fu) anticancer drug.SignificanceThe MMP1 in the cancer microenvironment induced drug release have advantage of targeted drug release and reduce the distribution of drug to the healthy tissuesMethodG5 polyamidoamine PAMAM dendrimer (G5) coated gold nanoparticles were synthesized and loaded with 5Fu. The drug loaded nanoparticles were further coated with collagen I (Col-I) peptide which is a substrate for MMP1 enzyme (Col-I 5Fu@G5AuNP).ResultThe nanoparticles were highly monodispersed with a particle size of 30 nm and showed high drug encapsulation efficiency. The release of drug from the nanoparticles in HEPES buffer pH 7.4 was faster, higher and better controlled when incubated with MMP1 enzyme. The half-maximum inhibitory concentration for Col-I 5Fu@G5AuNP was eight times lower than the 5Fu against MCF-7, suggesting the improved delivery and anticancer activity of 5Fu after encapsulation in the developed enzyme-responsive nanocarrier system. The computed tomography (CT) x-ray attenuation of Col-I@G5AuNP showed a good contrasting property.ConclusionThe formulation Col-I 5Fu@G5AuNP has improved anticancer activity than free drug and the CT imaging results are promising for its theranostic applications for breast cancer.
Collapse
Affiliation(s)
| | - Krunal Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | | | - Ashok Kumar Jangid
- School of Nano Sciences.,Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Kanakaraju Medicherla
- Department of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam-530003, India
| | - Kajal Limbad
- Department of Radiology, S.S G Hospital and Baroda Medical College, Vadodara-390020, India
| | - Chetan Mehta
- Department of Radiology, S.S G Hospital and Baroda Medical College, Vadodara-390020, India
| | - Hitesh Kulhari
- School of Nano Sciences.,Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati-781101, India
| |
Collapse
|
3
|
Arkas M, Anastopoulos I, Giannakoudakis DA, Pashalidis I, Katsika T, Nikoli E, Panagiotopoulos R, Fotopoulou A, Vardavoulias M, Douloudi M. Catalytic Neutralization of Water Pollutants Mediated by Dendritic Polymers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:445. [PMID: 35159790 PMCID: PMC8838811 DOI: 10.3390/nano12030445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Radially polymerized dendritic compounds are nowadays an established polymer category next to their linear, branched, and cross-linked counterparts. Their uncommon tree-like architecture is characterized by adjustable internal cavities and external groups. They are therefore exceptional absorbents and this attainment of high concentrations in their interior renders them ideal reaction media. In this framework, they are applied in many environmentally benign implementations. One of the most important among them is water purification through pollutant decomposition. Simple and composite catalysts and photo-catalysts containing dendritic polymers and applied in water remediation will be discussed jointly with some unconventional solutions and prospects.
Collapse
Affiliation(s)
- Michael Arkas
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15341 Athens, Greece; (T.K.); (E.N.); (R.P.); (A.F.)
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47040 Arta, Greece;
| | | | - Ioannis Pashalidis
- Environmental & Radioanalytical Chemistry Lab, Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus;
| | - Theodora Katsika
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15341 Athens, Greece; (T.K.); (E.N.); (R.P.); (A.F.)
| | - Eleni Nikoli
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15341 Athens, Greece; (T.K.); (E.N.); (R.P.); (A.F.)
| | - Rafael Panagiotopoulos
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15341 Athens, Greece; (T.K.); (E.N.); (R.P.); (A.F.)
| | - Anna Fotopoulou
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15341 Athens, Greece; (T.K.); (E.N.); (R.P.); (A.F.)
| | | | - Marilina Douloudi
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15341 Athens, Greece; (T.K.); (E.N.); (R.P.); (A.F.)
| |
Collapse
|
4
|
Arif M, Shahid M, Irfan A, Nisar J, Wu W, Farooqi ZH, Begum R. Polymer microgels for the stabilization of gold nanoparticles and their application in the catalytic reduction of nitroarenes in aqueous media. RSC Adv 2022; 12:5105-5117. [PMID: 35425556 PMCID: PMC8981384 DOI: 10.1039/d1ra09380k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/25/2022] [Indexed: 12/28/2022] Open
Abstract
Polymer microgels containing a polystyrene core and poly(N-isopropylmethacrylamide) shell were synthesized in aqueous media following a free radical precipitation polymerization. Au nanoparticles were fabricated into the shell region of the core–shell microgels denoted as P(STY@NIPM) by the in situ reduction of chloroauric acid with sodium borohydride. Various characterization techniques such as transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV-visible) and Fourier transform infrared spectroscopy (FTIR) were used for the characterization of Au–P(STY@NIPM). The catalytic potential of Au–P(STY@NIPM) toward the reductive reaction of 4-nitrophenol (4NP) under various reaction conditions was evaluated. The Arrhenius and Eyring parameters for the catalytic reduction of 4NP were determined to explore the process of catalysis. A variety of nitroarenes were converted successfully into their corresponding aminoarenes with good to excellent yields in the presence of the Au–P(STY@NIPM) system using NaBH4 as a reductant. The Au–P(STY@NIPM) system was found to be an efficient and recyclable catalyst with no significant loss in its catalytic efficiency. A core–shell microgel system was synthesized and used as a micro-reactor for the synthesis of gold nanoparticles. The resulting hybrid system has the ability to catalyze the reduction of various nitroarenes in aqueous media.![]()
Collapse
Affiliation(s)
- Muhammad Arif
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Muhammad Shahid
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Jan Nisar
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zahoor H. Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
5
|
Zhang M, Shao S, Yue H, Wang X, Zhang W, Chen F, Zheng L, Xing J, Qin Y. High Stability Au NPs: From Design to Application in Nanomedicine. Int J Nanomedicine 2021; 16:6067-6094. [PMID: 34511906 PMCID: PMC8418318 DOI: 10.2147/ijn.s322900] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, Au-based nanomaterials are widely used in nanomedicine and biosensors due to their excellent physical and chemical properties. However, these applications require Au NPs to have excellent stability in different environments, such as extreme pH, high temperature, high concentration ions, and various biomatrix. To meet the requirement of multiple applications, many synthetic substances and natural products are used to prepare highly stable Au NPs. Because of this, we aim at offering an update comprehensive summary of preparation high stability Au NPs. In addition, we discuss its application in nanomedicine. The contents of this review are based on a balanced combination of our studies and selected research studies done by worldwide academic groups. First, we address some critical methods for preparing highly stable Au NPs using polymers, including heterocyclic substances, polyethylene glycols, amines, and thiol, then pay attention to natural product progress Au NPs. Then, we sum up the stability of various Au NPs in different stored times, ions solution, pH, temperature, and biomatrix. Finally, the application of Au NPs in nanomedicine, such as drug delivery, bioimaging, photothermal therapy (PTT), clinical diagnosis, nanozyme, and radiotherapy (RT), was addressed concentratedly.
Collapse
Affiliation(s)
- Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Shuxuan Shao
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Haitao Yue
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Xin Wang
- The First Hospital of Jilin University, Changchun, 130061, People’s Republic of China
| | - Wenrui Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Fei Chen
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Li Zheng
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Jun Xing
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| |
Collapse
|
6
|
Polyethyleneimine-Oleic Acid Micelles-Stabilized Palladium Nanoparticles as Highly Efficient Catalyst to Treat Pollutants with Enhanced Performance. Polymers (Basel) 2021; 13:polym13111890. [PMID: 34204167 PMCID: PMC8201335 DOI: 10.3390/polym13111890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Water soluble organic molecular pollution endangers human life and health. It becomes necessary to develop highly stable noble metal nanoparticles without aggregation in solution to improve their catalytic performance in treating pollution. Polyethyleneimine (PEI)-based stable micelles have the potential to stabilize noble metal nanoparticles due to the positive charge of PEI. In this study, we synthesized the amphiphilic PEI-oleic acid molecule by acylation reaction. Amphiphilic PEI-oleic acid assembled into stable PEI-oleic acid micelles with a hydrodynamic diameter of about 196 nm and a zeta potential of about 34 mV. The PEI-oleic acid micelles-stabilized palladium nanoparticles (PO-PdNPsn) were prepared by the reduction of sodium tetrachloropalladate using NaBH4 and the palladium nanoparticles (PdNPs) were anchored in the hydrophilic layer of the micelles. The prepared PO-PdNPsn had a small size for PdNPs and good stability in solution. Noteworthily, PO-PdNPs150 had the highest catalytic activity in reducing 4-nitrophenol (4-NP) (Knor = 18.53 s−1mM−1) and oxidizing morin (Knor = 143.57 s−1M−1) in aqueous solution than other previous catalysts. The enhanced property was attributed to the improving the stability of PdNPs by PEI-oleic acid micelles. The method described in this report has great potential to prepare many kinds of stable noble metal nanoparticles for treating aqueous pollution.
Collapse
|
7
|
Chen X, Zhang L, Xu B, Chen T, Hu L, Yao W, Zhou M, Xu H. Hairy silica nanosphere supported metal nanoparticles for reductive degradation of dye pollutants. NANOSCALE ADVANCES 2021; 3:2879-2886. [PMID: 36134192 PMCID: PMC9419623 DOI: 10.1039/d1na00020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/21/2021] [Indexed: 05/03/2023]
Abstract
Hairy materials can act as a sort of scaffold for the fabrication of functional hybrid composites. In this work, silica nanospheres modified with covalently grafted poly(4-vinylpyridine) (P4VP) brushes, namely, "hairy" silica spheres, were utilized as a support for the anchorage of metal nanoparticles (MNPs), thus resulting in the hierarchical SiO2@P4VP/MNP structure. In this triple-phase boundary heteronanostructure, the SiO2-supported MNPs are well stabilized by the P4VP matrix to avoid aggregation and leaching. These SiO2@P4VP/MNP nanocomposites exhibit good catalytic activity in the reductive degradation of organic dyes, i.e., 4-nitrophenol and rhodamine B and possess excellent stability and recyclability for five successive cycles.
Collapse
Affiliation(s)
- Xin Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Li Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China Nanjing 210042 China
| | - Tingting Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Lianhong Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Wei Yao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Mengxiang Zhou
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Hui Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
8
|
Accelerated Reaction Rates within Self-Assembled Polymer Nanoreactors with Tunable Hydrophobic Microenvironments. Polymers (Basel) 2020; 12:polym12081774. [PMID: 32784742 PMCID: PMC7463608 DOI: 10.3390/polym12081774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/04/2022] Open
Abstract
Performing reactions in the presence of self-assembled hierarchical structures of amphiphilic macromolecules can accelerate reactions while using water as the bulk solvent due to the hydrophobic effect. We leveraged non-covalent interactions to self-assemble filled-polymer micelle nanoreactors (NR) incorporating gold nanoparticle catalysts into various amphiphilic polymer nanostructures with comparable hydrodynamic nanoreactor size and gold concentration in the nanoreactor dispersion. We systematically studied the effect of the hydrophobic co-precipitant on self-assembly and catalytic performance. We observed that co-precipitants that interact with gold are beneficial for improving incorporation efficiency of the gold nanoparticles into the nanocomposite nanoreactor during self-assembly but decrease catalytic performance. Hierarchical assemblies with co-precipitants that leverage noncovalent interactions could enhance catalytic performance. For the co-precipitants that do not interact strongly with gold, the catalytic performance was strongly affected by the hydrophobic microenvironment of the co-precipitant. Specifically, the apparent reaction rate per surface area using castor oil (CO) was over 8-fold greater than polystyrene (750 g/mol, PS 750); the turnover frequency was higher than previously reported self-assembled polymer systems. The increase in apparent catalytic performance could be attributed to differences in reactant solubility rather than differences in mass transfer or intrinsic kinetics; higher reactant solubility enhances apparent reaction rates. Full conversion of 4-nitrophenol was achieved within three minutes for at least 10 sequential reactions demonstrating that the nanoreactors could be used for multiple reactions.
Collapse
|
9
|
Bhattacharjee S, Frank DS, Cannon J, Baker JR. Thermosensitivity studies of hyperbranched dendrimers and branched polymer with terminal N-isopropylamide. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Avudaiappan G, Unnikrishnan V, Sreekumar K. Convenient Synthesis of Dihydropyridine and Dihydropyrimidinethione Derivatives Using a Porphyrin Cored G1 PAMAM Dendrimer as a Homogeneous Catalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.201903597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- G. Avudaiappan
- Department of Applied Chemistry Cochin University of Science And Technology
| | - V. Unnikrishnan
- Department of Applied Chemistry Cochin University of Science And Technology
| | - K. Sreekumar
- Department of Applied Chemistry Cochin University of Science And Technology
| |
Collapse
|
11
|
Mao W, Kim SR, Yoo HS. Surface-decorated nanoparticles clicked into nanoparticle clusters for oligonucleotide encapsulation. RSC Adv 2020; 10:37040-37049. [PMID: 35521231 PMCID: PMC9057053 DOI: 10.1039/d0ra06622b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/24/2020] [Indexed: 12/04/2022] Open
Abstract
Gold nanoparticles (AuNPs) are the predominant and representative metal nano-carriers used for the tumor-targeted delivery of therapeutics because they possess advantages such as biocompatibility, high drug loading efficiency, and enhanced accumulation at tumor sites via the size-dependent enhanced permeability and retention (EPR) effect. In this study, we designed an AuNP functionalized with block polymers comprising polyethylenimine and azide group-functionalized poly(ethyl glycol) for the electrostatic incorporation of cytosine–guanine oligonucleotide (CpG ODN) on the surface. The ODN-incorporated AuNPs were cross-linked to gold nanoparticle clusters (AuNCs) via click chemistry using a matrix metalloproteinase (MMP)-2 cleavable peptide linker modified with alkyne groups at both ends. In the presence of Cu(i), azide groups and alkyne groups spontaneously cyclize to form a triazole ring with high fidelity and efficiency, and therefore allow single AuNPs to stack to larger AuNCs for increased EPR effect-mediated tumor targeting. 1H-NMR and Fourier transform infrared spectroscopy revealed the successful synthesis of an azide–PEG-grafted branched polyethylenimine, and the size and morphology of AuNPs fabricated by the synthesized polymer were confirmed to be 4.02 ± 0.45 nm by field emission-transmission electron microscopy. Raman spectroscopy characterization demonstrated the introduction of azide groups on the surface of the synthesized AuNPs. Zeta-potential and gel-retardation analysis of CpG-loaded AuNPs indicated complete CpG sequestration by AuNPs when the CpG : AuNP weight ratio was higher than 1 : 2.5. The clustering process of the CpG-loaded AuNPs was monitored and was demonstrated to be dependent on the alkyne linker-to-AuNP ratio. Thus, the clicked AuNC can be tailored as a gene carrier where a high accumulation of therapeutics is required. AuNPs with bPEI and azide modification are loaded with CpG and self-assembled to AuNCs by click chemistry using an alkyne-terminated MMP-2 cleavable peptide as a linker. The clusters are dissembled by MMP-2 to release CpG in a stimuli-responsive manner.![]()
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Song Rae Kim
- Chuncheon Center
- Korea Basic Science Institute
- Chuncheon
- Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering
- Kangwon National University
- Chuncheon
- Republic of Korea
- Institute of Molecular Science and Fusion Technology
| |
Collapse
|
12
|
Han Z, Dong L, Zhang J, Cui T, Chen S, Ma G, Guo X, Wang L. Green synthesis of palladium nanoparticles using lentinan for catalytic activity and biological applications. RSC Adv 2019; 9:38265-38270. [PMID: 35541778 PMCID: PMC9075902 DOI: 10.1039/c9ra08051a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/18/2019] [Indexed: 11/24/2022] Open
Abstract
The green synthesis of palladium nanoparticles (Pd NPs) for catalysis and biological applications has been gaining great interest. To replace complex plant extracts, lentinan (LNT) may be a good reducing and stabilizing agent. In this work, a simple and green method using LNT to reduce and stabilize palladium Pd NPs was verified. The resulting LNT stabilized palladium nanoparticles (Pdn-LNT NPs) were characterized by UV-Vis spectroscopy, DLS, TEM, and XPS. The results indicated that Pd NPs inside of Pdn-LNT NPs had a small size (2.35–3.32 nm). Pdn-LNT NPs were stable in solution for 7 days. In addition, Pdn-LNT NPs had higher catalytic activity towards the reduction of 4-nitrophenol than other catalysts. More importantly, Pdn-LNT NPs had negligible cytotoxicity towards cells and showed good antioxidant activity. Taken together, the prepared Pdn-LNT NPs have great potential bio-related applications. Lentinan stabilized palladium nanoparticles had high catalytic activity, negligible cytotoxicity and good antioxidant activity.![]()
Collapse
Affiliation(s)
- Zengsheng Han
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Le Dong
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jin Zhang
- College of Chemistry and Environmental Engineering, Shanxi Datong University Datong 037009 China
| | - Tianming Cui
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Guanglong Ma
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Xiaolei Guo
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Longgang Wang
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| |
Collapse
|
13
|
Li X, Feng Q, Li D, Christopher N, Ke H, Wei Q. Reusable Surface-Modified Bacterial Cellulose Based on Atom Transfer Radical Polymerization Technology with Excellent Catalytic Properties. NANOMATERIALS 2019; 9:nano9101443. [PMID: 31614531 PMCID: PMC6835580 DOI: 10.3390/nano9101443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 11/25/2022]
Abstract
The high catalytic activity of membrane-binding gold nanoparticles (AuNPs) makes its application in oxidation or reduction an attractive challenge. Herein, surface-functionalized bacterial cellulose (BC-poly(HEMA)) was successfully prepared with 2-hydroxyethyl methacrylate (HEMA) as monomers via the atom transfer radical polymerization (ATRP) method. BC-poly(HEMA) was further utilized as not only reducing agent but also carrier for uniform distribution of the AuNPs in the diameter of about 8 nm on the membrane surface during the synthesis stage. The synthesized AuNPs/BC-poly(HEMA) exhibited excellent catalytic activity and reusability for reducing 4-nitrophenol (4-NP) from NaBH4. The results proved that the catalytic performance of AuNPs/BC-poly(HEMA) was affected by the surrounding temperature and pH, and AuNPs/BC-poly(HEMA) maintained the extremely high catalytic activity of AuNPs/BC-poly(HEMA) even after 10 reuses. In addition, no 4-NP was detected in the degradation solution after being stored for 45 days. The reusable catalyst prepared by this work shows a potential industrial application prospect.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Quan Feng
- Key Laboratory of Textile Fabric, Anhui Polytechnic University, Wuhu 241000, China.
| | - Dawei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Narh Christopher
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Huizhen Ke
- Fujian Key Laboratory of Novel Functional Textile Fiber and Materials, Minjiang University, Fuzhou 350108, China.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Fujian Key Laboratory of Novel Functional Textile Fiber and Materials, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
14
|
|
15
|
Liu X, Liu F, Astruc D, Lin W, Gu H. Highly-branched amphiphilic organometallic dendronized diblock copolymer: ROMP synthesis, self-assembly and long-term Au and Ag nanoparticle stabilizer for high-efficiency catalysis. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Sun H, Yan L, Carter KA, Zhang J, Caserto J, Lovell JF, Wu Y, Cheng C. Zwitterionic Cross-Linked Biodegradable Nanocapsules for Cancer Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1440-1449. [PMID: 30086625 PMCID: PMC9645400 DOI: 10.1021/acs.langmuir.8b01633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Zwitterionic cross-linked biodegradable nanocapsules (NCs) were synthesized for cancer imaging. A polylactide (PLA)-based diblock copolymer with two blocks carrying acetylenyl and allyl groups respectively was synthesized by ring-opening polymerization (ROP). Azide-alkyne "click" reaction was conducted to conjugate sulfobetaine (SB) zwitterions and fluorescent dye Cy5.5 onto the acetylenyl-functionalized first block of the diblock copolymer. The resulting copolymer with a hydrophilic SB/Cy5.5-functionalized PLA block and a hydrophobic allyl-functionalized PLA block could stabilize miniemulsions because of its amphiphilic diblock structure. UV-induced thiol-ene "click" reaction between a dithiol cross-linker and the hydrophobic allyl-functionalized block of the copolymer at the peripheral region of nanoscopic oil nanodroplets in the miniemulsion generated cross-linked polymer NCs with zwitterionic outer shells. These NCs showed an average hydrodynamic diameter ( Dh) of 136 nm. They exhibited biodegradability, biocompatibility and high colloidal stability. In vitro study indicated that these NCs could be taken up by MIA PaCa-2 cancer cells. In vivo imaging study showed that, comparing to a small molecule dye, NCs had a longer circulation time, facilitating their accumulation at tumors for cancer imaging. Overall, this work demonstrates the applicability of zwitterionic biodegradable polymer-based materials in cancer diagnosis.
Collapse
Affiliation(s)
- Haotian Sun
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| | - Lingyue Yan
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| | - Kevin A. Carter
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| | - Jiaqi Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| | - Julia Caserto
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| |
Collapse
|
17
|
Gold Nanoparticles Stabilized by 1,2,3-Triazolyl Dendronized Polymers as Highly Efficient Nanoreactors for the Reduction of 4-Nitrophenol. Catal Letters 2019. [DOI: 10.1007/s10562-019-02662-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Cui Y, Zhang J, Yu Q, Guo X, Chen S, Sun H, Liu S, Wang L, Lai X, Gao D. Highly biocompatible zwitterionic dendrimer-encapsulated platinum nanoparticles for sensitive detection of glucose in complex medium. NEW J CHEM 2019. [DOI: 10.1039/c9nj01101c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sensitive detection of glucose using zwitterionic dendrimer-encapsulated platinum nanoparticles was not affected by proteins.
Collapse
|
19
|
Liu F, Liu X, Astruc D, Gu H. Dendronized triazolyl-containing ferrocenyl polymers as stabilizers of gold nanoparticles for recyclable two-phase reduction of 4-nitrophenol. J Colloid Interface Sci 2019; 533:161-170. [DOI: 10.1016/j.jcis.2018.08.062] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 01/15/2023]
|
20
|
Yu S, Cui Y, Guo X, Chen S, Sun H, Wang L, Wang J, Zhao Y, Liu Z. Biocompatible bovine serum albumin stabilized platinum nanoparticles for the oxidation of morin. NEW J CHEM 2019. [DOI: 10.1039/c9nj00887j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bovine serum albumin stabilized platinum nanoparticles promoted the formation of ˙OH from H2O2to catalyze the oxidation of morin.
Collapse
Affiliation(s)
- Shuqian Yu
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- China
| | - Yanshuai Cui
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- China
| | - Xiaolei Guo
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Haotian Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Longgang Wang
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- China
| | - Jing Wang
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- China
| | - Yu Zhao
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- China
| | - Zhiwei Liu
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- China
| |
Collapse
|
21
|
Guo X, Zhang J, Cui Y, Chen S, Sun H, Yang Q, Ma G, Wang L, Kang J. Highly biocompatible jujube polysaccharide-stabilized palladium nanoparticles with excellent catalytic performance. NEW J CHEM 2019. [DOI: 10.1039/c9nj00950g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Jujube polysaccharide-stabilized palladium nanoparticles provide active sites for efficient catalysis of 4-nitrophenol to 4-aminophenol.
Collapse
Affiliation(s)
- Xiaolei Guo
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- China
| | - Jin Zhang
- College of Chemistry and Environmental Engineering
- Shanxi Datong University
- Datong
- China
| | - Yanshuai Cui
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Haotian Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Qinghua Yang
- School of Medical Engineering Hefei University of Technology
- Hefei
- China
| | - Guanglong Ma
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Longgang Wang
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- China
| | - Jianxin Kang
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- China
| |
Collapse
|
22
|
Yang D, Zhang R, Zhao T, Sun T, Chu X, Liu S, Tang E, Xu X. Efficient reduction of 4-nitrophenol catalyzed by 4-carbo-methoxypyrrolidone modified PAMAM dendrimer–silver nanocomposites. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01655d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ag–PPDNCs prepared with 4-carbomethoxypyrrolidone modified PAMAM showed very high activity in the reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Desheng Yang
- College of Chemical & Pharmaceutical Engineering
- Hebei University of Science & Technology
- Shijiazhuang 050018
- P. R. China
| | - Rui Zhang
- College of Chemical & Pharmaceutical Engineering
- Hebei University of Science & Technology
- Shijiazhuang 050018
- P. R. China
| | - Ting Zhao
- College of Chemical & Pharmaceutical Engineering
- Hebei University of Science & Technology
- Shijiazhuang 050018
- P. R. China
| | - Tingting Sun
- College of Chemical & Pharmaceutical Engineering
- Hebei University of Science & Technology
- Shijiazhuang 050018
- P. R. China
| | - Xiaomeng Chu
- College of Chemical & Pharmaceutical Engineering
- Hebei University of Science & Technology
- Shijiazhuang 050018
- P. R. China
| | - Shaojie Liu
- College of Chemical & Pharmaceutical Engineering
- Hebei University of Science & Technology
- Shijiazhuang 050018
- P. R. China
| | - Erjun Tang
- College of Chemical & Pharmaceutical Engineering
- Hebei University of Science & Technology
- Shijiazhuang 050018
- P. R. China
| | - Xiaodong Xu
- Hebei Provincial Key Laboratory of Waterborne Coatings
- Hebei Chenyang Industrial & Trade Group Co., Ltd
- Baoding 072550
- P. R. China
| |
Collapse
|
23
|
Cui Y, Liang B, Wang L, Zhu L, Kang J, Sun H, Chen S. Enhanced biocompatibility of PAMAM dendrimers benefiting from tuning their surface charges. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:332-340. [DOI: 10.1016/j.msec.2018.07.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 11/17/2022]
|
24
|
Wang L, Zhu L, Yu Q, Chen S, Cui Y, Sun H, Gao D, Lan X, Yang Q, Xiao H. Enhanced glucose detection using dendrimer encapsulated gold nanoparticles benefiting from their zwitterionic surface. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2267-2280. [PMID: 30382000 DOI: 10.1080/09205063.2018.1541499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The application of ultrasmall gold nanoparticles as enzyme mimics has been drawing great attention. Herein, we developed zwitterionic dendrimer encapsulated gold nanoparticles (Au-G5MC NPs) for highly sensitive and simple colorimetric detection of glucose. Au-G5MC NPs showed peroxidase-like property, which could efficiently catalyze oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, producing a blue color product (oxTMB). This peroxidase-like reaction follows a typical Michaelis-Menten kinetics. The Km towards TMB exhibited a lower value (0.194 mM) than that of horseradish peroxidase (HRP, 0.434 mM). Furthermore, the peroxidase-like properties of Au-G5MC NPs enable colorimetric detection of the concentration of glucose with high selectivity. The linear concentration range of this method was from 14 μM to 166 μM with the detection limit down to 3.8 μM. More importantly, the detection was not interfered by proteins due to the single zwitterionic layer on the Au-G5MC NPs surface. These excellent properties are attributed to the ultrasmall size of gold nanoparticles and high stability of Au-G5MC NPs in complex medium. This catalytic system might have great potential applications for glucose detection in medical diagnostics and biochemistry in the future.
Collapse
Affiliation(s)
- Longgang Wang
- a Key Laboratory of Applied Chemistry , College of Environmental and Chemical Engineering, Yanshan University , Qinhuangdao , China
| | - Linlin Zhu
- a Key Laboratory of Applied Chemistry , College of Environmental and Chemical Engineering, Yanshan University , Qinhuangdao , China
| | - Qingyu Yu
- a Key Laboratory of Applied Chemistry , College of Environmental and Chemical Engineering, Yanshan University , Qinhuangdao , China
| | - Shengfu Chen
- b Key Laboratory of Biomass Chemical Engineering of Ministry of Education , College of Chemical and Biological Engineering, Zhejiang University , Hangzhou , China
| | - Yanshuai Cui
- a Key Laboratory of Applied Chemistry , College of Environmental and Chemical Engineering, Yanshan University , Qinhuangdao , China
| | - Haotian Sun
- b Key Laboratory of Biomass Chemical Engineering of Ministry of Education , College of Chemical and Biological Engineering, Zhejiang University , Hangzhou , China
| | - Dawei Gao
- a Key Laboratory of Applied Chemistry , College of Environmental and Chemical Engineering, Yanshan University , Qinhuangdao , China
| | - Xifa Lan
- c Department of Neurology , the First Hospital of Qinhuangdao , Qinhuangdao , China
| | - Qinghua Yang
- d Department of Pharmaceutical Engineering , School of Medical Engineering, Hefei University of Technology , Hefei , China
| | - Haiyan Xiao
- a Key Laboratory of Applied Chemistry , College of Environmental and Chemical Engineering, Yanshan University , Qinhuangdao , China
| |
Collapse
|
25
|
Jędrzak A, Grześkowiak BF, Coy E, Wojnarowicz J, Szutkowski K, Jurga S, Jesionowski T, Mrówczyński R. Dendrimer based theranostic nanostructures for combined chemo- and photothermal therapy of liver cancer cells in vitro. Colloids Surf B Biointerfaces 2018; 173:698-708. [PMID: 30384266 DOI: 10.1016/j.colsurfb.2018.10.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
Here we report the synthesis of multifunctional nanocarriers based on PAMAM dendrimers generation (G) 4.0, 5.0 and 6.0 fixed to polydopamine (PDA) coated magnetite nanoparticles (Fe3O4). Synthesized nanoplatforms were characterized by transmission electron microscopy (TEM), the electrokinetic (zeta) potential, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and magnetic resonance imaging (MRI). Further, we show as a proof of concept that nanocarriers functionalized with G 5.0 could be successfully applied in combined chemo- and photothermal therapy (CT-PTT) of the liver cancer cells. The cooperative effect of the modalities mentioned above led to higher mortality of cancer cells when compared to their individual performance. Moreover, the performed in vitro studies revealed that the application of dual therapy triggered the desired cell death mechanism-apoptosis. Furthermore, performed tests using Magnetic Resonance Imaging (MRI) showed that our materials have competitive contrast properties. Overall, the functionality of dendrimers has been extended by merging them with magnetic nanoparticles resulting in multifunctional hybrid nanostructures that are promising smart drug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Artur Jędrzak
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, PL-61614 Poznan, Poland; Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Bartosz F Grześkowiak
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, PL-61614 Poznan, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, PL-61614 Poznan, Poland
| | - Jacek Wojnarowicz
- Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, PL-01142 Warsaw, Poland
| | - Kosma Szutkowski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, PL-61614 Poznan, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, PL-61614 Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Radosław Mrówczyński
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, PL-61614 Poznan, Poland.
| |
Collapse
|
26
|
Wang L, Zhang J, Guo X, Chen S, Cui Y, Yu Q, Yang L, Sun H, Gao D, Xie D. Highly stable and biocompatible zwitterionic dendrimer-encapsulated palladium nanoparticles that maintain their catalytic activity in bacterial solution. NEW J CHEM 2018. [DOI: 10.1039/c8nj04263b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study offers a method for constructing an artificial enzyme (Pdn-G5MC), which maintains its catalytic efficiency in bacterial solution.
Collapse
|