1
|
Al-Hadeethi Y, Nagarajan A, Hanuman S, Mohammed H, Vetekar AM, Thakur G, Dinh LNM, Yao Y, Mkawi EM, Hussein MA, Agarwal V, Nune M. Schwann cell-matrix coated PCL-MWCNT multifunctional nanofibrous scaffolds for neural regeneration. RSC Adv 2023; 13:1392-1401. [PMID: 36712918 PMCID: PMC9814035 DOI: 10.1039/d2ra05368c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Nerve tissue engineering aims to create scaffolds that promote nerve regeneration in the damaged peripheral nervous system. However, there remain some challenges in the construction of scaffolds in terms of mechanical properties and cellular behaviour. The present work aims to develop multifunctional implantable nanofibrous scaffolds for nerve regeneration. Using electrospinning, nanofibrous neat polycaprolactone (PCL) and PCL/multiwalled carbon nanotubes (PCL-MWCNT) composite scaffolds were prepared in random and aligned morphology. Schwann cells and their secreted biochemical factors are responsible for neuronal survival in the peripheral nervous system. Therefore, the acellular matrix of Schwann cells was spin-coated on the PCL-MWCNT scaffolds to aid nerve regeneration. Physicochemical and mechanical properties, and the in vitro cellular response of the developed nanofibrous were investigated. We observed no significant change in fibre diameter between neat PCL and PCL-MWCNT scaffolds regardless of the morphology. However, the inclusion of MWCNT reduced the mechanical strength of nanocomposite scaffolds compared to neat PCL. In vitro study revealed biocompatibility of the developed scaffolds both with and without an acellular matrix. Gene expression study revealed a significant increase in peripheral myelin protein (PMP22) expression on acellular matrix-coated PCL-MWCNT scaffolds compared to neat PCL counterparts. Overall, the results suggested Schwann cell matrix-coated PCL-MWCNT nanofibers as a promising conduit for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yas Al-Hadeethi
- Department of Physics, Faculty of Science, King Abdulaziz UniversityJeddah 21589Saudi Arabia,Lithography in Devices Fabrication and Development Research Group, Deanship of Scientific Research, King Abdulaziz UniversityJeddah21589Saudi Arabia
| | - Aishwarya Nagarajan
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher EducationManipal 576104BengaluruKarnatakaIndia
| | - Srividya Hanuman
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher EducationManipal 576104BengaluruKarnatakaIndia
| | | | - Aakanksha M. Vetekar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher EducationManipal 576104BengaluruKarnatakaIndia,Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher EducationManipal 576104KarnatakaIndia
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher EducationManipal 576104KarnatakaIndia
| | - Le N. M. Dinh
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South WalesSydneyNSW 2052Australia
| | - Yin Yao
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South WalesSydneyNSW 2052Australia
| | - E. M. Mkawi
- Department of Physics, Faculty of Science, King Abdulaziz UniversityJeddah 21589Saudi Arabia
| | - Mahmoud Ali Hussein
- Department of Chemistry, Faculty of Science, King Abdelaziz UniversityJeddah 21589Saudi Arabia,Department of Chemistry, Faculty of Science, Assiut UniversityAssiut 71516Egypt
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South WalesSydneyNSW 2052Australia
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher EducationManipal 576104BengaluruKarnatakaIndia
| |
Collapse
|
2
|
Sariogullari H, Aroguz AZ, Adiguzel Z. Fabrication of a Patterned Scaffold Using Soft Lithography Technique to be Used in Cell Growth Applications. Mol Biotechnol 2022; 65:786-793. [PMID: 36214977 DOI: 10.1007/s12033-022-00581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022]
Abstract
In recent years, within tissue engineering, cell growth on patterned surfaces have gained significant attention. Growing cells in patterns is important to manufacture polymeric tissues that can be used within the medical field. For this reason, the main focus of this study was to prepare patterned scaffolds using Titanium (Ti) and polyvinyl chloride (PVC) covered on microscope lamellas and examine their liability for cell growth. A polydimethylsiloxane stamp was initially prepared which was then used to transfer a predefined pattern onto PVC- and Ti-covered surfaces. Cell growth experiments were performed on the prepared materials by seeding L929 mouse fibroblasts. The growth of cells seeded on the surface of the scaffolds were spectroscopically followed using Neutral Red uptake assay. The results showed cell proliferation on both patterned surfaces, however, it was higher on Ti-covered samples. In addition, three different alkanethiols were tested for cell adhesion on patterned surfaces. A higher number of cell proliferation was observed with undecanethiol, which has a shorter alkane group among them. The morphological properties of the samples before and after cell-seeding were analyzed via scanning electron microscope and optical microscopy. Significant amount of cell proliferation was observed on all of the prepared samples.
Collapse
Affiliation(s)
- Hidayet Sariogullari
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Ayse Z Aroguz
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey.
| | - Zelal Adiguzel
- Basic Medical Sciences, Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| |
Collapse
|
3
|
Railian S, Fadil Y, Agarwal V, Junkers T, Zetterlund PB. Synthesis of electrically conducting nanocomposites via Pickering miniemulsion polymerization: Effect of graphene oxide functionalized with different capping agents. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Rizwana N, Agarwal V, Nune M. Antioxidant for Neurological Diseases and Neurotrauma and Bioengineering Approaches. Antioxidants (Basel) 2021; 11:72. [PMID: 35052576 PMCID: PMC8773039 DOI: 10.3390/antiox11010072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
Antioxidants are a class of molecules with an innate affinity to neutralize reactive oxygen species (ROS), which are known to cause oxidative stress. Oxidative stress has been associated with a wide range of diseases mediated by physiological damage to the cells. ROS play both beneficial and detrimental roles in human physiology depending on their overall concentration. ROS are an inevitable byproduct of the normal functioning of cells, which are produced as a result of the mitochondrial respiration process. Since the establishment of the detrimental effect of oxidative stress in neurological disorders and neurotrauma, there has been growing interest in exploring antioxidants to rescue remaining or surviving cells and reverse the neurological damage. In this review, we present the survey of different antioxidants studied in neurological applications including neurotrauma. We also delve into bioengineering approaches developed to deliver antioxidants to improve their cellular uptake in neurological applications.
Collapse
Affiliation(s)
- Nasera Rizwana
- Manipal Institute of Regenerative Medicine (MIRM), Bengaluru, Manipal Academy of Higher Education (MAHE), Manipal 576104, India;
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine (MIRM), Bengaluru, Manipal Academy of Higher Education (MAHE), Manipal 576104, India;
| |
Collapse
|
5
|
Ramana LN, Agarwal V. Nanodiamonds synthesis using sustainable concentrated solar thermal energy: applications in bioimaging and phototherapy. NANOTECHNOLOGY 2021; 32:475602. [PMID: 34380124 DOI: 10.1088/1361-6528/ac1cbd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
There is a renewed interest in nanodiamonds and their applications in biology and medicine, especially in bioimaging and photothermal therapy. This is due to their small size, chemical inertness and unique photo-properties such as bright and robust fluorescence, resistant to photobleaching and photothermal response under near infrared (NIR) irradiation. However, the biggest challenge limiting the wide-spread use of nanodiamonds is the high-energy consuming, dangerous and sophisticated synthetic methods currently adopted by industry named higher temperature high pressure approach, and detonation method. Despite over a decade of research towards the development of new synthetic approaches, most of the methods developed to date require sophisticated instrumentations and have high energy demand. To circumvent the reliance on high energy demanding sophisticated experimental setups, here we present a simple synthetic approach using solar energy as a sustainable sole energy source. Using low-grade coal as carbon precursor, we used high power magnifying glasses to concentrate and focus sunlight to induce synthesis of nanodiamonds. The synthesized nanodiamonds exhibit similar physicochemical and photo-properties as nanodiamonds synthesized using other synthetic approaches.In vitrostudies using macrophage Raw 264.7 cells demonstrated rapid uptake and bright fluorescence of the synthesized nanodiamonds with superior biocompatibility (≥95% cell viability). The synthesized nanodiamonds also exhibited dose dependent photothermal response under NIR irradiation.
Collapse
Affiliation(s)
- Lakshmi Narashimhan Ramana
- Multidisciplinary Clinical and Translational Research group (MCTR), Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Saracino E, Zuppolini S, Guarino V, Benfenati V, Borriello A, Zamboni R, Ambrosio L. Polyaniline nano-needles into electrospun bio active fibres support in vitro astrocyte response. RSC Adv 2021; 11:11347-11355. [PMID: 35423613 PMCID: PMC8695954 DOI: 10.1039/d1ra00596k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have proposed that the bioelectrical response of glial cells, called astrocytes, currently represents a key target for neuroregenerative purposes. Here, we propose the fabrication of electrospun nanofibres containing gelatin and polyaniline (PANi) synthesized in the form of nano-needles (PnNs) as electrically conductive scaffolds to support the growth and functionalities of primary astrocytes. We report a fine control of the morphological features in terms of fibre size and spatial distribution and fibre patterning, i.e. random or aligned fibre organization, as revealed by SEM- and TEM-supported image analysis. We demonstrate that the peculiar morphological properties of fibres - i.e., the fibre size scale and alignment - drive the adhesion, proliferation, and functional properties of primary cortical astrocytes. In addition, the gradual transmission of biochemical and biophysical signals due to the presence of PnNs combined with the presence of gelatin results in a permissive and guiding environment for astrocytes. Accordingly, the functional properties of astrocytes measured via cell patch-clamp experiments reveal that PnNs do not alter the bioelectrical properties of resting astrocytes, thus setting the scene for the use of PnN-loaded nanofibres as bioconductive platforms for interfacing astrocytes and controlling their bioelectrical properties.
Collapse
Affiliation(s)
- Emanuela Saracino
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy via Gobetti, 101 40129 Bologna Italy
| | - Simona Zuppolini
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy Mostra d'Oltremare, Pad. 20, V. le J. F. Kennedy 54 Naples Italy
| | - Vincenzo Guarino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy Mostra d'Oltremare, Pad. 20, V. le J. F. Kennedy 54 Naples Italy
| | - Valentina Benfenati
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy via Gobetti, 101 40129 Bologna Italy
| | - Anna Borriello
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy Mostra d'Oltremare, Pad. 20, V. le J. F. Kennedy 54 Naples Italy
| | - Roberto Zamboni
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy via Gobetti, 101 40129 Bologna Italy
| | - Luigi Ambrosio
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy Mostra d'Oltremare, Pad. 20, V. le J. F. Kennedy 54 Naples Italy
| |
Collapse
|
7
|
Maslekar N, Mat Noor RA, Kuchel RP, Yao Y, Zetterlund PB, Agarwal V. Synthesis of diamine functionalised graphene oxide and its application in the fabrication of electrically conducting reduced graphene oxide/polymer nanocomposite films. NANOSCALE ADVANCES 2020; 2:4702-4712. [PMID: 36132899 PMCID: PMC9418109 DOI: 10.1039/d0na00534g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/17/2020] [Indexed: 06/12/2023]
Abstract
The focus of research in diamine functionalised graphene oxide (GO) has been limited to the use of diamines either as crosslinker or to achieve simultaneous functionalisation, reduction and stitching of GO sheets, especially in the case of ethylene diamine (EDA). Controlling the extent of stitching and functionalisation has to date remained a challenge. In particular, synthesis of colloidally stable monofunctionalised GO-NH2 with dangling amine groups using diamines has remained elusive. This has been the limiting factor towards the utility of EDA functionalised GO (GO-NH2) in the field of polymer-based nanocomposites. We have synthesised colloidally stable GO-NH2 with dangling amine groups and subsequently demonstrated its utility as a surfactant to synthesize colloidally stable waterborne polymer nanoparticles with innate affinity to undergo film formation at room temperature. Thermally annealed dropcast polymer/GO-NH2 nanocomposite films exhibited low surface roughness (∼1 μm) due to the homogeneous distribution of functionalised GO sheets within the polymer matrix as observed from confocal laser scanning microscopy, scanning electron microscopy and transmission electron microscopy. The films exhibited considerable electrical conductivity (∼0.8 S m-1), demonstrating the potential of the GO-NH2/polymer nanocomposite for a wide range of applications.
Collapse
Affiliation(s)
- Namrata Maslekar
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Rabiatul A Mat Noor
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Rhiannon P Kuchel
- Mark Wainwright Analytical Centre, University of New South Wales Sydney NSW 2052 Australia
| | - Yin Yao
- Mark Wainwright Analytical Centre, University of New South Wales Sydney NSW 2052 Australia
| | - Per B Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Vipul Agarwal
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
8
|
Liu J, Li K, Huang K, Yang C, Huang Z, Zhao X, Song S, Pang T, Zhou J, Wang Y, Wang C, Tang Y. Acellularized spinal cord scaffolds incorporating bpV(pic)/PLGA microspheres promote axonal regeneration and functional recovery after spinal cord injury. RSC Adv 2020; 10:18677-18686. [PMID: 35518337 PMCID: PMC9053942 DOI: 10.1039/d0ra02661a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/07/2020] [Indexed: 01/20/2023] Open
Abstract
Spinal cord injury (SCI) is a traumatic injury to the central nervous system (CNS) with a high rate of disability and a low capability of self-recovery. Phosphatase and tensin homolog (PTEN) inhibition by pharmacological blockade with bisperoxovanadium (pic) (bpV(pic)) has been reported to increase AKT/mTOR activity and induce robust axonal elongation and regeneration. However, the therapeutic effect of bpV(pic) in treating SCI is limited due to the lack of efficient delivery approaches. In this study, a composite scaffold consisting of an acellular spinal cord (ASC) scaffold and incorporated bpV(pic) loaded poly (lactic-co-glycolic acid) (PLGA) microspheres was developed, in order to improve the therapeutic effect of bpV(pic) on SCI. The inhibition of PTEN activity and activation of the mTORC1/AKT pathway, the axonal regeneration and the markers of apoptosis were analyzed via western blot and immunofluorescence in vitro. The bpV(pic)/PLGA/ASC scaffolds showed excellent biocompatibility and promoted the viability of neural stem cells and axonal growth in vitro. Implantation of the composite scaffold into rats with hemi-sectioned SCI resulted in increased axonal regeneration and functional recovery in vivo. Besides, bpV(pic) inhibited the phosphorylation of PTEN and activated the PI3K/mTOR signaling pathway. The successful construction of the composite scaffold improves the therapeutic effect of bpV(pic) on SCI.
Collapse
Affiliation(s)
- Jia Liu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Kai Li
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdong510000China
| | - Ke Huang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Chengliang Yang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Zhipeng Huang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Xingchang Zhao
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Shiqiang Song
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Taisen Pang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Jing Zhou
- Department of Anatomy, Youjiang Medical College for NationalitiesBaiseGuangxi533000China
| | - Yuhai Wang
- Academy of Orthopedics, People's Hospital of Ningxia Hui Autonomous RegionNingxia502213China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of TechnologyNo. 1 University Road, Songshan LakeDongguanGuangdong523808P. R. China+86-1341-6885162
| | - Yujin Tang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| |
Collapse
|
9
|
Yang Z, Liu M, Yang Y, Zheng M, Yang Y, Liu X, Tan J. Biofunctionalization of zirconia with cell-adhesion peptides via polydopamine crosslinking for soft tissue engineering: effects on the biological behaviors of human gingival fibroblasts and oral bacteria. RSC Adv 2020; 10:6200-6212. [PMID: 35495985 PMCID: PMC9049673 DOI: 10.1039/c9ra08575k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/09/2020] [Indexed: 12/28/2022] Open
Abstract
Rapid soft tissue integration is essential for long-term dental implant success. Zirconia is increasingly used as an abutment material owing to its excellent aesthetic properties and biocompatibility; however, it is bioinert, and tissue integration is poor. We developed a feasible surface modification method, exploiting the reactivity of polydopamine (PDA) films to immobilize cell-adhesion peptides (Arg-Gly-Asp, RGD) onto zirconia abutment surfaces. Further, we evaluated the effect thereof on human gingival fibroblast (HGF) behavior and oral bacterial adhesion, which influence the peri-implant soft tissue seal. HGF responses to linear KGGRGDSP and cyclic RGDfK sequences were compared. PDA deposition and covalent coupling of RGD were verified by X-ray photoelectron spectroscopy and fluorescence microscopy. The biological behaviors of HGFs on the modified zirconia; i.e., adhesion, spreading, proliferation, gene and protein expression, were elucidated. Biofunctionalization of zirconia with the adhesion peptides significantly enhanced the biological activities of HGFs. Cyclic RGD induced slightly improved cell attachment, spreading, and proliferation, but similar cell differentiation when compared to linear RGD peptides. To assess their antimicrobial properties, the different substrates were exposed to cultures of the early colonizer Streptococcus mutans or the periodontal pathogen Porphyromonas gingivalis, and bacterial adhesion was evaluated by scanning electron microscopy and live/dead staining. PDA and PDA-RGD coatings decreased zirconia surface colonization by both bacterial species to similar extents. Thus, PDA-RGD-functionalized zirconia modulates specific HGF responses, while maintaining the antimicrobial activity of the PDA coating. The selective bio-interaction pattern of this surface modification holds great promise for improving soft-tissue integration around zirconia abutments in clinical applications.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China +86-10-62173402 +86-10-82195364
| | - Mingyue Liu
- First Clinical Division, Peking University School and Hospital of Stomatology Beijing 100034 P. R. China
| | - Yang Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China +86-10-62173402 +86-10-82195364
| | - Miao Zheng
- Department of Stomatology, Peking University Third Hospital Beijing 100191 P. R. China
| | - Yang Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China +86-10-62173402 +86-10-82195364
| | - Xiaoqiang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China +86-10-62173402 +86-10-82195364
| | - Jianguo Tan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China +86-10-62173402 +86-10-82195364
| |
Collapse
|
10
|
Jose J, Sultan S, Kalarikkal N, Thomas S, Mathew AP. Fabrication and functionalization of 3D-printed soft and hard scaffolds with growth factors for enhanced bioactivity. RSC Adv 2020; 10:37928-37937. [PMID: 35515181 PMCID: PMC9057203 DOI: 10.1039/d0ra08295c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 01/09/2023] Open
Abstract
Strategies to improve the acceptance of scaffolds by the body is crucial in tissue engineering (TE) which requires tailoring of the pore structure, mechanical properties and surface characteristics of the scaffolds. In the current study we used a 3-dimensional (3D) printing technique to tailor the pore structure and mechanical properties of (i) nanocellulose based hydrogel scaffolds for soft tissue engineering and (ii) poly lactic acid (PLA) based scaffolds for hard tissue engineering in combination with surface treatment by protein conjugation for tuning the scaffold bioactivity. Dopamine coating of the scaffolds enhanced the hydrophilicity and their capability to bind bioactive molecules such as fibroblast growth factor (FGF-18) for soft TE scaffolds and arginyl glycyl aspartic acid (RGD) peptide for hard TE scaffolds, which was confirmed using MALDI-TOFs. This functionalization approach enhanced the performance of the scaffolds and provided antimicrobial activity indicating that these scaffolds can be used for cartilage or bone regeneration applications. Blood compatibility studies revealed that both the materials were compatible with human red blood cells. Significant enhancement of cell attachment and proliferation confirmed the bioactivity of growth factor functionalized 3D printed soft and hard tissues. This approach of combining 3D printing with biological tuning of the interface is expected to significantly advance the development of biomedical materials related to soft and hard tissue engineering. 3D printed scaffolds with tailored bioactivity using protein conjugation.![]()
Collapse
Affiliation(s)
- Jiya Jose
- Department of Materials and Environmental Chemistry
- Stockholm University
- Stockholm
- Sweden
- International and Inter University Center for Nanoscience and Nanotechnology
| | - Sahar Sultan
- Department of Materials and Environmental Chemistry
- Stockholm University
- Stockholm
- Sweden
| | - Nandakumar Kalarikkal
- International and Inter University Center for Nanoscience and Nanotechnology
- Mahatma Gandhi University
- Kottayam-686 560
- India
| | - Sabu Thomas
- International and Inter University Center for Nanoscience and Nanotechnology
- Mahatma Gandhi University
- Kottayam-686 560
- India
| | - Aji P. Mathew
- Department of Materials and Environmental Chemistry
- Stockholm University
- Stockholm
- Sweden
| |
Collapse
|
11
|
Li W, Huang A, Zhong Y, Huang L, Yang J, Zhou C, Zhou L, Zhang Y, Fu G. Laminin-modified gellan gum hydrogels loaded with the nerve growth factor to enhance the proliferation and differentiation of neuronal stem cells. RSC Adv 2020; 10:17114-17122. [PMID: 35521457 PMCID: PMC9053442 DOI: 10.1039/d0ra01723j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
The reconstruction of peripheral nerves has lately received great attention as many patients suffer from peripheral nerve injury every year around the world. However, the damage to human nerve cells has different degrees of irreversibility due to a slow growth speed and low adhesion with the surrounding tissues. In an effort to overcome this challenge, we applied novel laminin (LN)-modified thiolated gellan gum (TGG) and loaded the nerve growth factor (NGF) as a tissue engineering scaffold for facilitating neuronal stem cell proliferation via a synergy effect for the ERK–MAPK pathway. TGG was characterized by 1H NMR spectroscopy and scanning electron microscopy, and its rheological behavior was also studied. The NGF release curve fitted the Korsmeyer–Peppas model and belonged to a Fickian diffusion-controlled release mechanism. The neuronal stem cells from newborn SD rats could adhere tightly and proliferate at a relatively rapid speed, showing excellent biocompatibility and the ability to promote growth in the modified TGG. LN and NGF could decrease the apoptosis effects of neuronal stem cells, as shown via the flow cytometry results. In a three-dimensional culture environment, LN and NGF could facilitate neuronal stem cells to differentiate into neurons, as proved by immunofluorescence, q-PCR, and western blot analyses. Therefore, the rational design of the TGG gel loaded with NGF has promising applications in the reconstruction of peripheral nerves. Laminin-modified thiolated gellan gum and loaded with the nerve growth factor in facilitateding neuronal stem cell proliferation and differentiation.![]()
Collapse
Affiliation(s)
- Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong
- Guangzhou Sport University
- Guangzhou
- China
| | - Anfei Huang
- The First Affiliated Hospital
- Jinan University
- Guangzhou
- China
| | - Yanheng Zhong
- The First Affiliated Hospital
- Jinan University
- Guangzhou
- China
| | - Lin Huang
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong
- Guangzhou Sport University
- Guangzhou
- China
| | - Jing Yang
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong
- Guangzhou Sport University
- Guangzhou
- China
| | - Changren Zhou
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou
- China
| | - Lin Zhou
- The First Affiliated Hospital
- Jinan University
- Guangzhou
- China
| | - Yanling Zhang
- Department of Ultrasound
- Third Affiliated Hospital
- Sun Yat-sen University
- The People's Republic of China
| | - Guo Fu
- The First Affiliated Hospital
- Jinan University
- Guangzhou
- China
| |
Collapse
|
12
|
Morgado PI, Palacios M, Larrain J. In situ injectable hydrogels for spinal cord regeneration: advances from the last 10 years. Biomed Phys Eng Express 2019; 6:012002. [PMID: 33438588 DOI: 10.1088/2057-1976/ab52e8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is a tremendously devastating disorder with no effective therapy. Neuroprotective strategies have been applied aiming to prevent secondary cell death but no successful and robust effects have been observed. Recently, combinatorial approaches using biomaterials with cells and/or growth factors have demonstrated promising therapeutic effects because of the improvement of axonal growth and in vivo functional recovery in model organisms. In situ injectable hydrogels are a particularly attractive neuroregenerative approach to improve spinal cord repair and regeneration since they can be precisely injected into the lesion site filling the space prior to gelification, decrease scarring and promote axon growth due to the hydrogel's soft structure. Important advances regarding the use of hydrogels as potential therapeutic approaches has been reported during the last 10 years. Injectable alginate hydrogel loaded with GDNF, thermoresponsives heparin-poloxamer loaded with NGF and imidazole-poly(organophosphazenes) hydrogels are just three examples of biomaterials that can promote neurite, axon growth and improve functional recovery in hemisected and resected rats. Here we will review the status of in situ injectable hydrogels for spinal cord regeneration with special focus in the advantages of using hydrogel scaffolds, the ideal polymers to be used, the gelification process and the cells or growth factors combined. The in vitro and in vivo results reported for those biomaterials will be presented, compared and discussed.
Collapse
|
13
|
Comparative study of keratin extraction from human hair. Int J Biol Macromol 2019; 133:382-390. [DOI: 10.1016/j.ijbiomac.2019.04.098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/01/2019] [Accepted: 04/12/2019] [Indexed: 01/19/2023]
|
14
|
Hanafy BI, Cave GWV, Barnett Y, Pierscionek B. Ethylene glycol coated nanoceria protects against oxidative stress in human lens epithelium. RSC Adv 2019; 9:16596-16605. [PMID: 35516401 PMCID: PMC9064421 DOI: 10.1039/c9ra01252d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/17/2019] [Indexed: 01/11/2023] Open
Abstract
Chronic diseases are rising in incidence and prevalence because of increases in life expectancy in many parts of the world coupled with advances in medicine which manage disease progression, rather than curing and alleviating the causes. Cataract is one such chronic condition. Identifying a therapeutic intervention that is successful in reversing or preventing cataracts may have applications for other chronic diseases of protein misfolding, such as diabetes and Alzheimer's disease as these have similar causation factors, notably oxidative stress and/or glycation. Cerium oxide nanoparticles (nanoceria) which have antioxidant, radioprotective and enzyme-mimetic properties have the potential to lead to an effective non-surgical treatment. However, nanoceria stability in physiological media is poor thus hindering their effective use in biomedical applications. Here we report a highly efficient one-pot synthesis of nanoceria (2-5 nm) coated with ethylene glycol, that is colloidally stable in physiological media and exhibits multiwavelength photoluminescence. The formulation, up to concentrations of 200 μg ml-1, was not toxic to human lens epithelial cells and had no adverse effect on the cellular morphology or proliferation rate. More significantly, these nanoceria showed protective effects against oxidative stress induced by hydrogen peroxide in lens epithelial cells. Electron microscopy studies show the internalization and cytoplasmic localization of the nanoceria was found to be largely in the perinuclear region.
Collapse
Affiliation(s)
- Belal I Hanafy
- School of Science and Technology, Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Gareth W V Cave
- School of Science and Technology, Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Yvonne Barnett
- School of Science and Technology, Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Barbara Pierscionek
- School of Science and Technology, Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| |
Collapse
|
15
|
Xiong S, Gao H, Qin L, Jia Y, Gao M, Ren L. Microgrooved collagen-based corneal scaffold for promoting collective cell migration and antifibrosis. RSC Adv 2019; 9:29463-29473. [PMID: 35528407 PMCID: PMC9071845 DOI: 10.1039/c9ra04009a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/19/2019] [Indexed: 02/04/2023] Open
Abstract
Microgrooved collagen membrane can effectively promote the epithelialization of corneal epithelial cells and inhibit the fibrosis of corneal stromal cells.
Collapse
Affiliation(s)
- Sijia Xiong
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Huichang Gao
- School of Medicine
- South China University of Technology
- Guangzhou 510006
- China
| | - Lanfeng Qin
- National Engineering Research Centre for Tissue Restoration and Reconstruction
- Guangzhou 510006
- China
- Guangdong Province Key Laboratory of Biomedical Engineering
- South China University of Technology
| | - Yongguang Jia
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Meng Gao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Li Ren
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| |
Collapse
|