1
|
Di Mino C, Headen TF, Basma NS, Buckley DJ, Cullen PL, Wilding MC, Shaffer MSP, Skipper NT, Clancy AJ, Howard CA. Intermediate-range solvent templating and counterion behaviour at charged carbon nanotube surfaces. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01865-9. [PMID: 39984638 DOI: 10.1038/s41565-025-01865-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/13/2025] [Indexed: 02/23/2025]
Abstract
The ordering of ions and solvent molecules around nanostructures is of profound fundamental importance, from understanding biological processes to the manipulation of nanomaterials to optimizing electrochemical devices. Classical models commonly used to describe these systems treat the solvent simplistically, an approach that endures, in part, due to the extreme difficulty of attaining experimental measurements that challenge this approximation. Here we perform total neutron scattering experiments on model systems-concentrated amide solutions of negatively charged carbon nanotubes and sodium counterions-and measure remarkably complex intermediate-range molecular solvent ordering. The charged surface orders the solvents up to ∼40 Å, even beyond its dense concentric solvation shells. Notably, the molecular orientation of solvent in direct contact with the nanotube surface itself is distinct, lying near-parallel and not interacting with desolvated sodium counterions. In contrast, beyond this layer the ordering of solvent is perpendicular to the surface. Our results underscore the critical importance of multibody interactions in solvated nanoscale systems and charged surfaces, highlighting competing ion/surface solvation effects.
Collapse
Affiliation(s)
- Camilla Di Mino
- Department of Physics and Astronomy, University College London, London, UK
- Department of Materials, University of Oxford, Oxford, UK
| | - Thomas F Headen
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, UK.
| | - Nadir S Basma
- Department of Physics and Astronomy, University College London, London, UK
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London, UK
| | - David J Buckley
- Department of Physics and Astronomy, University College London, London, UK
| | - Patrick L Cullen
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | | | - Milo S P Shaffer
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London, UK
- Department of Materials Science, Imperial College London, London, UK
| | - Neal T Skipper
- Department of Physics and Astronomy, University College London, London, UK.
| | - Adam J Clancy
- Department of Chemistry, University College London, London, UK.
| | | |
Collapse
|
2
|
Clancy AJ, Anthony DB, De Luca F. Metal Mimics: Lightweight, Strong, and Tough Nanocomposites and Nanomaterial Assemblies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15955-15975. [PMID: 32191431 DOI: 10.1021/acsami.0c01304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ideal structural material would have high strength and stiffness with a tough ductile failure, all with a low density. Historically, no such material exists, and materials engineers have had to sacrifice a desired property during materials selection, with metals (high density), fiber composites (brittle failure), and polymers (low stiffness) having fundamental limitations on at least one front. The ongoing revolution of nanomaterials provides a potential route to build on the potential of fiber-reinforced composites, matching their strength while integrating toughening behaviors akin to metal deformations, all while using low-weight constituents. Here, the challenges, approaches, and recent developments of nanomaterials for structural applications are discussed, with an emphasis on improving toughening mechanisms, which is often the neglected factor in a field that chases strength and stiffness.
Collapse
Affiliation(s)
- Adam J Clancy
- Department of Chemistry, University College London, London, WC1E 7JE, U.K
| | - David B Anthony
- Department of Chemistry, Imperial College London, South Kensington, SW7 2AZ, U.K
| | - François De Luca
- Advanced Materials Characterisation group, National Physical Laboratory, Teddington, TW11 0LW, U.K
| |
Collapse
|
3
|
Basma N, Cullen PL, Clancy AJ, Shaffer MSP, Skipper NT, Headen TF, Howard CA. The liquid structure of the solvents dimethylformamide (DMF) and dimethylacetamide (DMA). Mol Phys 2019. [DOI: 10.1080/00268976.2019.1649494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- N. Basma
- Department of Physics & Astronomy, University College London, London, UK
- Department of Chemistry and Department of Materials, Imperial College London, London, UK
| | - P. L. Cullen
- Department of Chemical Engineering, University College London, London, UK
| | - A. J. Clancy
- Department of Physics & Astronomy, University College London, London, UK
- Department of Chemistry, University College London, London, UK
| | - M. S. P. Shaffer
- Department of Chemistry and Department of Materials, Imperial College London, London, UK
| | - N. T. Skipper
- Department of Physics & Astronomy, University College London, London, UK
| | - T. F. Headen
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, UK
| | - C. A. Howard
- Department of Physics & Astronomy, University College London, London, UK
| |
Collapse
|
4
|
Venkataraman A, Amadi EV, Chen Y, Papadopoulos C. Carbon Nanotube Assembly and Integration for Applications. NANOSCALE RESEARCH LETTERS 2019; 14:220. [PMID: 31263975 PMCID: PMC6603253 DOI: 10.1186/s11671-019-3046-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/10/2019] [Indexed: 05/02/2023]
Abstract
Carbon nanotubes (CNTs) have attracted significant interest due to their unique combination of properties including high mechanical strength, large aspect ratios, high surface area, distinct optical characteristics, high thermal and electrical conductivity, which make them suitable for a wide range of applications in areas from electronics (transistors, energy production and storage) to biotechnology (imaging, sensors, actuators and drug delivery) and other applications (displays, photonics, composites and multi-functional coatings/films). Controlled growth, assembly and integration of CNTs is essential for the practical realization of current and future nanotube applications. This review focuses on progress to date in the field of CNT assembly and integration for various applications. CNT synthesis based on arc-discharge, laser ablation and chemical vapor deposition (CVD) including details of tip-growth and base-growth models are first introduced. Advances in CNT structural control (chirality, diameter and junctions) using methods such as catalyst conditioning, cloning, seed-, and template-based growth are then explored in detail, followed by post-growth CNT purification techniques using selective surface chemistry, gel chromatography and density gradient centrifugation. Various assembly and integration techniques for multiple CNTs based on catalyst patterning, forest growth and composites are considered along with their alignment/placement onto different substrates using photolithography, transfer printing and different solution-based techniques such as inkjet printing, dielectrophoresis (DEP) and spin coating. Finally, some of the challenges in current and emerging applications of CNTs in fields such as energy storage, transistors, tissue engineering, drug delivery, electronic cryptographic keys and sensors are considered.
Collapse
Affiliation(s)
- Anusha Venkataraman
- Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2 Canada
| | - Eberechukwu Victoria Amadi
- Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2 Canada
| | - Yingduo Chen
- Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2 Canada
| | - Chris Papadopoulos
- Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2 Canada
| |
Collapse
|
5
|
Clancy AJ, Sirisinudomkit P, Anthony DB, Thong AZ, Greenfield JL, Salaken Singh MK, Shaffer MSP. Real-time mechanistic study of carbon nanotube anion functionalisation through open circuit voltammetry. Chem Sci 2019; 10:3300-3306. [PMID: 30996916 PMCID: PMC6428032 DOI: 10.1039/c8sc04970j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/28/2019] [Indexed: 11/24/2022] Open
Abstract
The mechanism of the functionalisation of reduced single walled carbon nanotubes with organobromides was monitored by open circuit voltammetry throughout the reaction and further elucidated through a series of comparative reactions. The degree of functionalisation was mapped against the reagent reduction potential, degree of electron donation of substituents (Hammett parameter), and energies calculated, ab initio, for dissociation and heterolytic cleavage of the C-Br bond. In contrast to the previously assumed reduction/homolytic cleavage mechanism, the reaction was shown to consist of a rapid association of carbon-halide bond to the reduced nanotube as a complex, displacing surface-condensed countercations, leading to an initial increase in the net nanotube surface negative charge. The complex subsequently slowly degrades through charge transfer from the reduced single-walled carbon nanotube to the organobromide, utilizing charge, and the carbon-halide bond breaks heterolytically. Electron density on the C-Br bond in the initial reagent is the best predictor for degree of functionalisation, with more electron donating substituents increasing the degree of functionalisation. Both the mechanism and the new application of OCV to study such reactions are potentially relevant to a wide range of related systems.
Collapse
Affiliation(s)
- Adam J Clancy
- Department of Chemistry , University College London , WC1E 7JE , UK .
- Department of Chemistry , Imperial College London , SW7 2AZ , UK .
| | - Pichamon Sirisinudomkit
- Department of Chemistry , Imperial College London , SW7 2AZ , UK .
- Department of Materials , Imperial College London , SW7 2AZ , UK
| | - David B Anthony
- Department of Chemistry , Imperial College London , SW7 2AZ , UK .
| | - Aaron Z Thong
- Department of Materials , Imperial College London , SW7 2AZ , UK
| | - Jake L Greenfield
- Department of Chemistry , Imperial College London , SW7 2AZ , UK .
- Department of Chemistry , University of Cambridge , CB2 1EW , UK
| | | | - Milo S P Shaffer
- Department of Chemistry , Imperial College London , SW7 2AZ , UK .
- Department of Materials , Imperial College London , SW7 2AZ , UK
| |
Collapse
|
6
|
Ariga K, Matsumoto M, Mori T, Shrestha LK. Materials nanoarchitectonics at two-dimensional liquid interfaces. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1559-1587. [PMID: 31467820 PMCID: PMC6693411 DOI: 10.3762/bjnano.10.153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/16/2019] [Indexed: 05/06/2023]
Abstract
Much attention has been paid to the synthesis of low-dimensional materials from small units such as functional molecules. Bottom-up approaches to create new low-dimensional materials with various functional units can be realized with the emerging concept of nanoarchitectonics. In this review article, we overview recent research progresses on materials nanoarchitectonics at two-dimensional liquid interfaces, which are dimensionally restricted media with some freedoms of molecular motion. Specific characteristics of molecular interactions and functions at liquid interfaces are briefly explained in the first parts. The following sections overview several topics on materials nanoarchitectonics at liquid interfaces, such as the preparation of two-dimensional metal-organic frameworks and covalent organic frameworks, and the fabrication of low-dimensional and specifically structured nanocarbons and their assemblies at liquid-liquid interfaces. Finally, interfacial nanoarchitectonics of biomaterials including the regulation of orientation and differentiation of living cells are explained. In the recent examples described in this review, various materials such as molecular machines, molecular receptors, block-copolymer, DNA origami, nanocarbon, phages, and stem cells were assembled at liquid interfaces by using various useful techniques. This review overviews techniques such as conventional Langmuir-Blodgett method, vortex Langmuir-Blodgett method, liquid-liquid interfacial precipitation, instructed assembly, and layer-by-layer assembly to give low-dimensional materials including nanowires, nanowhiskers, nanosheets, cubic objects, molecular patterns, supramolecular polymers, metal-organic frameworks and covalent organic frameworks. The nanoarchitecture materials can be used for various applications such as molecular recognition, sensors, photodetectors, supercapacitors, supramolecular differentiation, enzyme reactors, cell differentiation control, and hemodialysis.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Michio Matsumoto
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
7
|
Clancy AJ, Leese HS, Rubio N, Buckley DJ, Greenfield JL, Shaffer MSP. Depleting Depletion: Maintaining Single-Walled Carbon Nanotube Dispersions after Graft-To Polymer Functionalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15396-15402. [PMID: 30428675 DOI: 10.1021/acs.langmuir.8b03144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Grafting polymers onto single-walled carbon nanotubes (SWCNTs) usefully alters properties but does not typically yield stable, solvated species directly. Despite the expectation of steric stabilization, a damaging (re)dispersion step is usually necessary. Here, poly(vinyl acetate)s (PVAc's) of varying molecular weights are grafted to individualized, reduced SWCNTs at different concentrations to examine the extent of reaction and degree of solvation. The use of higher polymer concentrations leads to an increase in grafting ratio (weight fraction of grafted polymer relative to the SWCNT framework), approaching the limit of random sequentially adsorbed Flory "mushrooms" on the surface. However, at higher polymer concentrations, a larger percentage of SWCNTs precipitate during the reaction; an effect which is more significant for larger weight polymers. The precipitation is attributed to depletion interactions generated by ungrafted homopolymer overcoming Coulombic repulsion of adjacent like-charged SWCNTs; a simple model is proposed. Larger polymers and greater degrees of functionalization favor stable solvation, but larger and more concentrated homopolymers increase depletion aggregation. By using low concentrations (25 μM) of larger molecular weight PVAc (10 kDa), up to 65% of grafted SWCNTs were retained in solution (at 65 μg mL-1) directly after the reaction.
Collapse
Affiliation(s)
- Adam J Clancy
- Department of Chemistry , University College London , London WC1E 7JE , United Kingdom
- Institute for Materials Discovery , University College London , London WC1E 7JE , United Kingdom
| | - Hannah S Leese
- Department of Chemical Engineering , University of Bath , Bath BA2 7AY , United Kingdom
| | | | - David J Buckley
- National Physical Laboratory , Teddington TW11 0LW , United Kingdom
| | | | | |
Collapse
|
8
|
Clancy AJ, Bayazit MK, Hodge SA, Skipper NT, Howard CA, Shaffer MSP. Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes. Chem Rev 2018; 118:7363-7408. [DOI: 10.1021/acs.chemrev.8b00128] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adam J. Clancy
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
- Institute for Materials Discovery, University College London, London WC1E 7JE, U.K
| | - Mustafa K. Bayazit
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Stephen A. Hodge
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
- Cambridge Graphene Centre, Engineering Department, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Neal T. Skipper
- Department of Physics & Astronomy, University College London, London WC1E 6BT, U.K
| | | | | |
Collapse
|
9
|
|