1
|
Huang L, Zhou Y, Xu L, Ruan X, Huang Z, Ke Y, Lin L, Tang Q. Accurate and sensitive dual-response fluorescence detection of microRNAs based on an upconversion nanoamplicon with red emission. RSC Adv 2024; 14:32911-32921. [PMID: 39429926 PMCID: PMC11487471 DOI: 10.1039/d4ra05061d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. In recent years, researchers have found a close relationship between microRNAs (miRNAs) and OSCC. In addition, miRNAs are highly stable in tissues and circulation, and are also considered potential biomarkers for cancer detection and prognosis. Among a variety of tools for miRNAs with low abundance, single red-emitting UCNP-based biosensors have attracted special interest due to their unique properties, including deep organizational penetration, weak radiation damage, and low autofluorescence. Additionally, the measurement of low-abundance analytes via enzyme-free signal amplification is also an effective means. Herein, by taking advantage of red-emitting UCNPs and an enzyme-toehold-mediated strand displacement cascade, a dual-signal amplification biosensor was constructed. The recycled miRNA can be regarded as a catalyst for the assembly of multiple H1/H2 duplexes, which promoted the response signal of augmented analyte expression. Moreover, the proposed biosensors improved the measurement accuracy via a dual-signal response to obviously avert false-positive signals. The proposed method was applied to measure miRNA-222 (a model analyte) in serum samples, and the results were similar to those of polymerase chain reaction (PCR), with spiked recoveries ranging from 91.2% to 101.7%. The proposed assay has the merits of high sensitivity, strong recognition, and low background, indicating broad potential for the measurement of diverse analytes in biological samples.
Collapse
Affiliation(s)
- Lingling Huang
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
- Department of Stomatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University Fuzhou 350001 China
| | - Yi Zhou
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 China
| | - Liang Xu
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
| | - Xin Ruan
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
- Department of Stomatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University Fuzhou 350001 China
| | - Zhao Huang
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
| | - Yue Ke
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 China
| | - Lisong Lin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
- Department of Stomatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University Fuzhou 350001 China
| | - Qiuling Tang
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 China
| |
Collapse
|
2
|
Lu Q, Sun Y, Liang Z, Zhang Y, Wang Z, Mei Q. Nano-optogenetics for Disease Therapies. ACS NANO 2024; 18:14123-14144. [PMID: 38768091 DOI: 10.1021/acsnano.4c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Optogenetic, known as the method of 21 centuries, combines optic and genetic engineering to precisely control photosensitive proteins for manipulation of a broad range of cellular functions, such as flux of ions, protein oligomerization and dissociation, cellular intercommunication, and so on. In this technique, light is conventionally delivered to targeted cells through optical fibers or micro light-emitting diodes, always suffering from high invasiveness, wide-field illumination facula, strong absorption, and scattering by nontargeted endogenous substance. Light-transducing nanomaterials with advantages of high spatiotemporal resolution, abundant wireless-excitation manners, and easy functionalization for recognition of specific cells, recently have been widely explored in the field of optogenetics; however, there remain a few challenges to restrain its clinical applications. This review summarized recent progress on light-responsive genetically encoded proteins and the myriad of activation strategies by use of light-transducing nanomaterials and their disease-treatment applications, which is expected for sparking helpful thought to push forward its preclinical and translational uses.
Collapse
Affiliation(s)
- Qi Lu
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yaru Sun
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhengbing Liang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhigang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
3
|
Wu JY, Yeager K, Tavakol DN, Morsink M, Wang B, Soni RK, Hung CT, Vunjak-Novakovic G. Directed differentiation of human iPSCs into mesenchymal lineages by optogenetic control of TGF-β signaling. Cell Rep 2023; 42:112509. [PMID: 37178118 PMCID: PMC10278972 DOI: 10.1016/j.celrep.2023.112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/28/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In tissue development and homeostasis, transforming growth factor (TGF)-β signaling is finely coordinated by latent forms and matrix sequestration. Optogenetics can offer precise and dynamic control of cell signaling. We report the development of an optogenetic human induced pluripotent stem cell system for TGF-β signaling and demonstrate its utility in directing differentiation into the smooth muscle, tenogenic, and chondrogenic lineages. Light-activated TGF-β signaling resulted in expression of differentiation markers at levels close to those in soluble factor-treated cultures, with minimal phototoxicity. In a cartilage-bone model, light-patterned TGF-β gradients allowed the establishment of hyaline-like layer of cartilage tissue at the articular surface while attenuating with depth to enable hypertrophic induction at the osteochondral interface. By selectively activating TGF-β signaling in co-cultures of light-responsive and non-responsive cells, undifferentiated and differentiated cells were simultaneously maintained in a single culture with shared medium. This platform can enable patient-specific and spatiotemporally precise studies of cellular decision making.
Collapse
Affiliation(s)
- Josephine Y Wu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Keith Yeager
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | | | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
4
|
Malhotra K, Hrovat D, Kumar B, Qu G, Houten JV, Ahmed R, Piunno PAE, Gunning PT, Krull UJ. Lanthanide-Doped Upconversion Nanoparticles: Exploring A Treasure Trove of NIR-Mediated Emerging Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2499-2528. [PMID: 36602515 DOI: 10.1021/acsami.2c12370] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) possess the remarkable ability to convert multiple near-infrared (NIR) photons into higher energy ultraviolet-visible (UV-vis) photons, making them a prime candidate for several advanced applications within the realm of nanotechnology. Compared to traditional organic fluorophores and quantum dots (QDs), UCNPs possess narrower emission bands (fwhm of 10-50 nm), large anti-Stokes shifts, low toxicity, high chemical stability, and resistance to photobleaching and blinking. In addition, unlike UV-vis excitation, NIR excitation is nondestructive at lower power intensities and has high tissue penetration depths (up to 2 mm) with low autofluorescence and scattering. Together, these properties make UCNPs exceedingly favored for advanced bioanalytical and theranostic applications, where these systems have been well-explored. UCNPs are also well-suited for bioimaging, optically modulating chemistries, forensic science, and other state-of-the-art research applications. In this review, an up-to-date account of emerging applications in UCNP research, beyond bioanalytical and theranostics, are presented including optogenetics, super-resolution imaging, encoded barcodes, fingerprinting, NIR vision, UCNP-assisted photochemical manipulations, optical tweezers, 3D printing, lasing, NIR-II imaging, UCNP-molecule nanohybrids, and UCNP-based persistent luminescent nanocrystals.
Collapse
Affiliation(s)
- Karan Malhotra
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - David Hrovat
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Balmiki Kumar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Grace Qu
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Justin Van Houten
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Reda Ahmed
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Paul A E Piunno
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Patrick T Gunning
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| |
Collapse
|
5
|
Yaguchi M, Jia X, Schlesinger R, Jiang X, Ataka K, Heberle J. Near-Infrared Activation of Sensory Rhodopsin II Mediated by NIR-to-Blue Upconversion Nanoparticles. Front Mol Biosci 2022; 8:782688. [PMID: 35252344 PMCID: PMC8892918 DOI: 10.3389/fmolb.2021.782688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/28/2021] [Indexed: 12/02/2022] Open
Abstract
Direct optical activation of microbial rhodopsins in deep biological tissue suffers from ineffective light delivery because visible light is strongly scattered and absorbed. NIR light has deeper tissue penetration, but NIR-activation requires a transducer that converts NIR light into visible light in proximity to proteins of interest. Lanthanide-doped upconversion nanoparticles (UCNPs) are ideal transducer as they absorb near-infrared (NIR) light and emit visible light. Therefore, UCNP-assisted excitation of microbial rhodopsins with NIR light has been intensively studied by electrophysiology technique. While electrophysiology is a powerful method to test the functional performance of microbial rhodopsins, conformational changes associated with the NIR light illumination in the presence of UCNPs remain poorly understood. Since UCNPs have generally multiple emission peaks at different wavelengths, it is important to reveal if UCNP-generated visible light induces similar structural changes of microbial rhodopsins as conventional visible light illumination does. Here, we synthesize the lanthanide-doped UCNPs that convert NIR light to blue light. Using these NIR-to-blue UCNPs, we monitor the NIR-triggered conformational changes in sensory rhodopsin II from Natronomonas pharaonis (NpSRII), blue light-sensitive microbial rhodospsin, by FTIR spectroscopy. FTIR difference spectrum of NpSRII was recorded under two different excitation conditions: (ⅰ) with conventional blue light, (ⅱ) with UCNP-generated blue light upon NIR excitation. Both spectra display similar spectral features characteristic of the long-lived M photointermediate state during the photocycle of NpSRII. This study demonstrates that NIR-activation of NpSRII mediated by UCNPs takes place in a similar way to direct blue light activation of NpSRII.
Collapse
Affiliation(s)
- Momo Yaguchi
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Xiaodan Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, China
| | - Ramona Schlesinger
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, China
| | - Kenichi Ataka
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Lin Y, Yao Y, Zhang W, Fang Q, Zhang L, Zhang Y, Xu Y. Applications of upconversion nanoparticles in cellular optogenetics. Acta Biomater 2021; 135:1-12. [PMID: 34461347 DOI: 10.1016/j.actbio.2021.08.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/07/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
Upconversion-mediated optogenetics is an emerging powerful technique to remotely control and manipulate the deep-tissue protein functions and signaling pathway activation. This technique uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and through near-infrared light to indirectly activate the traditional optogenetic proteins. With the merits of high spatiotemporal resolution and minimal invasiveness, this technique enables cell-type specific manipulation of cellular activities in deep tissues as well as in living animals. In this review, we introduce the latest development of optogenetic modules and UCNPs, with emphasis on the integration of UCNPs with cellular optogenetics and their biomedical applications on the control of neural/brain activity, cancer therapy and cardiac optogenetics in vivo. Furthermore, we analyze the current developed strategies to optimize and advance the upconversion-mediated optogenetics and discuss the remaining challenges of its further applications in biomedical study and clinical translational research. STATEMENT OF SIGNIFICANCE: Optogenetics harnesses photoactivatable proteins to optically stimulate and control intracellular activities. UCNPs-mediated NIR-activatable optogenetics uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and utilizes near-infrared (NIR) light to indirectly activate the traditional optogenetic proteins. The integration of UCNPs with cellular optogenetics has showed great promise in biomedical applications in regulating neural/brain activity, cancer therapy and cardiac optogenetics in vivo. The evolution and optimization of functional UCNPs and the discovery and engineering of novel optogenetic modules would both contribute to the advance of such unique hybrid technology, which may lead to discoveries in biomedical research and provide new treatments for human diseases.
Collapse
Affiliation(s)
- Yinyan Lin
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Yuanfa Yao
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Wanmei Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiuyu Fang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Luhao Zhang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Yan Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China; Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
7
|
Wunderlich H, Kozielski KL. Next generation material interfaces for neural engineering. Curr Opin Biotechnol 2021; 72:29-38. [PMID: 34601203 DOI: 10.1016/j.copbio.2021.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
Neural implant technology is rapidly progressing, and gaining broad interest in research fields such as electrical engineering, materials science, neurobiology, and data science. As the potential applications of neural devices have increased, new technologies to make neural intervention longer-lasting and less invasive have brought attention to neural interface engineering. This review will focus on recent developments in materials for neural implants, highlighting new technologies in the fields of soft electrodes, mechanical and chemical engineering of interface coatings, and remotely powered devices. In this context, novel implantation strategies, manufacturing methods, and combinatorial device functions will also be discussed.
Collapse
Affiliation(s)
- Hannah Wunderlich
- Department of Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Kristen L Kozielski
- Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany.
| |
Collapse
|
8
|
Dominguez-Paredes D, Jahanshahi A, Kozielski KL. Translational considerations for the design of untethered nanomaterials in human neural stimulation. Brain Stimul 2021; 14:1285-1297. [PMID: 34375694 DOI: 10.1016/j.brs.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/03/2021] [Accepted: 08/01/2021] [Indexed: 12/18/2022] Open
Abstract
Neural stimulation is a powerful tool to study brain physiology and an effective treatment for many neurological disorders. Conventional interfaces use electrodes implanted in the brain. As these are often invasive and have limited spatial targeting, they carry a potential risk of side-effects. Smaller neural devices may overcome these obstacles, and as such, the field of nanoscale and remotely powered neural stimulation devices is growing. This review will report on current untethered, injectable nanomaterial technologies intended for neural stimulation, with a focus on material-tissue interface engineering. We will review nanomaterials capable of wireless neural stimulation, and discuss their stimulation mechanisms. Taking cues from more established nanomaterial fields (e.g., cancer theranostics, drug delivery), we will then discuss methods to modify material interfaces with passive and bioactive coatings. We will discuss methods of delivery to a desired brain region, particularly in the context of how delivery and localization are affected by surface modification. We will also consider each of these aspects of nanoscale neurostimulators with a focus on their prospects for translation to clinical use.
Collapse
Affiliation(s)
- David Dominguez-Paredes
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Kristen L Kozielski
- Department of Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany; Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany.
| |
Collapse
|
9
|
Yang J, Zhang X, Zhang X, Wang L, Feng W, Li Q. Beyond the Visible: Bioinspired Infrared Adaptive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004754. [PMID: 33624900 DOI: 10.1002/adma.202004754] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/07/2020] [Indexed: 05/24/2023]
Abstract
Infrared (IR) adaptation phenomena are ubiquitous in nature and biological systems. Taking inspiration from natural creatures, researchers have devoted extensive efforts for developing advanced IR adaptive materials and exploring their applications in areas of smart camouflage, thermal energy management, biomedical science, and many other IR-related technological fields. Herein, an up-to-date review is provided on the recent advancements of bioinspired IR adaptive materials and their promising applications. First an overview of IR adaptation in nature and advanced artificial IR technologies is presented. Recent endeavors are then introduced toward developing bioinspired adaptive materials for IR camouflage and IR radiative cooling. According to the Stefan-Boltzmann law, IR camouflage can be realized by either emissivity engineering or thermal cloaks. IR radiative cooling can maximize the thermal radiation of an object through an IR atmospheric transparency window, and thus holds great potential for use in energy-efficient green buildings and smart personal thermal management systems. Recent advances in bioinspired adaptive materials for emerging near-IR (NIR) applications are also discussed, including NIR-triggered biological technologies, NIR light-fueled soft robotics, and NIR light-driven supramolecular nanosystems. This review concludes with a perspective on the challenges and opportunities for the future development of bioinspired IR adaptive materials.
Collapse
Affiliation(s)
- Jiajia Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xinfang Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
10
|
Zhao J, Ellis-Davies GCR. Intracellular photoswitchable neuropharmacology driven by luminescence from upconverting nanoparticles. Chem Commun (Camb) 2020; 56:9445-9448. [PMID: 32761019 PMCID: PMC7812838 DOI: 10.1039/d0cc03956j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photoswitchable drugs are small-molecule optical probes that undergo chromatically selective control of drug efficacy using, most often, UV-visible light. Here we report that luminescence produced by near-infrared stimulation of NaYF4:TmYb nanoparticles can be used for "remote control" of an azobenzene-based photochromic ion channel blocker of neurons in living brain slices.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
11
|
Near-infrared photocontrolled therapeutic release via upconversion nanocomposites. J Control Release 2020; 324:104-123. [DOI: 10.1016/j.jconrel.2020.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
|
12
|
Peng K, Liu S, Lv F, Fu X, Hussain S, Zhao H, Liu L, Wang S. Wireless Charging Electrochemiluminescence System for Ionic Channel Manipulation in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24655-24661. [PMID: 32391678 DOI: 10.1021/acsami.0c07476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Optogenetics holds great potential for precisely altering living cell behavior with the aid of light because of its high temporospatial resolution. However, the light-dependent manner severely limits its applications in deep tissues, particularly to those in the visible region. Here, we propose a wireless charging electrochemiluminescence (ECL) system, featured with long-time delayed luminescence, to remotely activate the light-gated ion channel (channelrhodopsin-2, ChR2) on the living cell membrane, followed by the intracellular influx of Ca2+ ions. Upon wireless charging ECL illumination, the influx of Ca2+ into the living cells triggers strong ion indicator fluorescence, suggesting the successful remote control on ChR2. As such, the wireless charging ECL strategy exhibits great potential to wireless control of optogenetics in deep tissues by implanting a device in vivo.
Collapse
Affiliation(s)
- Ke Peng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shanshan Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
| | - Xuancheng Fu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Sameer Hussain
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Wang JH, Chen HY, Chuang CC, Chen JC. Study of near-infrared light-induced excitation of upconversion nanoparticles as a vector for non-viral DNA delivery. RSC Adv 2020; 10:41013-41021. [PMID: 35519194 PMCID: PMC9057729 DOI: 10.1039/d0ra05385f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/04/2021] [Accepted: 10/12/2020] [Indexed: 01/18/2023] Open
Abstract
Clinical requirements have necessitated the development of biomedical nanomaterials that can be implanted into tissues or bodies.
Collapse
Affiliation(s)
- Jen-Hsuan Wang
- Institute of Biomedical Engineering
- National Chiao Tung University
- HsinChu
- Republic of China
| | - Hsin-Yu Chen
- Institute of Biomedical Engineering
- National Chiao Tung University
- HsinChu
- Republic of China
| | - Ching-Cheng Chuang
- Institute of Biomedical Engineering
- National Chiao Tung University
- HsinChu
- Republic of China
- Department of Electrical and Computer Engineering
| | - Jung-Chih Chen
- Institute of Biomedical Engineering
- National Chiao Tung University
- HsinChu
- Republic of China
- Department of Electrical and Computer Engineering
| |
Collapse
|
14
|
Loo JFC, Chien YH, Yin F, Kong SK, Ho HP, Yong KT. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213042] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Thanasekaran P, Chu CH, Wang SB, Chen KY, Gao HD, Lee MM, Sun SS, Li JP, Chen JY, Chen JK, Chang YH, Lee HM. Lipid-Wrapped Upconversion Nanoconstruct/Photosensitizer Complex for Near-Infrared Light-Mediated Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:84-95. [PMID: 30500151 DOI: 10.1021/acsami.8b07760] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photodynamic therapy (PDT) is a noninvasive medical technology that has been applied in cancer treatment where it is accessible by direct or endoscope-assisted light irradiation. To lower phototoxicity and increase tissue penetration depth of light, great effort has been focused on developing new sensitizers that can utilize red or near-infrared (NIR) light for the past decades. Lanthanide-doped upconversion nanoparticles (UCNPs) have a unique property to transduce NIR excitation light to UV-vis emission efficiently. This property allows some low-cost, low-toxicity, commercially available visible light sensitizers, which originally are not suitable for deep tissue PDT, to be activated by NIR light and have been reported extensively in the past few years. However, some issues still remain in the UCNP-assisted PDT platform such as colloidal stability, photosensitizer loading efficiency, and accessibility for targeting ligand installation, despite some advances in this direction. In this study, we designed a facile phospholipid-coated UCNP method to generate a highly colloidally stable nanoplatform that can effectively load a series of visible light sensitizers in the lipid layers. The loading stability and singlet oxygen generation efficiency of this sensitizer-loaded lipid-coated UCNP platform were investigated. We also have demonstrated the enhanced cellular uptake efficiency and tumor cell selectivity of this lipid-coated UCNP platform by changing the lipid dopant. On the basis of the evidence of our results, the lipid-complexed UCNP nanoparticles could serve as an effective photosensitizer carrier for NIR light-mediated PDT.
Collapse
Affiliation(s)
| | - Chih-Hang Chu
- Institute of Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Sheng-Bo Wang
- Department of Materials and Mineral Resources Engineering, Institute of Mineral Resources Engineering , National Taipei University of Technology , Taipei 10608 , Taiwan
| | - Kuan-Yu Chen
- Department of Materials and Mineral Resources Engineering, Institute of Mineral Resources Engineering , National Taipei University of Technology , Taipei 10608 , Taiwan
| | - Hua-De Gao
- Institute of Chemistry , Academia Sinica , Taipei 11529 , Taiwan
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Mandy M Lee
- Institute of Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Shih-Sheng Sun
- Institute of Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Jui-Ping Li
- Institute of Biomedical Engineering and Nanomedicine , National Health Research Institutes , Miaoli 350 , Taiwan
| | - Jiun-Yu Chen
- Institute of Biomedical Engineering and Nanomedicine , National Health Research Institutes , Miaoli 350 , Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine , National Health Research Institutes , Miaoli 350 , Taiwan
| | - Yu-Hsu Chang
- Department of Materials and Mineral Resources Engineering, Institute of Mineral Resources Engineering , National Taipei University of Technology , Taipei 10608 , Taiwan
| | - Hsien-Ming Lee
- Institute of Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| |
Collapse
|
16
|
Wang Z, Hu M, Ai X, Zhang Z, Xing B. Near-Infrared Manipulation of Membrane Ion Channels via Upconversion Optogenetics. ADVANCED BIOSYSTEMS 2019; 3:e1800233. [PMID: 32627341 DOI: 10.1002/adbi.201800233] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/27/2018] [Indexed: 12/21/2022]
Abstract
Membrane ion channels are ultimately responsible for the propagation and integration of electrical signals in the nervous, muscular, and other systems. Their activation or malfunctioning plays a significant role in physiological and pathophysiological processes. Using optogenetics to dynamically and spatiotemporally control ion channels has recently attracted considerable attention. However, most of the established optogenetic tools (e.g., channelrhodopsins, ChRs) for optical manipulations, are mainly stimulated by UV or visible light, which raises the concerns of potential photodamage, limited tissue penetration, and high-invasive implantation of optical fiber devices. Near-infrared (NIR) upconversion nanoparticle (UCNP)-mediated optogenetic systems provide great opportunities for overcoming the problems encountered in the manipulation of ion channels in deep tissues. Hence, this review focuses on the recent advances in NIR regulation of membrane ion channels via upconversion optogenetics in biomedical research. The engineering and applications of upconversion optogenetic systems by the incorporation multiple emissive UCNPs into various light-gated ChRs/ligands are first elaborated, followed by a detailed discussion of the technical improvements for more precise and efficient control of membrane channels. Finally, the future perspectives for refining and advancing NIR-mediated upconversion optogenetics into in vivo even in clinical applications are proposed.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Ming Hu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiangzhao Ai
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhijun Zhang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
17
|
Haider G, Lin HI, Yadav K, Shen KC, Liao YM, Hu HW, Roy PK, Bera KP, Lin KH, Lee HM, Chen YT, Chen FR, Chen YF. A Highly-Efficient Single Segment White Random Laser. ACS NANO 2018; 12:11847-11859. [PMID: 30352157 DOI: 10.1021/acsnano.8b03035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Production of multicolor or multiple wavelength lasers over the full visible-color spectrum from a single chip device has widespread applications, such as superbright solid-state lighting, color laser displays, light-based version of Wi-Fi (Li-Fi), and bioimaging, etc. However, designing such lasing devices remains a challenging issue owing to the material requirements for producing multicolor emissions and sophisticated design for producing laser action. Here we demonstrate a simple design and highly efficient single segment white random laser based on solution-processed NaYF4:Yb/Er/Tm@NaYF4:Eu core-shell nanoparticles assisted by Au/MoO3 multilayer hyperbolic meta-materials. The multicolor lasing emitted from core-shell nanoparticles covering the red, green, and blue, simultaneously, can be greatly enhanced by the high photonic density of states with a suitable design of hyperbolic meta-materials, which enables decreasing the energy consumption of photon propagation. As a result, the energy upconversion emission is enhanced by ∼50 times with a drastic reduction of the lasing threshold. The multiple scatterings arising from the inherent nature of the disordered nanoparticle matrix provide a convenient way for the formation of closed feedback loops, which is beneficial for the coherent laser action. The experimental results were supported by the electromagnetic simulations derived from the finite-difference time-domain (FDTD) method. The approach shown here can greatly simplify the design of laser structures with color-tunable emissions, which can be extended to many other material systems. Together with the characteristics of angle free laser action, our device provides a promising solution toward the realization of many laser-based practical applications.
Collapse
Affiliation(s)
- Golam Haider
- Department of Engineering and System Science , National Tsing Hua University , Hsinchu 300 , Taiwan
- Nano-Science and Technology Program, Taiwan International Graduate Program , Academia Sinica , Taipei 115 , Taiwan
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
- J Heyrovský Institute of Physical Chemistry , Academy of Sciences of the Czech Republic , Prague 8 , Czechia
| | - Hung-I Lin
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
| | - Kanchan Yadav
- Nano-Science and Technology Program, Taiwan International Graduate Program , Academia Sinica , Taipei 115 , Taiwan
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Kun-Ching Shen
- Research Center for Applied Sciences , Academia Sinica , Taipei 115 , Taiwan
| | - Yu-Ming Liao
- Department of Engineering and System Science , National Tsing Hua University , Hsinchu 300 , Taiwan
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
| | - Han-Wen Hu
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
| | - Pradip Kumar Roy
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
| | - Krishna Prasad Bera
- Nano-Science and Technology Program, Taiwan International Graduate Program , Academia Sinica , Taipei 115 , Taiwan
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
| | - Kung-Hsuan Lin
- Institute of Physics , Academia Sinica , Taipei 115 , Taiwan
| | - Hsien-Ming Lee
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Yit-Tsong Chen
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Fu-Rong Chen
- Department of Engineering and System Science , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Yang-Fang Chen
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
- Advanced Research Center for Green Materials Science and Technology , National Taiwan University , Taipei 106 , Taiwan
| |
Collapse
|
18
|
Kataria M, Yadav K, Cai SY, Liao YM, Lin HI, Shen TL, Chen YH, Chen YT, Wang WH, Chen YF. Highly Sensitive, Visible Blind, Wearable, and Omnidirectional Near-Infrared Photodetectors. ACS NANO 2018; 12:9596-9607. [PMID: 30199626 DOI: 10.1021/acsnano.8b05582] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Visible blind near-infrared (NIR) photodetection is essential when it comes to weapons used by military personnel, narrow band detectors used in space navigation systems, medicine, and research studies. The technological field of filterless visible blind, NIR omnidirectional photodetection and wearability is at a preliminary stage. Here, we present a filterless and lightweight design for a visible blind and wearable NIR photodetector capable of harvesting light omnidirectionally. The filterless NIR photodetector comprises the integration of distinct features of lanthanide-doped upconversion nanoparticles (UCNPs), graphene, and micropyramidal poly(dimethylsiloxane) (PDMS) film. The lanthanide-doped UCNPs are designed such that the maximum narrow band detection of NIR is easily accomplished by the photodetector even in the presence of visible light sources. Especially, the 4f n electronic configuration of lanthanide dopant ions provides for a multilevel hierarchical energy system that provides for longer lifetime of the excited states for photogenerated charge carriers to transfer to the graphene layer. The graphene layer can serve as an outstanding conduction path for photogenerated charge carrier transfer from UCNPs, and the flexible micropyramidal PDMS substrate provides an excellent platform for omnidirectional NIR light detection. Owing to these advantages, a photoresponsivity of ∼800 AW-1 is achieved by the NIR photodetector, which is higher than the values ever reported by UCNPs-based photodetectors. In addition, the photodetector is stretchable, durable, and transparent, making it suitable for next-generation wearable optoelectronic devices.
Collapse
Affiliation(s)
- Monika Kataria
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 115 , Taiwan
- Department of Physics , National Central University , Chung-Li 320 , Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program, Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 115 , Taiwan
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
| | - Kanchan Yadav
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 115 , Taiwan
- Nanoscience and Nanotechnology Program, Taiwan International Graduate Program, Institute of Physics , Academia Sinica , Taipei 106 , Taiwan
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Shu-Yi Cai
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
| | - Yu-Ming Liao
- Nanoscience and Nanotechnology Program, Taiwan International Graduate Program, Institute of Physics , Academia Sinica , Taipei 106 , Taiwan
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
| | - Hung-I Lin
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
| | - Tien Lin Shen
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
| | - Ying-Huan Chen
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
| | - Yit-Tsong Chen
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 115 , Taiwan
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Wei-Hua Wang
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 115 , Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program, Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 115 , Taiwan
| | - Yang-Fang Chen
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
- Advanced Research Centre for Green Materials Science and Technology , National Taiwan University , Taipei 10617 , Taiwan
| |
Collapse
|
19
|
Chen C, Wang F, Wen S, Su QP, Wu MCL, Liu Y, Wang B, Li D, Shan X, Kianinia M, Aharonovich I, Toth M, Jackson SP, Xi P, Jin D. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nat Commun 2018; 9:3290. [PMID: 30120242 PMCID: PMC6098146 DOI: 10.1038/s41467-018-05842-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 07/26/2018] [Indexed: 01/03/2023] Open
Abstract
Multiphoton fluorescence microscopy (MPM), using near infrared excitation light, provides increased penetration depth, decreased detection background, and reduced phototoxicity. Using stimulated emission depletion (STED) approach, MPM can bypass the diffraction limitation, but it requires both spatial alignment and temporal synchronization of high power (femtosecond) lasers, which is limited by the inefficiency of the probes. Here, we report that upconversion nanoparticles (UCNPs) can unlock a new mode of near-infrared emission saturation (NIRES) nanoscopy for deep tissue super-resolution imaging with excitation intensity several orders of magnitude lower than that required by conventional MPM dyes. Using a doughnut beam excitation from a 980 nm diode laser and detecting at 800 nm, we achieve a resolution of sub 50 nm, 1/20th of the excitation wavelength, in imaging of single UCNP through 93 μm thick liver tissue. This method offers a simple solution for deep tissue super resolution imaging and single molecule tracking.
Collapse
Affiliation(s)
- Chaohao Chen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Fan Wang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Qian Peter Su
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mike C L Wu
- Heart Research Institute, and Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Yongtao Liu
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Baoming Wang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Du Li
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Xuchen Shan
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mehran Kianinia
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Igor Aharonovich
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Milos Toth
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Shaun P Jackson
- Heart Research Institute, and Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Peng Xi
- Department of Biomedical Engineering, College of Engineering, Peking University, 100871, Beijing, China
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|