1
|
Allard C, Alvarez L, Bantignies JL, Bendiab N, Cambré S, Campidelli S, Fagan JA, Flahaut E, Flavel B, Fossard F, Gaufrès E, Heeg S, Lauret JS, Loiseau A, Marceau JB, Martel R, Marty L, Pichler T, Voisin C, Reich S, Setaro A, Shi L, Wenseleers W. Advanced 1D heterostructures based on nanotube templates and molecules. Chem Soc Rev 2024; 53:8457-8512. [PMID: 39036944 DOI: 10.1039/d3cs00467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recent advancements in materials science have shed light on the potential of exploring hierarchical assemblies of molecules on surfaces, driven by both fundamental and applicative challenges. This field encompasses diverse areas including molecular storage, drug delivery, catalysis, and nanoscale chemical reactions. In this context, the utilization of nanotube templates (NTs) has emerged as promising platforms for achieving advanced one-dimensional (1D) molecular assemblies. NTs offer cylindrical, crystalline structures with high aspect ratios, capable of hosting molecules both externally and internally (Mol@NT). Furthermore, NTs possess a wide array of available diameters, providing tunability for tailored assembly. This review underscores recent breakthroughs in the field of Mol@NT. The first part focuses on the diverse panorama of structural properties in Mol@NT synthesized in the last decade. The advances in understanding encapsulation, adsorption, and ordering mechanisms are detailed. In a second part, the review highlights the physical interactions and photophysics properties of Mol@NT obtained by the confinement of molecules and nanotubes in the van der Waals distance regime. The last part of the review describes potential applicative fields of these 1D heterostructures, providing specific examples in photovoltaics, luminescent materials, and bio-imaging. A conclusion gathers current challenges and perspectives of the field to foster discussion in related communities.
Collapse
Affiliation(s)
| | - Laurent Alvarez
- Laboratoire Charles Coulomb, CNRS-Université de Montpellier, France
| | | | | | | | | | | | - Emmanuel Flahaut
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse, cedex 9, France
| | | | - Frédéric Fossard
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Etienne Gaufrès
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | - Jean-Sebastien Lauret
- LUMIN, Université Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, Orsay, France
| | - Annick Loiseau
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Jean-Baptiste Marceau
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | | | | | | | | | - Antonio Setaro
- Free University of Berlin, Germany
- Faculty of Engineering and Informatics, Pegaso University, Naples, Italy
| | - Lei Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology and Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | | |
Collapse
|
2
|
Wei X, Li S, Wang W, Zhang X, Zhou W, Xie S, Liu H. Recent Advances in Structure Separation of Single-Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200054. [PMID: 35293698 PMCID: PMC9108629 DOI: 10.1002/advs.202200054] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Indexed: 05/04/2023]
Abstract
Structural control of single-wall carbon nanotubes (SWCNTs) with uniform properties is critical not only for their property modulation and functional design but also for applications in electronics, optics, and optoelectronics. To achieve this goal, various separation techniques have been developed in the past 20 years through which separation of high-purity semiconducting/metallic SWCNTs, single-chirality species, and even their enantiomers have been achieved. This progress has promoted the property modulation of SWCNTs and the development of SWCNT-based optoelectronic devices. Here, the recent advances in the structure separation of SWCNTs are reviewed, from metallic/semiconducting SWCNTs, to single-chirality species, and to enantiomers by several typical separation techniques and the application of the corresponding sorted SWCNTs. Based on the separation procedure, efficiency, and scalability, as well as, the separable SWCNT species, purity, and quantity, the advantages and disadvantages of various separation techniques are compared. Combined with the requirements of SWCNT application, the challenges, prospects, and development direction of structure separation are further discussed.
Collapse
Affiliation(s)
- Xiaojun Wei
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Shilong Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
| | - Wenke Wang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
| | - Xiao Zhang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Weiya Zhou
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Sishen Xie
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
3
|
Morais E, Moloney C, O'Modhrain C, McKiernan E, Brougham DF, Sullivan JA. Enhanced Stability and Emission Properties of Perylene Dyes by Surface Tethering: Preparation of Fluorescent Ru Nanoparticle Suspensions by Alkyne Linker Chemistry. Chemistry 2021; 27:1023-1030. [PMID: 33022835 DOI: 10.1002/chem.202003514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Indexed: 11/06/2022]
Abstract
Spherical ruthenium nanoparticles (NPs) with a narrow size distribution were synthesised in ethanol by a facile low-temperature solvothermal process without the assistance of templates, structure-directing agents or post annealing/reduction treatments. Surface passivation with a fluorescent perylene dye (EP), and with silane ligands (ETMS), both initially bearing alkyne groups and subsequently forming vinylidene linkages, provided stable suspensions of the marginally soluble free EP. Quantitative analysis of the suspension gave an estimated EP surface coverage of 15 %, corresponding to an EP/ETMS mole ratio of ≈1:6. Photophysical evaluation of the bound and free dye revealed similar absorption bands and extinction coefficients and improved properties for the bound state, including enhanced fluorescence in the visible range for the bound dye, an extended absorption range into the near-UV providing strong emission in the visible, and significantly improved photostability. The physical basis of the enhanced photophysical properties, potential routes to further improvements and the implications for applications are discussed.
Collapse
Affiliation(s)
| | - Cara Moloney
- UCD School of Chemistry, Belfield, Dublin, 4, Ireland
| | | | | | | | | |
Collapse
|
4
|
Kubie L, Watkins KJ, Ihly R, Wladkowski HV, Blackburn JL, Rice WD, Parkinson BA. Optically Generated Free-Carrier Collection from an All Single-Walled Carbon Nanotube Active Layer. J Phys Chem Lett 2018; 9:4841-4847. [PMID: 30085684 DOI: 10.1021/acs.jpclett.8b01850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Semiconducting single-walled carbon nanotubes' (SWCNTs) broad absorption range and all-carbon composition make them attractive materials for light harvesting. We report photoinduced charge transfer from both multichiral and single-chirality SWCNT films into atomically flat SnO2 and TiO2 crystals. Higher-energy second excitonic SWCNT transitions produce more photocurrent, demonstrating carrier injection rates are competitive with fast hot-exciton relaxation processes. A logarithmic relationship exists between photoinduced electron-transfer driving force and photocarrier collection efficiency, becoming more efficient with smaller diameter SWCNTs. Photocurrents are generated from both conventional sensitization and in the opposite direction with the semiconductor under accumulation and acting as an ohmic contact with only the p-type nanotubes. Finally, we demonstrate that SWCNT surfactant choice and concentration play a large role in photon conversion efficiency and present methods of maximizing photocurrent yields.
Collapse
Affiliation(s)
- Lenore Kubie
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
- Energy Sciences Division , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Kevin J Watkins
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Rachelle Ihly
- Energy Sciences Division , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Henry V Wladkowski
- Department of Physics and Astronomy , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Jeffrey L Blackburn
- Energy Sciences Division , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - William D Rice
- Department of Physics and Astronomy , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Bruce A Parkinson
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
| |
Collapse
|