1
|
Liao Z, Liu T, Yao Z, Hu T, Ji X, Yao B. Harnessing stimuli-responsive biomaterials for advanced biomedical applications. EXPLORATION (BEIJING, CHINA) 2025; 5:20230133. [PMID: 40040822 PMCID: PMC11875454 DOI: 10.1002/exp.20230133] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/18/2024] [Indexed: 03/06/2025]
Abstract
Cell behavior is intricately intertwined with the in vivo microenvironment and endogenous pathways. The ability to guide cellular behavior toward specific goals can be achieved by external stimuli, notably electricity, light, ultrasound, and magnetism, simultaneously harnessed through biomaterial-mediated responses. These external triggers become focal points within the body due to interactions with biomaterials, facilitating a range of cellular pathways: electrical signal transmission, biochemical cues, drug release, cell loading, and modulation of mechanical stress. Stimulus-responsive biomaterials hold immense potential in biomedical research, establishing themselves as a pivotal focal point in interdisciplinary pursuits. This comprehensive review systematically elucidates prevalent physical stimuli and their corresponding biomaterial response mechanisms. Moreover, it delves deeply into the application of biomaterials within the domain of biomedicine. A balanced assessment of distinct physical stimulation techniques is provided, along with a discussion of their merits and limitations. The review aims to shed light on the future trajectory of physical stimulus-responsive biomaterials in disease treatment and outline their application prospects and potential for future development. This review is poised to spark novel concepts for advancing intelligent, stimulus-responsive biomaterials.
Collapse
Affiliation(s)
- Ziming Liao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| | - Tingting Liu
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolCambridgeMassachusettsUSA
- Research Center for Nano‐Biomaterials and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Biomedical EngineeringTaiyuan University of TechnologyTaiyuanShanxiP. R. China
- Department of Laboratory DiagnosisThe 971th HospitalQingdaoP. R. China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingP. R. China
| | - Zhimin Yao
- Sichuan Preschool Educators' CollegeMianyangP. R. China
| | - Tian Hu
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordJohn Radcliffe HospitalOxfordUK
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| | - Bin Yao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| |
Collapse
|
2
|
Peng M, Heng Z, Ma D, Hou B, Yang K, Liu Q, Gu Z, Liu W, Chen S. Iontophoresis-Integrated Smart Microneedle Delivery Platform for Efficient Transdermal Delivery and On-Demand Insulin Release. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70378-70391. [PMID: 39668130 DOI: 10.1021/acsami.4c18381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Transdermal insulin delivery in a painless, convenient, and on-demand way remains a long-standing challenge. A variety of smart microneedles (MNs) fabricated by glucose-responsive phenylboronic acid hydrogels have been previously developed to provide painless and autonomous insulin release in response to a glucose level change. However, like the majority of MNs, their transdermal delivery efficiency was still relatively low compared to that with subcutaneous injection. Herein, we report an iontophoresis (ITP)-integrated smart MNs delivery platform with enhanced transdermal delivery efficiency and delivery depth. Carbon nanotubes (CNTs) were induced in the boronate-containing hydrogel to develop a semi-interpenetrating network hydrogel with enhanced stiffness and conductivity. Remarkably, ITP not only facilitated efficient and deeper transdermal delivery of insulin via electroosmosis and electrophoresis but also well-maintained glucose responsiveness. This ITP-combined smart MNs delivery platform, which could provide on-demand insulin delivery in a painless, convenient, and safe way, is promising to achieve persistent glycemic control. Furthermore, transdermal delivery of payloads with a wide size range was achieved by this delivery platform and thus shed light on the development of an efficient transdermal delivery platform with deep skin penetration in a minimally invasive way.
Collapse
Affiliation(s)
- Mingwei Peng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Ziwen Heng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Dewei Ma
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Bo Hou
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Keke Yang
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Qinglong Liu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Wei Liu
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
3
|
Applebee Z, Howell C. Multi-component liquid-infused systems: a new approach to functional coatings. INDUSTRIAL CHEMISTRY & MATERIALS 2024; 2:378-392. [PMID: 39165661 PMCID: PMC11334363 DOI: 10.1039/d4im00003j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/23/2024] [Indexed: 08/22/2024]
Abstract
Antifouling liquid-infused surfaces have generated interest in multiple fields due to their diverse applications in industry and medicine. In nearly all reports to date, the liquid component consists of only one chemical species. However, unlike traditional solid surfaces, the unique nature of liquid surfaces holds the potential for synergistic and even adaptive functionality simply by including additional elements in the liquid coating. In this work, we explore the concept of multi-component liquid-infused systems, in which the coating liquid consists of a primary liquid and a secondary component or components that provide additional functionality. For ease of understanding, we categorize recently reported multi-component liquid-infused surfaces according to the size of the secondary components: molecular scale, in which the secondary components are molecules; nanoscale, in which they are nanoparticles or their equivalent; and microscale, in which the additional components are micrometer size or above. We present examples at each scale, showing how introducing a secondary element into the liquid can result in synergistic effects, such as maintaining a pristine surface while actively modifying the surrounding environment, which are difficult to achieve in other surface treatments. The review highlights the diversity of fabrication methods and provides perspectives on future research directions. Introducing secondary components into the liquid matrix of liquid-infused surfaces is a promising strategy with significant potential to create a new class of multifunctional materials. Keywords: Active surfaces; Antimicrobial; Antifouling; Interfaces; Sensing surfaces.
Collapse
Affiliation(s)
- Zachary Applebee
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine ME 04469 USA
- Graduate School of Biomedical Science and Engineering, University of Maine ME 04469 USA
| | - Caitlin Howell
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine ME 04469 USA
- Graduate School of Biomedical Science and Engineering, University of Maine ME 04469 USA
| |
Collapse
|
4
|
Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D Printing for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402301. [PMID: 38580291 DOI: 10.1002/adma.202402301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/07/2024]
Abstract
4D (bio-)printing endows 3D printed (bio-)materials with multiple functionalities and dynamic properties. 4D printed materials have been recently used in biomedical engineering for the design and fabrication of biomedical devices, such as stents, occluders, microneedles, smart 3D-cell engineered microenvironments, drug delivery systems, wound closures, and implantable medical devices. However, the success of 4D printing relies on the rational design of 4D printed objects, the selection of smart materials, and the availability of appropriate types of external (multi-)stimuli. Here, this work first highlights the different types of smart materials, external stimuli, and design strategies used in 4D (bio-)printing. Then, it presents a critical review of the biomedical applications of 4D printing and discusses the future directions of biomedical research in this exciting area, including in vivo tissue regeneration studies, the implementation of multiple materials with reversible shape memory behaviors, the creation of fast shape-transformation responses, the ability to operate at the microscale, untethered activation and control, and the application of (machine learning-based) modeling approaches to predict the structure-property and design-shape transformation relationships of 4D (bio)printed constructs.
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Ava Ghalayaniesfahani
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Chemistry, Materials and Chemical Engineering, Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Pedro J Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
5
|
Lee S, M Silva S, Caballero Aguilar LM, Eom T, Moulton SE, Shim BS. Biodegradable bioelectronics for biomedical applications. J Mater Chem B 2022; 10:8575-8595. [PMID: 36214325 DOI: 10.1039/d2tb01475k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biodegradable polymers have been widely used in tissue engineering with the potential to be replaced by regenerative tissue. While conventional bionic interfaces are designed to be implanted in living tissue and organs permanently, biocompatible and biodegradable electronic materials are now progressing a paradigm shift towards transient and regenerative bionic engineering. For example, biodegradable bioelectronics can monitor physiologies in a body, transiently rehabilitate disease symptoms, and seamlessly form regenerative interfaces from synthetic electronic devices to tissues by reducing inflammatory foreign-body responses. Conventional electronic materials have not readily been considered biodegradable. However, several strategies have been adopted for designing electroactive and biodegradable materials systems: (1) conductive materials blended with biodegradable components, (2) molecularly engineered conjugated polymers with biodegradable moieties, (3) naturally derived conjugated biopolymers, and (4) aqueously dissolvable metals with encapsulating layers. In this review, we endeavor to present the technical bridges from electrically active and biodegradable material systems to edible and biodegradable electronics as well as transient bioelectronics with pre-clinical bio-instrumental applications, including biodegradable sensors, neural and tissue engineering, and intelligent drug delivery systems.
Collapse
Affiliation(s)
- Seunghyeon Lee
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Lilith M Caballero Aguilar
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Taesik Eom
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Bong Sup Shim
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| |
Collapse
|
6
|
Wang F, Jin Y, Gao X, Huo H, Wang B, Niu B, Xia Z, Zhang J, Yang X. DNAzyme-assisted bioconstruction of logically activatable nanoplatforms for enhanced cancer therapy. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
On-demand release of the small-molecule TrkB agonist improves neuron-Schwann cell interactions. J Control Release 2022; 343:482-491. [DOI: 10.1016/j.jconrel.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/19/2022]
|
8
|
Elashnikov R, Ulbrich P, Vokatá B, Pavlíčková VS, Švorčík V, Lyutakov O, Rimpelová S. Physically Switchable Antimicrobial Surfaces and Coatings: General Concept and Recent Achievements. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3083. [PMID: 34835852 PMCID: PMC8619822 DOI: 10.3390/nano11113083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022]
Abstract
Bacterial environmental colonization and subsequent biofilm formation on surfaces represents a significant and alarming problem in various fields, ranging from contamination of medical devices up to safe food packaging. Therefore, the development of surfaces resistant to bacterial colonization is a challenging and actively solved task. In this field, the current promising direction is the design and creation of nanostructured smart surfaces with on-demand activated amicrobial protection. Various surface activation methods have been described recently. In this review article, we focused on the "physical" activation of nanostructured surfaces. In the first part of the review, we briefly describe the basic principles and common approaches of external stimulus application and surface activation, including the temperature-, light-, electric- or magnetic-field-based surface triggering, as well as mechanically induced surface antimicrobial protection. In the latter part, the recent achievements in the field of smart antimicrobial surfaces with physical activation are discussed, with special attention on multiresponsive or multifunctional physically activated coatings. In particular, we mainly discussed the multistimuli surface triggering, which ensures a better degree of surface properties control, as well as simultaneous utilization of several strategies for surface protection, based on a principally different mechanism of antimicrobial action. We also mentioned several recent trends, including the development of the to-detect and to-kill hybrid approach, which ensures the surface activation in a right place at a right time.
Collapse
Affiliation(s)
- Roman Elashnikov
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (R.E.); (V.Š.)
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (P.U.); (B.V.); (V.S.P.)
| | - Barbora Vokatá
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (P.U.); (B.V.); (V.S.P.)
| | - Vladimíra Svobodová Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (P.U.); (B.V.); (V.S.P.)
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (R.E.); (V.Š.)
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (R.E.); (V.Š.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (P.U.); (B.V.); (V.S.P.)
| |
Collapse
|
9
|
Baptista AC, Brito M, Marques A, Ferreira I. Electronic control of drug release from gauze or cellulose acetate fibres for dermal applications. J Mater Chem B 2021; 9:3515-3522. [PMID: 33909745 DOI: 10.1039/d1tb00249j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Electronic controlled drug release from fibres was studied using ibuprofen as a model drug, one of the most popular analgesics, to impregnate gauze and cellulose acetate (CA) membranes. Conductivity in the range of 1-10 mS cm-1 was obtained in polypyrrole (Ppy) functionalised gauze and CA fibres, providing voltage-controlled drug release in a system consisting of Ppy/Ibuprofen/Ppy membranes and an Ag electrode. SEM images evidenced the Ppy adhesion to fibres and Micro Raman spectra proved drug incorporation and release. A small wound adhesive built with these membranes retains ibuprofen at 1.5 V and quickly releases it when -0.5 V is applied.
Collapse
Affiliation(s)
- Ana Catarina Baptista
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade NOVA de Lisboa, 2829-516 Campus de Caparica, Portugal.
| | - Miguel Brito
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade NOVA de Lisboa, 2829-516 Campus de Caparica, Portugal.
| | - Ana Marques
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade NOVA de Lisboa, 2829-516 Campus de Caparica, Portugal.
| | - Isabel Ferreira
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade NOVA de Lisboa, 2829-516 Campus de Caparica, Portugal.
| |
Collapse
|
10
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
|
12
|
Franco MS, Gomes ER, Roque MC, Oliveira MC. Triggered Drug Release From Liposomes: Exploiting the Outer and Inner Tumor Environment. Front Oncol 2021; 11:623760. [PMID: 33796461 PMCID: PMC8008067 DOI: 10.3389/fonc.2021.623760] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Since more than 40 years liposomes have being extensively studied for their potential as carriers of anticancer drugs. The basic principle behind their use for cancer treatment consists on the idea that they can take advantage of the leaky vasculature and poor lymphatic drainage present at the tumor tissue, passively accumulating in this region. Aiming to further improve their efficacy, different strategies have been employed such as PEGlation, which enables longer circulation times, or the attachment of ligands to liposomal surface for active targeting of cancer cells. A great challenge for drug delivery to cancer treatment now, is the possibility to trigger release from nanosystems at the tumor site, providing efficacious levels of drug in the tumor. Different strategies have been proposed to exploit the outer and inner tumor environment for triggering drug release from liposomes and are the focus of this review.
Collapse
Affiliation(s)
- Marina Santiago Franco
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eliza Rocha Gomes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marjorie Coimbra Roque
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mônica Cristina Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Hou HL, Cardo L, Mancino D, Arnaiz B, Criado A, Prato M. Electrochemically controlled cleavage of imine bonds on a graphene platform: towards new electro-responsive hybrids for drug release. NANOSCALE 2020; 12:23824-23830. [PMID: 33237058 DOI: 10.1039/d0nr04102e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene-based materials are particularly suitable platforms for the development of new systems able to release drugs upon the application of controlled electrochemical stimuli. Herein, we report a new electro-responsive graphene carrier functionalised with aldehydes (as drug models) through imine-based linkers. We explore a new type of drug loading/release combination based on the formation of a covalent bond and its cleavage upon electrolysis. The new graphene-drug model hybrid is stable under physiological conditions and displays a fast drug release upon the application of low voltages.
Collapse
Affiliation(s)
- Hui-Lei Hou
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014, Donostia San Sebastián, Spain.
| | | | | | | | | | | |
Collapse
|
14
|
Pittermannová A, Ruberová Z, Lizoňová D, Hubatová-Vacková A, Kašpar O, ZadraŽil A, Král V, Pechar M, Pola R, Bibette J, Bremond N, Štěpánek F, Tokárová V. Functionalized hydrogel microparticles prepared by microfluidics and their interaction with tumour marker carbonic anhydrase IX. SOFT MATTER 2020; 16:8702-8709. [PMID: 32996550 DOI: 10.1039/d0sm01018a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microfluidics allows precise control of the synthesis of microparticles for specific applications, where size and morphology play an important role. In this work, we have introduced microfluidic chip design with dedicated extraction and gelation sections allowing to prepare hydrogel particles in the size range of a red blood cell. The influence of the extractive channel size, alginate concentration and type of storage media on the final size of the prepared alginate microparticles has been discussed. The second part of the work is dedicated to the surface modification of prepared particles using chitosan, pHPMA and the monoclonal antibody molecule, IgG M75. The specific interaction of the antibody molecule with an antigen domain of carbonic anhydrase IX, the transmembrane tumour protein associated with several types of cancer, is demonstrated by fluorescence imaging and compared to an isotypic antibody molecule.
Collapse
Affiliation(s)
- A Pittermannová
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic. and Laboratory Colloids and Divided Matter - Chemistry, Biology and Innovation (CBI) UMR8231, ESPCI Paris, CNRS, PSL Research University, 10 rue Vauquelin, Paris, France
| | - Z Ruberová
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - D Lizoňová
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - A Hubatová-Vacková
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - O Kašpar
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - A ZadraŽil
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - V Král
- Laboratory of Structural Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - M Pechar
- Laboratory of Biomedical Polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague 6, Czech Republic
| | - R Pola
- Laboratory of Biomedical Polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague 6, Czech Republic
| | - J Bibette
- Laboratory Colloids and Divided Matter - Chemistry, Biology and Innovation (CBI) UMR8231, ESPCI Paris, CNRS, PSL Research University, 10 rue Vauquelin, Paris, France
| | - N Bremond
- Laboratory Colloids and Divided Matter - Chemistry, Biology and Innovation (CBI) UMR8231, ESPCI Paris, CNRS, PSL Research University, 10 rue Vauquelin, Paris, France
| | - F Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - V Tokárová
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
15
|
Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109220] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Hossain MK, Minami H, Hoque SM, Rahman MM, Sharafat MK, Begum MF, Islam ME, Ahmad H. Mesoporous electromagnetic composite particles: Electric current responsive release of biologically active molecules and antibacterial properties. Colloids Surf B Biointerfaces 2019; 181:85-93. [DOI: 10.1016/j.colsurfb.2019.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
|
17
|
Liu M, Wang X, Wang Y, Jiang Z. Controlled stimulation‐burst targeted release by pH‐sensitive HPMCAS/theophylline composite nanofibers fabricated through electrospinning. J Appl Polym Sci 2019. [DOI: 10.1002/app.48383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mengzhu Liu
- College of Materials Science and Engineering Jilin Institute of chemical technology Jilin 132022 People's Republic of China
| | - Xin Wang
- College of Materials Science and Engineering Jilin Institute of chemical technology Jilin 132022 People's Republic of China
| | - Yongpeng Wang
- College of Materials Science and Engineering Jilin Institute of chemical technology Jilin 132022 People's Republic of China
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer Jilin University Changchun 130012 People's Republic of China
| | - Zhenhua Jiang
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer Jilin University Changchun 130012 People's Republic of China
| |
Collapse
|
18
|
Li J, Maniar D, Qu X, Liu H, Tsao CY, Kim E, Bentley WE, Liu C, Payne GF. Coupling Self-Assembly Mechanisms to Fabricate Molecularly and Electrically Responsive Films. Biomacromolecules 2019; 20:969-978. [PMID: 30616349 DOI: 10.1021/acs.biomac.8b01592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biomacromolecules often possess information to self-assemble through low energy competing interactions which can make self-assembly responsive to environmental cues and can also confer dynamic properties. Here, we coupled self-assembling systems to create biofunctional multilayer films that can be cued to disassemble through either molecular or electrical signals. To create functional multilayers, we: (i) electrodeposited the pH-responsive self-assembling aminopolysaccharide chitosan, (ii) allowed the lectin Concanavalin A (ConA) to bind to the chitosan-coated electrode (presumably through electrostatic interactions), (iii) performed layer-by-layer self-assembly by sequential contacting with glycogen and ConA, and (iv) conferred biological (i.e., enzymatic) function by assembling glycoprotein (i.e., enzymes) to the ConA-terminated multilayer. Because the ConA tetramer dissociates at low pH, this multilayer can be triggered to disassemble by acidification. We demonstrate two approaches to induce acidification: (i) glucose oxidase can induce multilayer disassembly in response to molecular cues, and (ii) anodic reactions can induce multilayer disassembly in response to electrical cues.
Collapse
Affiliation(s)
- Jinyang Li
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States.,Fischell Department of Bioengineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Drishti Maniar
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States.,Fischell Department of Bioengineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , 200237 , China
| | - Huan Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , 200237 , China
| | - Chen-Yu Tsao
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States.,Fischell Department of Bioengineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States.,Fischell Department of Bioengineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , 200237 , China
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
19
|
Zhu M, Hao Y, Ma X, Feng L, Zhai Y, Ding Y, Cheng G. Construction of a graphene/polypyrrole composite electrode as an electrochemically controlled release system. RSC Adv 2019; 9:12667-12674. [PMID: 35515836 PMCID: PMC9063647 DOI: 10.1039/c9ra00800d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022] Open
Abstract
A biocompatible conductive composite electrode GN–PPy–FL can realize controlled release of a drug model triggered by low voltages.
Collapse
Affiliation(s)
- Mo Zhu
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- P. R. China
- CAS Key Laboratory of Nano-Bio Interface
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- P. R. China
| | - Xun Ma
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- P. R. China
| | - Lin Feng
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- P. R. China
| | - Yuanxin Zhai
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- P. R. China
| | - Yaping Ding
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Guosheng Cheng
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- P. R. China
| |
Collapse
|
20
|
Gao S, Tang G, Hua D, Xiong R, Han J, Jiang S, Zhang Q, Huang C. Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B 2019; 7:709-729. [DOI: 10.1039/c8tb02491j] [Citation(s) in RCA: 401] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article highlights the properties of stimuli-responsive bio-based polymeric systems and their main intelligent applications.
Collapse
Affiliation(s)
- Shuting Gao
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
| | - Guosheng Tang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
| | - Dawei Hua
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
| | - Ranhua Xiong
- Lab General Biochemistry & Physical Pharmacy, Department of Pharmaceutics, Ghent University
- Belgium
| | - Jingquan Han
- College of Materials Science and Engineering, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
| | - Shaohua Jiang
- College of Materials Science and Engineering, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
| | - Qilu Zhang
- School of Material Science and Engineering, Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Chaobo Huang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
- Laboratory of Biopolymer based Functional Materials, Nanjing Forestry University
- Nanjing
| |
Collapse
|
21
|
Li J, Cai C, Li J, Li J, Li J, Sun T, Wang L, Wu H, Yu G. Chitosan-Based Nanomaterials for Drug Delivery. Molecules 2018; 23:E2661. [PMID: 30332830 PMCID: PMC6222903 DOI: 10.3390/molecules23102661] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022] Open
Abstract
This review discusses different forms of nanomaterials generated from chitosan and its derivatives for controlled drug delivery. Nanomaterials are drug carriers with multiple features, including target delivery triggered by environmental, pH, thermal responses, enhanced biocompatibility, and the ability to cross the blood-brain barrier. Chitosan (CS), a natural polysaccharide largely obtained from marine crustaceans, is a promising drug delivery vector for therapeutics and diagnostics, owing to its biocompatibility, biodegradability, low toxicity, and structural variability. This review describes various approaches to obtain novel CS derivatives, including their distinct advantages, as well as different forms of nanomaterials recently developed from CS. The advanced applications of CS-based nanomaterials are presented here in terms of their specific functions. Recent studies have proven that nanotechnology combined with CS and its derivatives could potentially circumvent obstacles in the transport of drugs thereby improving the drug efficacy. CS-based nanomaterials have been shown to be highly effective in targeted drug therapy.
Collapse
Affiliation(s)
- Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jiarui Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Jun Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Jia Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Tiantian Sun
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Lihao Wang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Haotian Wu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
22
|
Neumann SE, Chamberlayne CF, Zare RN. Electrically controlled drug release using pH-sensitive polymer films. NANOSCALE 2018; 10:10087-10093. [PMID: 29781009 PMCID: PMC5982596 DOI: 10.1039/c8nr02602e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Drug delivery systems (DDS) that allow spatially and temporally controlled release of drugs are of particular interest in the field of drug delivery. These systems create opportunities for individually tailored doses of drugs to be administered as well as reduce side effects by localizing the initial drug dose to the organ of interest. We present an electroresponsive DDS in the form of a bioresorbable nanocomposite film which operates at low voltages (<-2 V). The method is based on electrochemically generating local pH changes at an electrode surface to induce dissolution of a pH-sensitive polymer, which is used as the carrier material. We previously demonstrated this proof-of-concept using a poly(methyl methacrylate-co-methacrylic acid) (co-PMMA) copolymer commercially marketed as Eudragit S100 (EGT). However, as EGT is soluble at a pH above 7, experiments were performed in isotonic saline solutions (pH ∼ 6.4). In this work, we have synthesized co-PMMA with a variety of monomer ratios to shift the solubility of the copolymer to higher pH values, and developed a polymer that can be used under physiologically relevant conditions. The generalizability of this system was demonstrated by showing controlled release of different drug molecules with varying parameters like size, hydrophobicity, and pKa. Fluorescein, a hydrophilic model compound, meloxicam, a hydrophobic anti-arthritic medication, curcumin, a small molecule with anti-cancer therapeutic potential, and insulin, a polypeptide hormone used in the treatment of hypoglycemia, could all be released on demand with minimal leakage. The drug loading achieved was ∼32 wt% by weight of the co-polymer.
Collapse
Affiliation(s)
- S Ephraim Neumann
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | | | | |
Collapse
|