1
|
Ni S, Houwman E, Gauquelin N, Chezganov D, Van Aert S, Verbeeck J, Rijnders G, Koster G. Stabilizing Perovskite Pb(Mg 0.33Nb 0.67)O 3-PbTiO 3 Thin Films by Fast Deposition and Tensile Mismatched Growth Template. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12744-12753. [PMID: 38420766 PMCID: PMC10941063 DOI: 10.1021/acsami.3c16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Because of its low hysteresis, high dielectric constant, and strong piezoelectric response, Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) thin films have attracted considerable attention for the application in PiezoMEMS, field-effect transistors, and energy harvesting and storage devices. However, it remains a great challenge to fabricate phase-pure, pyrochlore-free PMN-PT thin films. In this study, we demonstrate that a high deposition rate, combined with a tensile mismatched template layer can stabilize the perovskite phase of PMN-PT films and prevent the nucleation of passive pyrochlore phases. We observed that an accelerated deposition rate promoted mixing of the B-site cation and facilitated relaxation of the compressively strained PMN-PT on the SrTiO3 (STO) substrate in the initial growth layer, which apparently suppressed the initial formation of pyrochlore phases. By employing La-doped-BaSnO3 (LBSO) as the tensile mismatched buffer layer, 750 nm thick phase-pure perovskite PMN-PT films were synthesized. The resulting PMN-PT films exhibited excellent crystalline quality close to that of the STO substrate.
Collapse
Affiliation(s)
- Shu Ni
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Evert Houwman
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Nicolas Gauquelin
- Electron
Microscopy for Materials Research (EMAT), Department of Physics, University of Antwerp, Antwerpen BE-2020, Belgium
- NANOlab
Center of Excellence, University of Antwerp, Antwerpen BE-2020, Belgium
| | - Dmitry Chezganov
- Electron
Microscopy for Materials Research (EMAT), Department of Physics, University of Antwerp, Antwerpen BE-2020, Belgium
- NANOlab
Center of Excellence, University of Antwerp, Antwerpen BE-2020, Belgium
| | - Sandra Van Aert
- Electron
Microscopy for Materials Research (EMAT), Department of Physics, University of Antwerp, Antwerpen BE-2020, Belgium
- NANOlab
Center of Excellence, University of Antwerp, Antwerpen BE-2020, Belgium
| | - Johan Verbeeck
- Electron
Microscopy for Materials Research (EMAT), Department of Physics, University of Antwerp, Antwerpen BE-2020, Belgium
- NANOlab
Center of Excellence, University of Antwerp, Antwerpen BE-2020, Belgium
| | - Guus Rijnders
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Gertjan Koster
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| |
Collapse
|
2
|
Wang X, Ran Y, Li X, Qin X, Lu W, Zhu Y, Lu G. Bio-inspired artificial synaptic transistors: evolution from innovative basic units to system integration. MATERIALS HORIZONS 2023; 10:3269-3292. [PMID: 37312536 DOI: 10.1039/d3mh00216k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The investigation of transistor-based artificial synapses in bioinspired information processing is undergoing booming exploration, and is the stable building block for brain-like computing. Given that the storage and computing separation architecture of von Neumann construction is not conducive to the current explosive information processing, it is critical to accelerate the connection between hardware systems and software simulations of intelligent synapses. So far, various works based on a transistor-based synaptic system successfully simulated functions similar to biological nerves in the human brain. However, the influence of the semiconductor and the device structural design on synaptic properties is still poorly linked. This review concretely emphasizes the recent advances in the novel structure design of semiconductor materials and devices used in synaptic transistors, not only from a single multifunction synaptic device but also to system application with various connected routes and related working mechanisms. Finally, crises and opportunities in transistor-based synaptic interconnection are discussed and predicted.
Collapse
Affiliation(s)
- Xin Wang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, P. R. China.
| | - Yixin Ran
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, P. R. China.
| | - Xiaoqian Li
- Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, Shandong Province, 250100, P. R. China
| | - Xinsu Qin
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, P. R. China.
| | - Wanlong Lu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, P. R. China.
| | - Yuanwei Zhu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, P. R. China.
| | - Guanghao Lu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, P. R. China.
| |
Collapse
|
3
|
Yan Q, Cheng J, Wang W, Sun M, Yin Y, Peng Y, Zhou W, Tang D. Ferroelectric-gated MoSe 2photodetectors with high photoresponsivity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:475703. [PMID: 36150377 DOI: 10.1088/1361-648x/ac94af] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Ferroelectric transistors with semiconductors as the channel material and ferroelectrics as the gate insulator have potential applications in nanoelectronics. We report in-situ modulation of optoelectronic properties of MoSe2thin flakes on ferroelectric 0.7PbMg1/3Nb2/3O3-0.3PbTiO3(PMN-PT). Under the excitation of 638 nm laser, the photoresponsivity can be greatly boosted to 59.8 A W-1and the detectivity to 3.2 × 1010Jones, with the improvement rates of about 1500% and 450%, respectively. These results suggest hybrid structure photodetector of two-dimensional layered material and ferroelectric has great application prospects in photoelectric detector.
Collapse
Affiliation(s)
- Qijie Yan
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Electronics Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Jiaxin Cheng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Electronics Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Weike Wang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Electronics Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
- Nanchang Institute of Technology, Nanchang, Jiangxi 330044, People's Republic of China
| | - Mengjiao Sun
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Electronics Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Yanling Yin
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Electronics Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Yuehua Peng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Electronics Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Weichang Zhou
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Electronics Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Dongsheng Tang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Electronics Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| |
Collapse
|
4
|
Xu L, Duan Z, Zhang P, Wang X, Zhang J, Shang L, Jiang K, Li Y, Zhu L, Gong Y, Hu Z, Chu J. Ferroelectric-Modulated MoS 2 Field-Effect Transistors as Multilevel Nonvolatile Memory. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44902-44911. [PMID: 32931241 DOI: 10.1021/acsami.0c09951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ferroelectric field-effect transistors (FeFETs) with semiconductors as the channel material and ferroelectrics as the gate insulator are attractive and/or promising devices for application in nonvolatile memory. In FeFETs, the conductivity states of the semiconductor are utilized to explore the polarization directions of the ferroelectric material. Herein, we report FeFETs based on a few layers of MoS2 on a 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystal with switchable multilevel states. It was found that the On-Off ratios can reach as high as 106. We prove that the interaction effect of ferroelectric polarization and interface charge traps has a great influence on the transport behaviors and nonvolatile memory characteristics of MoS2/PMN-PT FeFETs. In order to further study the underlying physical mechanism, we have researched the time-dependent electrical properties in the temperature range from 300 to 500 K. The separation of effects from ferroelectric polarization and interfacial traps on electrical behaviors of FeFETs provides us with an opportunity to better understand the operation mechanism, which suggests a fantastic way for multilevel, low-power consumption, and high-density nonvolatile memory devices.
Collapse
Affiliation(s)
- Liping Xu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Zhihua Duan
- Key Laboratory of Optoelectronic Material and Device, Department of Physics, Shanghai Normal University, Shanghai 200234, China
| | - Peng Zhang
- School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Xiang Wang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jinzhong Zhang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Liyan Shang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Kai Jiang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yawei Li
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Liangqing Zhu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yongji Gong
- School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Zhigao Hu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai 200433, China
| | - Junhao Chu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Yang K, Mei T, Chen Z, Xiong M, Wang X, Wang J, Li J, Yu L, Qian J, Wang X. Chinese hydrangea lantern-like Co 9S 8@MoS 2 composites with enhanced lithium-ion battery properties. NANOSCALE 2020; 12:3435-3442. [PMID: 31989998 DOI: 10.1039/c9nr09260a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chinese hydrangea lantern-like Co9S8@MoS2 composites are prepared by a facile solvothermal method. Ultra-thin MoS2 nanosheets as the shells grow tightly and uniformly on the surface of the Co9S8 core. Due to their unique hierarchical core-shell structure and novel morphology, the composites show excellent electrochemical performance as the anode materials of lithium-ion batteries. They can deliver reversible discharge capacities of around 1298, 1150, 1089, 1018 and 941 mA h g-1 at the current densities of 0.1, 0.5, 1, 1.5 and 2.0 A g-1, respectively. Moreover, the Co9S8@MoS2 composites can still maintain a discharge capacity of 1048 mA h g-1 after 300 cycles at a current density of 1.0 A g-1.
Collapse
Affiliation(s)
- Kai Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| | - Tao Mei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| | - Zihe Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| | - Man Xiong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| | - Xuhui Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| | - Jianying Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| | - Li Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| | - Jingwen Qian
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
6
|
Han H, Yu H, Wei H, Gong J, Xu W. Recent Progress in Three-Terminal Artificial Synapses: From Device to System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900695. [PMID: 30972944 DOI: 10.1002/smll.201900695] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/03/2019] [Indexed: 05/28/2023]
Abstract
Synapses are essential to the transmission of nervous signals. Synaptic plasticity allows changes in synaptic strength that make a brain capable of learning from experience. During development of neuromorphic electronics, great efforts have been made to design and fabricate electronic devices that emulate synapses. Three-terminal artificial synapses have the merits of concurrently transmitting signals and learning. Inorganic and organic electronic synapses have mimicked plasticity and learning. Optoelectronic synapses and photonic synapses have the prospective benefits of low electrical energy loss, high bandwidth, and mechanical robustness. These artificial synapses provide new opportunities for the development of neuromorphic systems that can use parallel processing to manipulate datasets in real time. Synaptic devices have also been used to build artificial sensory systems. Here, recent progress in the development and application of three-terminal artificial synapses and artificial sensory systems is reviewed.
Collapse
Affiliation(s)
- Hong Han
- Institute of Optoelectronic Thin Film Devices and Technology, Nankai University, Tianjin, 300350, China
- Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, China
| | - Haiyang Yu
- Institute of Optoelectronic Thin Film Devices and Technology, Nankai University, Tianjin, 300350, China
- Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, China
| | - Huanhuan Wei
- Institute of Optoelectronic Thin Film Devices and Technology, Nankai University, Tianjin, 300350, China
- Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, China
| | - Jiangdong Gong
- Institute of Optoelectronic Thin Film Devices and Technology, Nankai University, Tianjin, 300350, China
- Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, China
| | - Wentao Xu
- Institute of Optoelectronic Thin Film Devices and Technology, Nankai University, Tianjin, 300350, China
- Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, China
| |
Collapse
|
7
|
Kang KT, Park J, Suh D, Choi WS. Synergetic Behavior in 2D Layered Material/Complex Oxide Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803732. [PMID: 30589101 DOI: 10.1002/adma.201803732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/18/2018] [Indexed: 05/28/2023]
Abstract
The marriage between a 2D layered material (2DLM) and a complex transition metal oxide (TMO) results in a variety of physical and chemical phenomena that cannot be achieved in either material alone. Interesting recent discoveries in systems such as graphene/SrTiO3 , graphene/LaAlO3 /SrTiO3 , graphene/ferroelectric oxide, MoS2 /SrTiO3 , and FeSe/SrTiO3 heterostructures include voltage scaling in field-effect transistors, charge state coupling across an interface, quantum conductance probing of the electrochemical activity, novel memory functions based on charge traps, and greatly enhanced superconductivity. In this context, various properties and functionalities appearing in numerous different 2DLM/TMO heterostructure systems are reviewed. The results imply that the multidimensional heterostructure approach based on the disparate material systems leads to an entirely new platform for the study of condensed matter physics and materials science. The heterostructures are also highly relevant technologically as each constituent material is a promising candidate for next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Kyeong Tae Kang
- Department of Physics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Jeongmin Park
- Department of Energy Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Dongseok Suh
- Department of Energy Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Woo Seok Choi
- Department of Physics, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
8
|
Ma H, Chen P, Li B, Li J, Ai R, Zhang Z, Sun G, Yao K, Lin Z, Zhao B, Wu R, Tang X, Duan X, Duan X. Thickness-Tunable Synthesis of Ultrathin Type-II Dirac Semimetal PtTe 2 Single Crystals and Their Thickness-Dependent Electronic Properties. NANO LETTERS 2018; 18:3523-3529. [PMID: 29786447 DOI: 10.1021/acs.nanolett.8b00583] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The recent discovery of topological semimetals has stimulated extensive research interest due to their unique electronic properties and novel transport properties related to a chiral anomaly. However, the studies to date are largely limited to bulk crystals and exfoliated flakes. Here, we report the controllable synthesis of ultrathin two-dimensional (2D) platinum telluride (PtTe2) nanosheets with tunable thickness and investigate the thickness-dependent electronic properties. We show that PtTe2 nanosheets can be readily grown, using a chemical vapor deposition approach, with a hexagonal or triangular geometry and a lateral dimension of up to 80 μm, and the thickness of the nanosheets can be systematically tailored from over 20 to 1.8 nm by reducing the growth temperature or increasing the flow rate of the carrier gas. X-ray-diffraction, transmission-electron microscopy, and electron-diffraction studies confirm that the resulting 2D nanosheets are high-quality single crystals. Raman spectroscopic studies show characteristics Eg and A1g vibration modes at ∼109 and ∼155 cm-1, with a systematic red shift with increasing nanosheet thickness. Electrical transport studies show the 2D PtTe2 nanosheets display an excellent conductivity up to 2.5 × 106 S m-1 and show strong thickness-tunable electrical properties, with both the conductivity and its temperature dependence varying considerably with the thickness. Moreover, 2D PtTe2 nanosheets show an extraordinary breakdown current density up to 5.7 × 107 A/cm2, the highest breakdown current density achieved in 2D metallic transition-metal dichalcogenides to date.
Collapse
Affiliation(s)
| | | | - Bo Li
- Department of Applied Physics, School of Physics and Electronics , Hunan University , Changsha 410082 , China
| | | | | | | | | | | | - Zhaoyang Lin
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | | | | | | | | | - Xiangfeng Duan
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| |
Collapse
|