1
|
Zhang X, Wang X, Zhu L, Yu Y, Yang H, Zhang S, Hu Y, Huang S. Evolution of catalyst design for controlled synthesis of chiral single-walled carbon nanotubes. Chem Commun (Camb) 2024; 60:6222-6238. [PMID: 38829610 DOI: 10.1039/d4cc01227e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) possess superb properties originating from their unique chiral structures. However, accurately controlling the structure of SWCNTs remains challenging due to the structural similarities of their chiral structures, which hinders their widespread application in various fields, particularly in electronics. In recent years, much effort has been devoted to preparing single chiral SWCNTs by adopting three constructive strategies, including growth condition control for structurally unstable liquid catalysts, employing stable solid catalyst design, and pre-synthesis of carbon seeds with a well-defined shape. This review comprehensively discusses the state-of-the-art developments in these approaches as well as their advantages and disadvantages. Moreover, insights into the key challenges and future directions are provided for acquiring chirally pure SWCNTs.
Collapse
Affiliation(s)
- Xinyu Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.
| | - Xiuxia Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.
| | - Linxi Zhu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.
| | - Yi Yu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.
| | - Hongfeng Yang
- Beijing Auxin Chemical Technology Limited, Beijing 100040, P. R. China
| | - Shuchen Zhang
- Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230022, China.
| | - Yue Hu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. China.
| | - Shaoming Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
2
|
Yao Q, Wu Y, Song G, Xu Z, Ke Y, Zhan R, Chen J, Zhang Y, Deng S. Effect of Crystallinity on the Field Emission Characteristics of Carbon Nanotube Grown on W-Co Bimetallic Catalyst. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:819. [PMID: 38786778 PMCID: PMC11123676 DOI: 10.3390/nano14100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Carbon nanotube (CNT) is an excellent field emission material. However, uniformity and stability are the key issues hampering its device application. In this work, a bimetallic W-Co alloy was adopted as the catalyst of CNT in chemical vapor deposition process. The high melting point and stable crystal structure of W-Co helps to increase the grown CNT diameter uniformity and homogeneous crystal structure. High-crystallinity CNTs were grown on the W-Co bimetallic catalyst. Its field emission characteristics demonstrated a low turn-on field, high current density, stable current stability, and uniform emission distribution. The Fowler-Nordheim (FN) and Seppen-Katamuki (SK) analyses revealed that the CNT grown on the W-Co catalyst has a relatively low work function and high field enhancement factor. The high crystallinity and homogeneous crystal structure of CNT also reduce the body resistance and increase the emission current stability and maximum current. The result provides a way to synthesis a high-quality CNT field emitter, which will accelerate the development of cold cathode vacuum electronic device application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China; (Q.Y.); (Y.W.); (G.S.); (Z.X.); (Y.K.); (R.Z.); (J.C.); (S.D.)
| | | |
Collapse
|
3
|
Wang Y, Qiu L, Zhang L, Tang DM, Ma R, Ren CL, Ding F, Liu C, Cheng HM. Growth mechanism of carbon nanotubes from Co-W-C alloy catalyst revealed by atmospheric environmental transmission electron microscopy. SCIENCE ADVANCES 2022; 8:eabo5686. [PMID: 36475802 PMCID: PMC9728978 DOI: 10.1126/sciadv.abo5686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
High-melting point alloy catalysts have been reported to be effective for the structure-controlled growth of single-wall carbon nanotubes (SWCNTs). However, some fundamental issues remain unclear because of the complex catalytic growth environment. Here, we directly investigated the active catalytic phase of Co-W-C alloy catalyst, the growth kinetics of CNTs, and their interfacial dynamics using closed-cell environmental transmission electron microscopy at atmospheric pressure. The alloy catalyst was precisely identified as a cubic η-carbide phase that remained unchanged during the whole CNT growth process. Rotations of the catalyst nanoparticles during CNT growth were observed, implying a weak interfacial interaction and undefined orientation dependence for the solid catalyst. Theoretical calculations suggested that the growth kinetics are determined by the diffusion of carbon atoms on the surface of the η-carbide catalyst and through the interface of the catalyst-CNT wall.
Collapse
Affiliation(s)
- Yang Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China (USTC), 72 Wenhua Road, Shenyang 110016, China
| | - Lu Qiu
- Center for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, South Korea
| | - Lili Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- Corresponding author. (L.Z.); (D.-M.T.); (F.D.); (C.L.)
| | - Dai-Ming Tang
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
- Corresponding author. (L.Z.); (D.-M.T.); (F.D.); (C.L.)
| | - Ruixue Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China (USTC), 72 Wenhua Road, Shenyang 110016, China
| | - Cui-Lan Ren
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800, China
| | - Feng Ding
- Center for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, South Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
- Corresponding author. (L.Z.); (D.-M.T.); (F.D.); (C.L.)
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- Corresponding author. (L.Z.); (D.-M.T.); (F.D.); (C.L.)
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
4
|
Chen Y, Lyu M, Zhang Z, Yang F, Li Y. Controlled Preparation of Single-Walled Carbon Nanotubes as Materials for Electronics. ACS CENTRAL SCIENCE 2022; 8:1490-1505. [PMID: 36439305 PMCID: PMC9686200 DOI: 10.1021/acscentsci.2c01038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) are of particular interest as channel materials for field-effect transistors due to their unique structure and excellent properties. The controlled preparation of SWCNTs that meet the requirement of semiconducting and chiral purity, high density, and good alignment for high-performance electronics has become a key challenge in this field. In this Outlook, we outline the efforts in the preparation of SWCNTs for electronics from three main aspects, structure-controlled growth, selective sorting, and solution assembly, and discuss the remaining challenges and opportunities. We expect that this Outlook can provide some ideas for addressing the existing challenges and inspire the development of SWCNT-based high-performance electronics.
Collapse
Affiliation(s)
- Yuguang Chen
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Min Lyu
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Zeyao Zhang
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Feng Yang
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, China
| | - Yan Li
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
- PKU-HKUST
ShenZhen-HongKong Institution, Shenzhen 518057, People’s
Republic of China
| |
Collapse
|
5
|
Zhao X, Sun S, Yang F, Li Y. Atomic-Scale Evidence of Catalyst Evolution for the Structure-Controlled Growth of Single-Walled Carbon Nanotubes. Acc Chem Res 2022; 55:3334-3344. [DOI: 10.1021/acs.accounts.2c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Xue Zhao
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Sida Sun
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- PKU-HKUST Shen Zhen-Hong Kong Institution, Shenzhen 518057, China
| |
Collapse
|
6
|
Sukhikh AS, Khranenko SP, Zadesenets AV, Gromilov SA. Structural Features of Mixed Anions (Мо7 – хWхO24)6– and Their Packing in the [Pd(NH3)4]3(Мо7 – хWxO24)⋅6H2O Crystal Structure. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522020213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Zhu A, Yang X, Zhang L, Wang K, Liu T, Zhao X, Zhang L, Wang L, Yang F. Selective separation of single-walled carbon nanotubes in aqueous solution by assembling redox nanoclusters. NANOSCALE 2022; 14:953-961. [PMID: 34989359 DOI: 10.1039/d1nr04019g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The selective separation of soluble and individual single-walled carbon nanotubes (SWCNTs) in aqueous solution is a key step for harnessing the extraordinary properties of these materials. Manipulating the strong van der Waals intertube interactions between the SWCNT bundles is very important in selective separation, which is a long-standing challenge. Here we reported the ability of redox polyoxometalate clusters to modulate the intertube π-π stacking interaction through electron transfer and achieved the diameter-selective separation of SWCNTs in a surfactant aqueous solution. The large-diameter SWCNTs concentrated at ∼1.3-1.4 nm were selectively separated when ∼1 nm clusters encapsulated within the tube cavity, and the dispersion of subnanometer ∼0.7-0.9 nm SWCNTs was boosted when clusters were adsorbed on the outer surface of small-diameter nanotubes. The mechanism of diameter-selective separation of SWCNTs associated with the size-dependent interaction between cluster-tubes and the steric hindrance effect of clusters was revealed by optical absorption and Raman spectroscopy. This simple method thus enables the selective separation of individual high-quality SWCNTs in aqueous solutions without harsh sonication with the potential for other separation applications.
Collapse
Affiliation(s)
- Anquan Zhu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xusheng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Lei Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Kun Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tianhui Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xin Zhao
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Luyao Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Lei Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
8
|
The Influence of Hydrogen Passivation on Conductive Properties of Graphene Nanomesh—Prospect Material for Carbon Nanotubes Growing. Mol Vis 2022. [DOI: 10.3390/c8010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Graphene nanomesh (GNM) is one of the most intensively studied materials today. Chemical activity of atoms near GNM’s nanoholes provides favorable adsorption of different atoms and molecules, besides that, GNM is a prospect material for growing carbon nanotubes (CNTs) on its surface. This study calculates the dependence of CNT’s growing parameters on the geometrical form of a nanohole. It was determined by the original methodic that the CNT’s growing from circle nanoholes was the most energetically favorable. Another attractive property of GNM is a tunable gap in its band structure that depends on GNM’s topology. It is found by quantum chemical methods that the passivation of dangling bonds near the hole of hydrogen atoms decreases the conductance of the structure by 2–3.5 times. Controlling the GNM’s conductance may be an important tool for its application in nanoelectronics.
Collapse
|
9
|
Yang X, Zhao X, Liu T, Yang F. Precise Synthesis of Carbon Nanotubes and
One‐Dimensional
Hybrids from Templates
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xusheng Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xin Zhao
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Tianhui Liu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Feng Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
10
|
Zhao X, Liu X, Yang F, Liu Q, Zhang Z, Li Y. Graphene oxide-supported cobalt tungstate as catalyst precursor for selective growth of single-walled carbon nanotubes. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01114b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Graphene oxide-supported uniform cobalt tungstate nanoparticles (CoWO4/GO) were prepared, which can be used as catalyst precursors for the diameter-controlled growth of single-walled carbon nanotubes (SWCNTs).
Collapse
Affiliation(s)
- Xue Zhao
- Beijing National Laboratory for Molecular Science
- Key Laboratory for the Physics and Chemistry of Nanodevices
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
| | - Xiyan Liu
- Beijing National Laboratory for Molecular Science
- Key Laboratory for the Physics and Chemistry of Nanodevices
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
| | - Feng Yang
- Beijing National Laboratory for Molecular Science
- Key Laboratory for the Physics and Chemistry of Nanodevices
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
| | - Qidong Liu
- Beijing National Laboratory for Molecular Science
- Key Laboratory for the Physics and Chemistry of Nanodevices
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
| | - Zeyao Zhang
- Beijing National Laboratory for Molecular Science
- Key Laboratory for the Physics and Chemistry of Nanodevices
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
| | - Yan Li
- Beijing National Laboratory for Molecular Science
- Key Laboratory for the Physics and Chemistry of Nanodevices
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
11
|
Shunaev VV, Glukhova OE. Pillared Graphene Structures Supported by Vertically Aligned Carbon Nanotubes as the Potential Recognition Element for DNA Biosensors. MATERIALS 2020; 13:ma13225219. [PMID: 33227896 PMCID: PMC7699186 DOI: 10.3390/ma13225219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/27/2022]
Abstract
The development of electrochemical biosensors is an important challenge in modern biomedicine since they allow detecting femto- and pico-molar concentrations of molecules. During this study, pillared graphene structures supported by vertically aligned carbon nanotubes (VACNT-graphene) are examined as the potential recognition element of DNA biosensors. Using mathematical modeling methods, the atomic supercells of different (VACNT-graphene) configurations and the energy profiles of its growth are found. Regarding the VACNT(12,6)-graphene doped with DNA nitrogenous bases, calculated band structure and conductivity parameters are used. The obtained results show the presence of adenine, cytosine, thymine, and guanine on the surface of VACNT(12,6)-graphene significantly changes its conductivity so the considered object could be the prospective element for DNA biosensing.
Collapse
Affiliation(s)
| | - Olga E. Glukhova
- Department of Physics, Saratov State University, 410012 Saratov, Russia;
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-8452-514562
| |
Collapse
|
12
|
Precise Catalyst Production for Carbon Nanotube Synthesis with Targeted Structure Enrichment. Catalysts 2020. [DOI: 10.3390/catal10091087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The direct growth of single-walled carbon nanotubes (SWCNTs) with a narrow distribution of diameter or chirality remains elusive despite significant benefits in properties and applications. Nanoparticle catalysts are vital for SWCNT synthesis, but how to precisely manipulate their chemistry, size, concentration, and deposition remains difficult, especially within a continuous production process from the gas phase. Here, we demonstrate the preparation of W6Co7 alloyed nanoparticle catalysts with precisely tunable stoichiometry using electrospray, which remain solid state during SWCNT growth. We also demonstrate continuous production of liquid iron nanoparticles with in-line size selection. With the precise size manipulation of catalysts in the range of 1–5 nm, and a nearly monodisperse distribution (σg < 1.2), an excellent size selection of SWCNTs can be achieved. All of the presented techniques show great potential to facilitate the realization of single-chirality SWCNTs production.
Collapse
|
13
|
Moreira Da Silva C, Girard A, Dufond M, Fossard F, Andrieux-Ledier A, Huc V, Loiseau A. Nickel platinum (Ni x Pt 1-x ) nanoalloy monodisperse particles without the core-shell structure by colloidal synthesis. NANOSCALE ADVANCES 2020; 2:3882-3889. [PMID: 36132757 PMCID: PMC9417886 DOI: 10.1039/d0na00450b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/09/2020] [Indexed: 06/15/2023]
Abstract
We report a new and versatile colloidal route towards the synthesis of nanoalloys with controlled size and chemical composition in the solid solution phase (without phase segregation such as core-shell structure or Janus structure) or chemical ordering. The principle of the procedure is based on the correlation between the oxidation-reduction potential of metal cations present in the precursors and the required synthesis temperature to nucleate particles without phase segregation. The procedure is demonstrated via the synthesis of Face Centered Cubic (FCC) Ni x Pt1-x nanoparticles, which was elaborated by the co-reduction of nickel(ii) acetylacetonate and platinum(ii) acetylacetonate with 1,2-hexadecanediol in benzyl ether, using oleylamine and oleic acid as surfactants. The chemical composition and solid solution FCC structure of the nanoalloy are demonstrated by crosslinking imaging and chemical analysis using transmission electron microscopy and X-ray diffraction techniques. Whatever the chemical composition inspected, a systematic expansion of the lattice parameters is measured in relation to the respective bulk counterpart.
Collapse
Affiliation(s)
- Cora Moreira Da Silva
- Laboratoire d'Étude des Microstructures, CNRS, ONERA, U. Paris-Saclay Châtillon 92322 France
| | - Armelle Girard
- Laboratoire d'Étude des Microstructures, CNRS, ONERA, U. Paris-Saclay Châtillon 92322 France
- Université Versailles Saint-Quentin, U. Paris-Saclay Versailles 78035 France
| | - Maxime Dufond
- Laboratoire d'Étude des Microstructures, CNRS, ONERA, U. Paris-Saclay Châtillon 92322 France
| | - Frédéric Fossard
- Laboratoire d'Étude des Microstructures, CNRS, ONERA, U. Paris-Saclay Châtillon 92322 France
| | - Amandine Andrieux-Ledier
- Département Physique, Instrumentation, Environnement, Espace, ONERA, U. Paris-Saclay Châtillon 92322 France
| | - Vincent Huc
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Paris Sud, U. Paris-Saclay Orsay 91045 France
| | - Annick Loiseau
- Laboratoire d'Étude des Microstructures, CNRS, ONERA, U. Paris-Saclay Châtillon 92322 France
| |
Collapse
|
14
|
Khranenko SP, Sukhikh AS, Gromilov SA. Role of Bridging Na+ Cations in the Packing of Na2[Pd(NH3)4]5(W7O24)2·16H2O and Na[Pd(NH3)4]2(HW7O24)·7H2O Structures. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chem Rev 2020; 120:2693-2758. [PMID: 32039585 DOI: 10.1021/acs.chemrev.9b00835] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been attracting tremendous attention owing to their structure (chirality) dependent outstanding properties, which endow them with great potential in a wide range of applications. The preparation of chirality-pure SWCNTs is not only a great scientific challenge but also a crucial requirement for many high-end applications. As such, research activities in this area over the last two decades have been very extensive. In this review, we summarize recent achievements and accumulated knowledge thus far and discuss future developments and remaining challenges from three aspects: controlled growth, postsynthesis sorting, and characterization techniques. In the growth part, we focus on the mechanism of chirality-controlled growth and catalyst design. In the sorting part, we organize and analyze existing literature based on sorting targets rather than methods. Since chirality assignment and quantification is essential in the study of selective preparation, we also include in the last part a comprehensive description and discussion of characterization techniques for SWCNTs. It is our view that even though progress made in this area is impressive, more efforts are still needed to develop both methodologies for preparing ultrapure (e.g., >99.99%) SWCNTs in large quantity and nondestructive fast characterization techniques with high spatial resolution for various nanotube samples.
Collapse
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Bati ASR, Yu L, Batmunkh M, Shapter JG. Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. NANOSCALE 2018; 10:22087-22139. [PMID: 30475354 DOI: 10.1039/c8nr07379a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have attracted significant attention due to their outstanding mechanical, chemical and optoelectronic properties, which makes them promising candidates for use in a wide range of applications. However, as-produced SWCNTs have a wide distribution of various chiral species with different properties (i.e. electronic structures). In order to take full advantage of SWCNT properties, highly purified and well-separated SWCNTs are of great importance. Recent advances have focused on developing new strategies to effectively separate nanotubes into single-chirality and/or semiconducting/metallic species and integrating them into different applications. This review highlights recent progress in this cutting-edge research area alongside the enormous development of their identification and structural characterization techniques. A comprehensive review of advances in both controlled synthesis and post-synthesis separation methods of SWCNTs are presented. The relationship between the unique structure of SWCNTs and their intrinsic properties is also discussed. Finally, important future directions for the development of sorting and purification protocols for SWCNTs are provided.
Collapse
Affiliation(s)
- Abdulaziz S R Bati
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - LePing Yu
- College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Munkhbayar Batmunkh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. and College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Joseph G Shapter
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. and College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|