1
|
Lesniewska N, Beaussart A, Duval JFL. Electrostatic interactions between soft nanoparticles beyond the Derjaguin approximation: Effects of finite size of ions and charges, dielectric decrement and ion correlations. J Colloid Interface Sci 2025; 678:808-827. [PMID: 39270383 DOI: 10.1016/j.jcis.2024.08.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
HYPOTHESIS Electrostatic interactions between colloids are governed by the overlap of their electric double layers (EDLs) and the ionic screening of the structural charges distributed at their core surface and/or in their peripheral ion-permeable shell, relevant to soft particles like polymer colloids and microorganisms. Whereas ion size-mediated effects on the organization of isolated EDLs have been analysed, their contribution to the electrostatic energy of interacting soft particles has received less attention THEORY AND SIMULATIONS: Herein, we elaborate a formalism to evaluate the electrostatic interaction energy profile between spherical core/shell particles, building upon a recent Poisson-Boltzmann theory corrected for the sizes of ions and particle structural charges, for ion correlations and dielectric decrement. Interaction energy is derived from pairwise disjoining pressure and exact Surface Element Integration method, beyond the Derjaguin approximation. The theory is sufficiently flexible to tackle homo- and hetero-interactions that involve weakly to highly charged hard, porous or core/shell nano- to micro-sized particles in asymmetric multivalent electrolytes. FINDINGS Results illustrate how ion steric effects, ion correlations and dielectric decrement impact the sign, magnitude and range of the interactions depending on the particle size, the Debye length, and the geometric and electrostatic properties of the particle core and shell components.
Collapse
Affiliation(s)
- Nicolas Lesniewska
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR7360, 54000 Nancy, France.
| | - Audrey Beaussart
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR7360, 54000 Nancy, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Jérôme F L Duval
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR7360, 54000 Nancy, France.
| |
Collapse
|
2
|
Lesniewska N, Duval JFL, Caillet C, Razafitianamaharavo A, Pinheiro JP, Bihannic I, Gley R, Le Cordier H, Vyas V, Pagnout C, Sohm B, Beaussart A. Physicochemical surface properties of Chlorella vulgaris: a multiscale assessment, from electrokinetic and proton uptake descriptors to intermolecular adhesion forces. NANOSCALE 2024; 16:5149-5163. [PMID: 38265106 DOI: 10.1039/d3nr04740g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Given the growing scientific and industrial interests in green microalgae, a comprehensive understanding of the forces controlling the colloidal stability of these bioparticles and their interactions with surrounding aqueous microenvironment is required. Accordingly, we addressed here the electrostatic and hydrophobic surface properties of Chlorella vulgaris from the population down to the individual cell levels. We first investigated the organisation of the electrical double layer at microalgae surfaces on the basis of electrophoresis measurements. Interpretation of the results beyond zeta-potential framework underlined the need to account for both the hydrodynamic softness of the algae cells and the heterogeneity of their interface formed with the outer electrolyte solution. We further explored the nature of the structural charge carriers at microalgae interfaces through potentiometric proton titrations. Extraction of the electrostatic descriptors of interest from such data was obscured by cell physiology processes and dependence thereof on prevailing measurement conditions, which includes light, temperature and medium salinity. As an alternative, cell electrostatics was successfully evaluated at the cellular level upon mapping the molecular interactions at stake between (positively and negatively) charged atomic force microscopy tips and algal surface via chemical force microscopy. A thorough comparison between charge-dependent tip-to-algae surface adhesion and hydrophobicity level of microalgae surface evidenced that the contribution of electrostatics to the overall interaction pattern is largest, and that the electrostatic/hydrophobic balance can be largely modulated by pH. Overall, the combination of multiscale physicochemical approaches allowed a drawing of some of the key biosurface properties that govern microalgae cell-cell and cell-surface interactions.
Collapse
Affiliation(s)
| | | | - Céline Caillet
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France.
| | | | | | | | - Renaud Gley
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France.
| | | | - Varun Vyas
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France.
| | | | - Bénédicte Sohm
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | | |
Collapse
|
3
|
Shen S, Yang K, Lin D. Biomacromolecular and Toxicity Responses of Bacteria upon the Nano-Bio Interfacial Interactions with Ti 3C 2T x Nanosheets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12991-13003. [PMID: 37608586 DOI: 10.1021/acs.est.3c02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The biomolecular responses of bacteria to 2D nanosheets that result from nano-bio interfacial interactions remain to be thoroughly examined. Herein, Fourier transform infrared (FTIR) multivariate and 2D correlation analyses were performed to assess the composition and conformational changes in bacterial biomacromolecules (lipids, polysaccharides, and carbohydrates) upon exposure to Ti3C2Tx nanosheets. General toxicity assays, 3D excitation-emission matrix fluorescence analyses, extended Derjaguin-Landau-Verwey-Overbeek theory interaction calculations, and isothermal titration calorimetry were also performed. Our results demonstrate that Ti3C2Tx nanosheets considerably impact Gram-positive bacteria (Bacillus subtilis), causing oxidative damage and inactivation by preferentially interacting with and disrupting the cell walls. The bilayer membrane structure of Gram-negative bacteria (Escherichia coli) endows them with increased resistance to Ti3C2Tx nanosheets. The unmodified nanosheets had a higher affinity to bacterial protein components with lower toxicity due to their susceptibility to oxidation. Surface modification with KOH or hydrazine (HMH), particularly HMH, induced stronger dispersion, antioxidation, and affinity to bacterial phospholipids, which resulted in severe cell membrane lipid peroxidation and bacterial inactivation. These findings provide valuable insight into nano-bio interfacial interactions, which can facilitate the development of antimicrobial and antifouling surfaces and contribute to the evaluation of the environmental risks of nanomaterials.
Collapse
Affiliation(s)
- Shuyi Shen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Lesniewska N, Beaussart A, Duval JF. Electrostatics of soft (bio)interfaces: Corrections of mean-field Poisson-Boltzmann theory for ion size, dielectric decrement and ion-ion correlation. J Colloid Interface Sci 2023; 642:154-168. [PMID: 37003010 DOI: 10.1016/j.jcis.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/28/2023]
Abstract
HYPOTHESIS Electrostatics of soft (ion-permeable) (bio)particles (e.g. microorganisms, core/shell colloids) in aqueous electrolytes is commonly formulated by the mean-field Poisson-Boltzmann theory and integration of the charge contributions from electrolyte ions and soft material. However, the effects connected to the size of the electrolyte ions and that of the structural charges carried by the particle, to dielectric decrement and ion-ion correlations on soft interface electrostatics have been so far considered at the margin, despite the limits of the Gouy theory for condensed and/or multivalent electrolytes. EXPERIMENTS Accordingly, we modify herein the Poisson-Boltzmann theory for core/shell (bio)interfaces to include the aforementioned molecular effects considered separately or concomitantly. The formalism is applicable for poorly to highly charged particles in the thin electric double layer regime and to unsymmetrical multivalent electrolytes. FINDINGS Computational examples of practical interests are discussed with emphasis on how each considered molecular effect or combination thereof affects the interfacial potential distribution depending on size and valence of cations and anions, size of particle charges, length scale of ionic correlations and shell-to-Debye layer thickness ratio. The origins of here-evidenced pseudo-harmonic potential profile and ion size-dependent screening of core/shell particle charges are detailed. In addition, the existence and magnitude of the Donnan potential when reached in the shell layer are shown to depend on the excluded volumes of the electrolyte ions.
Collapse
|
5
|
Feng JR, Deng QX, Han SK, Ni HG. Use of nanoparticle-coated bacteria for the bioremediation of organic pollution: A mini review. CHEMOSPHERE 2023; 313:137391. [PMID: 36457267 DOI: 10.1016/j.chemosphere.2022.137391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Nanoparticle (NP)-coated (immobilized) bacteria are an effective method for treating environmental pollution due to their multifarious benefits. This review collates a vast amount of existing literature on organic pollution treatment using NP-coated bacteria. We discuss the features of bacteria, NPs, and decoration techniques of NP-bacteria assemblies, with special attention given to the surface modification of NPs and connection mechanisms between NPs and cells. Furthermore, the performance of NP-coated bacteria was examined. We summarize the factors that affect bioremediation efficiency using coated bacteria, including pH, temperature, and agitation, and the possible mechanisms involving them are proposed. From future perspectives, suitable surface modification of NPs and wide application in real practice will make the NP-coated bacterial technology a viable treatment strategy.
Collapse
Affiliation(s)
- Jin-Ru Feng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qing-Xin Deng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Shang-Kun Han
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Zimmermann R, Duval JF, Werner C, Sterling JD. Quantitative insights into electrostatics and structure of polymer brushes from microslit electrokinetic experiments and advanced modelling of interfacial electrohydrodynamics. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Ion partitioning effect on the electrostatic interaction between two charged soft surfaces. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Mahapatra P, Ohshima H, Gopmandal PP. Electrophoresis of Liquid-Layer Coated Particles: Impact of Ion Partitioning and Ion Steric Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11316-11329. [PMID: 34529445 DOI: 10.1021/acs.langmuir.1c01875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The biomimetic core-shell nanoparticles coated with membranes of various biological cells have attracted significant research interest, because of their extensive applications in targeted drug delivery systems. The cell membrane consists of a lipid bilayer, which can be regarded as a two-dimensional oriented viscous liquid with low dielectric permittivity, compared to a bulk aqueous medium. Such a liquid layer comprised of cell membrane may bear additional mobile charges, because of the presence of free lipid molecules or charged surfactant molecules, which further results in nonzero charge along the surface of the peripheral layer. In this article, we present an analytical theory for electrophoresis of such cell membrane coated functionalized nanoparticles in the extent of electrolyte solution, considering the combined effects of finite ion size and of ion partitioning. Going beyond the Debye-Huckel approximations, we propose an analytical theory for Donnan potential and electrophoretic mobility. The derived expressions are applicable for moderate to highly charged undertaken core-shell particles when the thickness of the peripheral liquid layer greatly exceeds the electric double layer thickness. The impact of pertinent parameters on the electrophoretic response of such a particle is further discussed.
Collapse
Affiliation(s)
- Paramita Mahapatra
- Department of Mathematics, National Institute of Technology Durgapur Durgapur-713209, India
| | - H Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur Durgapur-713209, India
| |
Collapse
|
9
|
Duval JFL, van Leeuwen HP, Norde W, Town RM. Chemodynamic features of nanoparticles: Application to understanding the dynamic life cycle of SARS-CoV-2 in aerosols and aqueous biointerfacial zones. Adv Colloid Interface Sci 2021; 290:102400. [PMID: 33713994 PMCID: PMC7931671 DOI: 10.1016/j.cis.2021.102400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022]
Abstract
We review concepts involved in describing the chemodynamic features of nanoparticles and apply the framework to gain physicochemical insights into interactions between SARS-CoV-2 virions and airborne particulate matter (PM). Our analysis is highly pertinent given that the World Health Organisation acknowledges that SARS-CoV-2 may be transmitted by respiratory droplets, and the US Center for Disease Control and Prevention recognises that airborne transmission of SARS-CoV-2 can occur. In our theoretical treatment, the virion is assimilated to a core-shell nanoparticle, and contributions of various interaction energies to the virion-PM association (electrostatic, hydrophobic, London-van der Waals, etc.) are generically included. We review the limited available literature on the physicochemical features of the SARS-CoV-2 virion and identify knowledge gaps. Despite the lack of quantitative data, our conceptual framework qualitatively predicts that virion-PM entities are largely able to maintain equilibrium on the timescale of their diffusion towards the host cell surface. Comparison of the relevant mass transport coefficients reveals that virion biointernalization demand by alveolar host cells may be greater than the diffusive supply. Under such conditions both the free and PM-sorbed virions may contribute to the transmitted dose. This result points to the potential for PM to serve as a shuttle for delivery of virions to host cell targets. Thus, our critical review reveals that the chemodynamics of virion-PM interactions may play a crucial role in the transmission of COVID-19, and provides a sound basis for explaining reported correlations between episodes of air pollution and outbreaks of COVID-19.
Collapse
Affiliation(s)
| | - Herman P van Leeuwen
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Willem Norde
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Raewyn M Town
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium..
| |
Collapse
|
10
|
Preparation of debranched starch nanoparticles by ionic gelation for encapsulation of epigallocatechin gallate. Int J Biol Macromol 2020; 161:481-491. [DOI: 10.1016/j.ijbiomac.2020.06.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 11/22/2022]
|
11
|
Electrophoresis of composite soft particles with differentiated core and shell permeabilities to ions and fluid flow. J Colloid Interface Sci 2019; 558:280-290. [PMID: 31593861 DOI: 10.1016/j.jcis.2019.09.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 11/20/2022]
Abstract
Within the framework of analytical theories for soft surface electrophoresis, soft particles are classically defined by a hard impermeable core of given surface charge density surrounded by a polyelectrolyte shell layer permeable to both electroosmotic flow and ions from background electrolyte. This definition excludes practical core-shell particles, e.g. dendrimers, viruses or multi-layered polymeric particles, defined by a polyelectrolytic core where structural charges are distributed and where counter-ions concentration and electroosmotic flow velocity can be significant. Whereas a number of important approximate expressions has been derived for the electrophoretic mobility of hard and soft particles, none of them is applicable to such generic composite core-shell particles with differentiated ions- and fluid flow-permeabilities of their core and shell components. In this work, we elaborate an original closed-form electrophoretic mobility expression for this generic composite particle type within the Debye-Hückel electrostatic framework and thin double layer approximation. The expression explicitly involves the screening Debye layer thickness and the Brinkman core and shell hydrodynamic length scales, which favors so-far missing analysis of the respective core and shell contributions to overall particle mobility. Limits of this expression successfully reproduce results from Ohshima's electrophoresis theory solely applicable to soft particles with or without hard core.
Collapse
|
12
|
Beaussart A, Beloin C, Ghigo JM, Chapot-Chartier MP, Kulakauskas S, Duval JFL. Probing the influence of cell surface polysaccharides on nanodendrimer binding to Gram-negative and Gram-positive bacteria using single-nanoparticle force spectroscopy. NANOSCALE 2018; 10:12743-12753. [PMID: 29946619 DOI: 10.1039/c8nr01766b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The safe use and design of nanoparticles (NPs) ask for a comprehensive interpretation of their potentially adverse effects on (micro)organisms. In this respect, the prior assessment of the interactions experienced by NPs in the vicinity of - and in contact with - complex biological surfaces is mandatory. It requires the development of suitable techniques for deciphering the processes that govern nano-bio interactions when a single organism is exposed to an extremely low dose of NPs. Here, we used atomic force spectroscopy (AFM)-based force measurements to investigate at the nanoscale the interactions between carboxylate-terminated polyamidoamine (PAMAM) nanodendrimers (radius ca. 4.5 nm) and two bacteria with very distinct surface properties, Escherichia coli and Lactococcus lactis. The zwitterionic nanodendrimers exhibit a negative peripheral surface charge and/or a positive intraparticulate core depending on the solution pH and salt concentration. Following an original strategy according to which a single dendrimer NP is grafted at the very apex of the AFM tip, the density and localization of NP binding sites are probed at the surface of E. coli and L. lactis mutants expressing different cell surface structures (presence/absence of the O-antigen of the lipopolysaccharides (LPS) or of a polysaccharide pellicle). In line with electrokinetic analysis, AFM force measurements evidence that adhesion of NPs onto pellicle-decorated L. lactis is governed by their underlying electrostatic interactions as controlled by the pH-dependent charge of the peripheral and internal NP components, and the negatively-charged cell surface. In contrast, the presence of the O-antigen on E. coli systematically suppresses the adhesion of nanodendrimers onto cells, may the apparent NP surface charge be determined by the peripheral carboxylate groups or by the internal amine functions. Altogether, this work highlights the differentiated roles played by surface polysaccharides in mediating NP attachment to Gram-positive and Gram-negative bacteria. It further demonstrates that the assessment of NP bioadhesion features requires a critical analysis of the electrostatic contributions stemming from the various structures composing the stratified cell envelope, and those originating from the bulk and surface NP components. The joint use of electrokinetics and AFM provides a valuable option for rapidly addressing the binding propensity of NPs to microorganisms, as urgently needed in NP risk assessments.
Collapse
|