1
|
Wang X, Gao Y, Yuan Y, Wang Y, Liu A, Jia S, Yang W. Wearable Medical Devices: Application Status and Prospects. MICROMACHINES 2025; 16:394. [PMID: 40283271 PMCID: PMC12029246 DOI: 10.3390/mi16040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Electronic skin (E-skin) refers to a portable medical or health electronic device that can be worn directly on the human body and can carry out perception, recording, analysis, regulation, intervention and even treatment of diseases or maintenance of health status through software support. Its main features include wearability, real-time monitoring, convenience, etc. E-skin is convenient for users to wear for a long time and continuously monitors the user's physiological health data (such as heart rate, blood pressure, blood glucose, etc.) in real time. Health monitoring can be performed anytime and anywhere without frequent visits to hospitals or clinics. E-skin integrates multiple sensors and intelligent algorithms to automatically analyze data and provide health advice and early warning. It has broad application prospects in the medical field. With the increasing demand for E-skin, the development of multifunctional integrated E-skin with low power consumption and even autonomous energy has become a common goal of many researchers. This paper outlines the latest progress in the application of E-skin in physiological monitoring, disease treatment, human-computer interaction and other fields. The existing problems and development prospects in this field are presented.
Collapse
Affiliation(s)
- Xiaowen Wang
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Yingnan Gao
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Yueze Yuan
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Yaping Wang
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Anqin Liu
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Sen Jia
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
| |
Collapse
|
2
|
Zhang J, Liu C, Li J, Yu T, Ruan J, Yang F. Advanced Piezoelectric Materials, Devices, and Systems for Orthopedic Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410400. [PMID: 39665130 PMCID: PMC11744659 DOI: 10.1002/advs.202410400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Harnessing the robust electromechanical couplings, piezoelectric materials not only enable efficient bio-energy harvesting, physiological sensing and actuating but also open enormous opportunities for therapeutic treatments through surface polarization directly interacting with electroactive cells, tissues, and organs. Known for its highly oriented and hierarchical structure, collagen in natural bones produces local electrical signals to stimulate osteoblasts and promote bone formation, inspiring the application of piezoelectric materials in orthopedic medicine. Recent studies showed that piezoelectricity can impact microenvironments by regulating molecular sensors including ion channels, cytoskeletal elements, cell adhesion proteins, and other signaling pathways. This review thus focuses on discussing the pioneering applications of piezoelectricity in the diagnosis and treatment of orthopedic diseases, aiming to offer valuable insights for advancing next-generation medical technologies. Beginning with an introduction to the principles of piezoelectricity and various piezoelectric materials, this review paper delves into the mechanisms through which piezoelectric materials accelerated osteogenesis. A comprehensive overview of piezoelectric materials, devices, and systems enhancing bone tissue repair, alleviating inflammation at infection sites, and monitoring bone health is then provided, respectively. Finally, the major challenges faced by applications of piezoelectricity in orthopedic conditions are thoroughly discussed, along with a critical outlook on future development trends.
Collapse
Affiliation(s)
- Jingkai Zhang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chang Liu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Jun Li
- Department of Materials Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Tao Yu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jing Ruan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Fan Yang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Research Institute of Frontier ScienceSouthwest Jiaotong UniversityChengduSichuan610031China
| |
Collapse
|
3
|
Apoorva S, Nguyen NT, Sreejith KR. Recent developments and future perspectives of microfluidics and smart technologies in wearable devices. LAB ON A CHIP 2024; 24:1833-1866. [PMID: 38476112 DOI: 10.1039/d4lc00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Wearable devices are gaining popularity in the fields of health monitoring, diagnosis, and drug delivery. Recent advances in wearable technology have enabled real-time analysis of biofluids such as sweat, interstitial fluid, tears, saliva, wound fluid, and urine. The integration of microfluidics and emerging smart technologies, such as artificial intelligence (AI), machine learning (ML), and Internet of Things (IoT), into wearable devices offers great potential for accurate and non-invasive monitoring and diagnosis. This paper provides an overview of current trends and developments in microfluidics and smart technologies in wearable devices for analyzing body fluids. The paper discusses common microfluidic technologies in wearable devices and the challenges associated with analyzing each type of biofluid. The paper emphasizes the importance of combining smart technologies with microfluidics in wearable devices, and how they can aid diagnosis and therapy. Finally, the paper covers recent applications, trends, and future developments in the context of intelligent microfluidic wearable devices.
Collapse
Affiliation(s)
- Sasikala Apoorva
- UKF Centre for Advanced Research and Skill Development(UCARS), UKF College of Engineering and Technology, Kollam, Kerala, India, 691 302
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| | - Kamalalayam Rajan Sreejith
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| |
Collapse
|
4
|
Mohebbi Najm Abad J, Farahbakhsh A, Mir M, Alizadeh R, Hekmatmanesh A. Urea-Self Powered Biosensors: A Predictive Evolutionary Model for Human Energy Harvesting. SENSORS (BASEL, SWITZERLAND) 2023; 23:8180. [PMID: 37837010 PMCID: PMC10575137 DOI: 10.3390/s23198180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
The objective of this study is to create a reliable predictive model for the electrochemical performance of self-powered biosensors that rely on urea-based biological energy sources. Specifically, this model focuses on the development of a human energy harvesting model based on the utilization of urea found in sweat, which will enable the development of self-powered biosensors. In the process, the potential of urea hydrolysis in the presence of a urease enzyme is employed as a bioreaction for self-powered biosensors. The enzymatic reaction yields a positive potential difference that can be harnessed to power biofuel cells (BFCs) and act as an energy source for biosensors. This process provides the energy required for self-powered biosensors as biofuel cells (BFCs). To this end, initially, the platinum electrodes are modified by multi-walled carbon nanotubes to increase their conductivity. After stabilizing the urease enzyme on the surface of the platinum electrode, the amount of electrical current produced in the process is measured. The optimal design of the experiments is performed based on the Taguchi method to investigate the effect of urea concentration, buffer concentration, and pH on the generated electrical current. A general equation is employed as a prediction model and its coefficients calculated using an evolutionary strategy. Also, the evaluation of effective parameters is performed based on error rates. The obtained results show that the established model predicts the electrical current in terms of urea concentration, buffer concentration, and pH with high accuracy.
Collapse
Affiliation(s)
- Javad Mohebbi Najm Abad
- Department of Computer Engineering, Quchan Branch, Islamic Azad University, Quchan 9479176135, Iran;
| | - Afshin Farahbakhsh
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan 9479176135, Iran;
| | - Massoud Mir
- Department of Mechanical Engineering, Quchan University of Technology, Quchan 9477177870, Iran;
| | - Rasool Alizadeh
- Department of Mechanical Engineering, Quchan Branch, Islamic Azad University, Quchan 9479176135, Iran;
| | - Amin Hekmatmanesh
- Laboratory of Intelligent Machines, LUT University, 53850 Lappeenranta, Finland
| |
Collapse
|
5
|
Matin Nazar A, Mohsenian R, Rayegani A, Shadfar M, Jiao P. Skin-Contact Triboelectric Nanogenerator for Energy Harvesting and Motion Sensing: Principles, Challenges, and Perspectives. BIOSENSORS 2023; 13:872. [PMID: 37754106 PMCID: PMC10526904 DOI: 10.3390/bios13090872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
Energy harvesting has become an increasingly important field of research as the demand for portable and wearable devices continues to grow. Skin-contact triboelectric nanogenerator (TENG) technology has emerged as a promising solution for energy harvesting and motion sensing. This review paper provides a detailed overview of skin-contact TENG technology, covering its principles, challenges, and perspectives. The introduction begins by defining skin-contact TENG and explaining the importance of energy harvesting and motion sensing. The principles of skin-contact TENG are explored, including the triboelectric effect and the materials used for energy harvesting. The working mechanism of skin-contact TENG is also discussed. This study then moves onto the applications of skin-contact TENG, focusing on energy harvesting for wearable devices and motion sensing for healthcare monitoring. Furthermore, the integration of skin-contact TENG technology with other technologies is discussed to highlight its versatility. The challenges in skin-contact TENG technology are then highlighted, which include sensitivity to environmental factors, such as humidity and temperature, biocompatibility and safety concerns, and durability and reliability issues. This section of the paper provides a comprehensive evaluation of the technological limitations that must be considered when designing skin-contact TENGs. In the Perspectives and Future Directions section, this review paper highlights various advancements in materials and design, as well as the potential for commercialization. Additionally, the potential impact of skin-contact TENG technology on the energy and healthcare industries is discussed.
Collapse
Affiliation(s)
- Ali Matin Nazar
- Donghai Laboratory, Zhoushan 316021, China;
- Zhejiang University-University of Illinois at Urbana-Champaign Institute, Zhejiang University, Haining 314400, China
| | - Reza Mohsenian
- College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA 02215, USA;
| | - Arash Rayegani
- Centre for Infrastructure Engineering, Western Sydney University, Kingswood, NSW 2747, Australia;
| | - Mohammadamin Shadfar
- School of Medicine, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, China;
| | - Pengcheng Jiao
- Donghai Laboratory, Zhoushan 316021, China;
- Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan 316021, China
| |
Collapse
|
6
|
Stauss M, Htay H, Kooman JP, Lindsay T, Woywodt A. Wearables in Nephrology: Fanciful Gadgetry or Prêt-à-Porter? SENSORS (BASEL, SWITZERLAND) 2023; 23:1361. [PMID: 36772401 PMCID: PMC9919296 DOI: 10.3390/s23031361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Telemedicine and digitalised healthcare have recently seen exponential growth, led, in part, by increasing efforts to improve patient flexibility and autonomy, as well as drivers from financial austerity and concerns over climate change. Nephrology is no exception, and daily innovations are underway to provide digitalised alternatives to current models of healthcare provision. Wearable technology already exists commercially, and advances in nanotechnology and miniaturisation mean interest is also garnering clinically. Here, we outline the current existing wearable technology pertaining to the diagnosis and monitoring of patients with a spectrum of kidney disease, give an overview of wearable dialysis technology, and explore wearables that do not yet exist but would be of great interest. Finally, we discuss challenges and potential pitfalls with utilising wearable technology and the factors associated with successful implementation.
Collapse
Affiliation(s)
- Madelena Stauss
- Department of Nephrology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
| | - Htay Htay
- Department of Renal Medicine, Singapore General Hospital, Singapore 169608, Singapore
| | - Jeroen P. Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Thomas Lindsay
- Department of Nephrology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
| | - Alexander Woywodt
- Department of Nephrology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
| |
Collapse
|
7
|
Rahimi Sardo F, Rayegani A, Matin Nazar A, Balaghiinaloo M, Saberian M, Mohsan SAH, Alsharif MH, Cho HS. Recent Progress of Triboelectric Nanogenerators for Biomedical Sensors: From Design to Application. BIOSENSORS 2022; 12:697. [PMID: 36140082 PMCID: PMC9496147 DOI: 10.3390/bios12090697] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/22/2022]
Abstract
Triboelectric nanogenerators (TENG) have gained prominence in recent years, and their structural design is crucial for improvement of energy harvesting performance and sensing. Wearable biosensors can receive information about human health without the need for external charging, with energy instead provided by collection and storage modules that can be integrated into the biosensors. However, the failure to design suitable components for sensing remains a significant challenge associated with biomedical sensors. Therefore, design of TENG structures based on the human body is a considerable challenge, as biomedical sensors, such as implantable and wearable self-powered sensors, have recently advanced. Following a brief introduction of the fundamentals of triboelectric nanogenerators, we describe implantable and wearable self-powered sensors powered by triboelectric nanogenerators. Moreover, we examine the constraints limiting the practical uses of self-powered devices.
Collapse
Affiliation(s)
- Fatemeh Rahimi Sardo
- Department of Mining Engineering, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran
| | - Arash Rayegani
- Department of Civil Engineering, Sharif University of Technology, Azadi Ave, Tehran 1458889694, Iran
| | | | | | | | | | - Mohammed H. Alsharif
- Department of Electrical Engineering, College of Electronics and Information Engineering, Sejong University, Seoul 05006, Korea
| | - Ho-Shin Cho
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
8
|
SPR-Based Sensor for the Early Detection or Monitoring of Kidney Problems. Int J Biomater 2022; 2022:9135172. [PMID: 35755268 PMCID: PMC9225913 DOI: 10.1155/2022/9135172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
SPR-based technology has emerged as one of the most versatile optical tools for analyzing the binding mechanism of molecular interaction due to its inherent advantages in sensing applications, such as real-time, label-free, and high sensitivity characteristics. SPR is widely used in various fields, including healthcare, environmental management, and food-borne illness analysis. Meanwhile, kidney disease has grown to be one of the world's most serious public health problems in recent decades, resulting in physical degeneration and even death. As a result, several studies have published their findings regarding developing of reliable sensor technology based on the SPR phenomenon. However, an integrated and comprehensive discussion regarding the application of SPR-based sensors for detecting of kidney disease has not yet been found. Therefore, this review will discuss the recent advancements in the development of SPR-based sensors for monitoring kidney-related diseases. Numerous SPR configurations will be discussed, including Kretschmann, Otto, optical fiber-based SPR, and LSPR, which are all used to detect analytes associated with kidney disease, including urea, creatinine, glucose, uric acid, and dopamine. This review aims to show the broad application of SPR sensors which encouraged the development of SPR sensors for kidney problems monitoring.
Collapse
|
9
|
Han L, Zhou Q, Chen D, Qu R, Liu L, Chen Y, Yang J, Song X. Flexible sensitive hydrogel sensor with self-powered capability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev 2022; 51:3380-3435. [PMID: 35352069 DOI: 10.1039/d1cs00858g] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of flexible piezoelectric nanogenerators has experienced rapid progress in the past decade and is serving as the technological foundation of future state-of-the-art personalized healthcare. Due to their highly efficient mechanical-to-electrical energy conversion, easy implementation, and self-powering nature, these devices permit a plethora of innovative healthcare applications in the space of active sensing, electrical stimulation therapy, as well as passive human biomechanical energy harvesting to third party power on-body devices. This article gives a comprehensive review of the piezoelectric nanogenerators for personalized healthcare. After a brief introduction to the fundamental physical science of the piezoelectric effect, material engineering strategies, device structural designs, and human-body centered energy harvesting, sensing, and therapeutics applications are also systematically discussed. In addition, the challenges and opportunities of utilizing piezoelectric nanogenerators for self-powered bioelectronics and personalized healthcare are outlined in detail.
Collapse
Affiliation(s)
- Weili Deng
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA. .,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Weiqing Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
11
|
Chen Y, Gao Z, Zhang F, Wen Z, Sun X. Recent progress in self-powered multifunctional e-skin for advanced applications. EXPLORATION (BEIJING, CHINA) 2022; 2:20210112. [PMID: 37324580 PMCID: PMC10191004 DOI: 10.1002/exp.20210112] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 06/15/2023]
Abstract
Electronic skin (e-skin), new generation of flexible wearable electronic devices, has characteristics including flexibility, thinness, biocompatibility with broad application prospects, and a crucial place in future wearable electronics. With the increasing demand for wearable sensor systems, the realization of multifunctional e-skin with low power consumption or even autonomous energy is urgently needed. The latest progress of multifunctional self-powered e-skin for applications in physiological health, human-machine interaction (HMI), virtual reality (VR), and artificial intelligence (AI) is presented here. Various energy conversion effects for the driving energy problem of multifunctional e-skin are summarized. An overview of various types of self-powered e-skins, including single-effect e-skins and multifunctional coupling-effects e-skin systems is provided, where the aspects of material preparation, device assembly, and output signal analysis of the self-powered multifunctional e-skin are described. In the end, the existing problems and prospects in this field are also discussed.
Collapse
Affiliation(s)
- Yunfeng Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouP. R. China
| | - Zhengqiu Gao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouP. R. China
| | - Fangjia Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouP. R. China
| | - Zhen Wen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouP. R. China
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouP. R. China
| |
Collapse
|
12
|
Yang Z, Zhu Z, Chen Z, Liu M, Zhao B, Liu Y, Cheng Z, Wang S, Yang W, Yu T. Recent Advances in Self-Powered Piezoelectric and Triboelectric Sensors: From Material and Structure Design to Frontier Applications of Artificial Intelligence. SENSORS 2021; 21:s21248422. [PMID: 34960515 PMCID: PMC8703550 DOI: 10.3390/s21248422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
The development of artificial intelligence and the Internet of things has motivated extensive research on self-powered flexible sensors. The conventional sensor must be powered by a battery device, while innovative self-powered sensors can provide power for the sensing device. Self-powered flexible sensors can have higher mobility, wider distribution, and even wireless operation, while solving the problem of the limited life of the battery so that it can be continuously operated and widely utilized. In recent years, the studies on piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs) have mainly concentrated on self-powered flexible sensors. Self-powered flexible sensors based on PENGs and TENGs have been reported as sensing devices in many application fields, such as human health monitoring, environmental monitoring, wearable devices, electronic skin, human–machine interfaces, robots, and intelligent transportation and cities. This review summarizes the development process of the sensor in terms of material design and structural optimization, as well as introduces its frontier applications in related fields. We also look forward to the development prospects and future of self-powered flexible sensors.
Collapse
Affiliation(s)
- Zetian Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Zhongtai Zhu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Zixuan Chen
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Mingjia Liu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Binbin Zhao
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Yansong Liu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Zefei Cheng
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Shuo Wang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Weidong Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
- Correspondence:
| | - Tao Yu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
- The Shanghai Key Laboratory of Space Mapping and Remote Sensing for Planetary Exploration, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
Kim D, Lee DK, Yoon J, Hahm D, Lee B, Oh E, Kim G, Seo J, Kim H, Hong Y. Electronic Skin Based on a Cellulose/Carbon Nanotube Fiber Network for Large-Area 3D Touch and Real-Time 3D Surface Scanning. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53111-53119. [PMID: 34709790 DOI: 10.1021/acsami.1c16166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electronic skin (E-skin) based on tactile sensors has great significance in next-generation electronics such as biomedical application and artificial intelligence that requires interaction with humans. To mimic the properties of human skin, high flexibility, excellent sensing capability, and sufficient spatial resolution through high-level sensor integration are required. Here, we report a highly sensitive pressure sensor matrix based on a piezoresistive cellulose/single-walled carbon nanotube-entangled fiber network, which forms its own porous structure enabling a superior pressure sensor with a high sensitivity (9.097 kPa-1), a fast response speed (<2 ms), and orders of magnitude detection range with a detection limit of 1 Pa. Furthermore, the remarkable device expandability based on the ease of patterning and scalability allows easy implementation of a large-area pressure sensor matrix which has 2304 (48 × 48) pixels. Combined with a real-time pressure distribution monitoring system, a flexible 3D touch sensor that simultaneously displays plane coordinates and pressure information and a scanning device that detects the morphology of the soft body 3D surface are successfully demonstrated.
Collapse
Affiliation(s)
- Daesik Kim
- Department of Electrical and Computer Engineering and Inter-University Semiconductor Research Center (ISRC), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Dong Keon Lee
- Department of Electrical and Computer Engineering and Inter-University Semiconductor Research Center (ISRC), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jinsu Yoon
- Department of Electrical and Computer Engineering and Inter-University Semiconductor Research Center (ISRC), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Donghyo Hahm
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Byeongmoon Lee
- Department of Electrical and Computer Engineering and Inter-University Semiconductor Research Center (ISRC), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Eunho Oh
- Department of Electrical and Computer Engineering and Inter-University Semiconductor Research Center (ISRC), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Geonhee Kim
- Department of Electrical and Computer Engineering and Inter-University Semiconductor Research Center (ISRC), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jiseok Seo
- Department of Electrical and Computer Engineering and Inter-University Semiconductor Research Center (ISRC), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hanul Kim
- Department of Electrical and Computer Engineering and Inter-University Semiconductor Research Center (ISRC), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Yongtaek Hong
- Department of Electrical and Computer Engineering and Inter-University Semiconductor Research Center (ISRC), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
14
|
Cheng Y, Wang K, Xu H, Li T, Jin Q, Cui D. Recent developments in sensors for wearable device applications. Anal Bioanal Chem 2021; 413:6037-6057. [PMID: 34389877 DOI: 10.1007/s00216-021-03602-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 01/23/2023]
Abstract
Wearable devices are a new means of human-computer interaction with different functions, underlying principles, and forms. They have been widely used in the medical and health fields, in applications including physiological signal monitoring; sports; and environmental detection, while subtly affecting people's lives and work. Wearable sensors as functional components of wearable devices have become a research focus. In this review, we systematically summarize recent progress in the development of wearable sensors and related devices. Wearable sensors in medical health applications, according to the principle of measurement, are divided into physical and chemical quantity detection. These sensors can monitor and measure specific parameters, thereby enabling continuously improvements in the quality and feasibility of medical treatment. Through the detection of human movement, such as breathing, heartbeat, or bending, wearable sensors can evaluate body movement and monitor an individual's physical performance and health status. Wearable devices detecting aspects of the environment while maintaining high adaptability to the human body can be used to evaluate environmental quality and obtain more accurate environmental information. The ultimate goal of this review is to provide new insights and directions for the future development and broader application of wearable devices in various fields.Graphical abstract.
Collapse
Affiliation(s)
- Yuemeng Cheng
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kan Wang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tangan Li
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qinghui Jin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
15
|
Shao Y, Shen M, Zhou Y, Cui X, Li L, Zhang Y. Nanogenerator-based self-powered sensors for data collection. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:680-693. [PMID: 34327113 PMCID: PMC8275872 DOI: 10.3762/bjnano.12.54] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Self-powered sensors can provide energy and environmental data for applications regarding the Internet of Things, big data, and artificial intelligence. Nanogenerators provide excellent material compatibility, which also leads to a rich variety of nanogenerator-based self-powered sensors. This article reviews the development of nanogenerator-based self-powered sensors for the collection of human physiological data and external environmental data. Nanogenerator-based self-powered sensors can be designed to detect physiological data as wearable and implantable devices. Nanogenerator-based self-powered sensors are a solution for collecting data and expanding data dimensions in a future intelligent society. The future key challenges and potential solutions regarding nanogenerator-based self-powered sensors are discussed.
Collapse
Affiliation(s)
- Yicheng Shao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Maoliang Shen
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuankai Zhou
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xin Cui
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijie Li
- Multidisciplinary Nanotechnology Centre, College of Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Yan Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Xu Q, Gao X, Zhao S, Liu Y, Zhang D, Zhou K, Khanbareh H, Chen W, Zhang Y, Bowen C. Construction of Bio-Piezoelectric Platforms: From Structures and Synthesis to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008452. [PMID: 34033180 PMCID: PMC11469329 DOI: 10.1002/adma.202008452] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/28/2021] [Indexed: 05/04/2023]
Abstract
Piezoelectric materials, with their unique ability for mechanical-electrical energy conversion, have been widely applied in important fields such as sensing, energy harvesting, wastewater treatment, and catalysis. In recent years, advances in material synthesis and engineering have provided new opportunities for the development of bio-piezoelectric materials with excellent biocompatibility and piezoelectric performance. Bio-piezoelectric materials have attracted interdisciplinary research interest due to recent insights on the impact of piezoelectricity on biological systems and their versatile biomedical applications. This review therefore introduces the development of bio-piezoelectric platforms from a broad perspective and highlights their design and engineering strategies. State-of-the-art biomedical applications in both biosensing and disease treatment will be systematically outlined. The relationships between the properties, structure, and biomedical performance of the bio-piezoelectric materials are examined to provide a deep understanding of the working mechanisms in a physiological environment. Finally, the development trends and challenges are discussed, with the aim to provide new insights for the design and construction of future bio-piezoelectric materials.
Collapse
Affiliation(s)
- Qianqian Xu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityHunan410083China
| | - Xinyu Gao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityHunan410083China
| | - Senfeng Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityHunan410083China
| | - You‐Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityHunan410083China
| | - Dou Zhang
- State Key Laboratory of Powder MetallurgyCentral South UniversityHunan410083China
| | - Kechao Zhou
- State Key Laboratory of Powder MetallurgyCentral South UniversityHunan410083China
| | | | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityHunan410083China
| | - Yan Zhang
- State Key Laboratory of Powder MetallurgyCentral South UniversityHunan410083China
| | - Chris Bowen
- Department of Mechanical EngineeringUniversity of BathBathBA27AYUK
| |
Collapse
|
17
|
Li G, Wen D. Wearable biochemical sensors for human health monitoring: sensing materials and manufacturing technologies. J Mater Chem B 2021; 8:3423-3436. [PMID: 32022089 DOI: 10.1039/c9tb02474c] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wearable biochemical sensors are of great interest nowadays due to their powerful potential in personalized medicine and continuous monitoring of human health. Thus, a great deal of effort has been put into the development of such sensors to enable real-time and non-invasive quantification of various chemical constituents in the human body such as sweat, saliva, and tears. Owing to the advances in materials science and mechanical engineering, wearable biochemical sensors have been developed to probe various biomarkers and have been subsequently considered as wearable electronic devices for practical applications. In this review, we present a broad overview on the recent advances in electrochemical wearable sensors towards various organic components and ions closely linked to human health. With an emphasis on materials and manufacturing technologies of the sensing electrodes, the research status is summarized, and the challenges and opportunities in this growing field are prospected.
Collapse
Affiliation(s)
- Guanglei Li
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China.
| | | |
Collapse
|
18
|
Atta NF, Galal A, Ahmed YM, Abdelkader MG. Host guest inclusion complex/polymer-CNT composite for efficient determination of uric acid in presence of interfering species. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Sharma A, Badea M, Tiwari S, Marty JL. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules 2021; 26:748. [PMID: 33535493 PMCID: PMC7867046 DOI: 10.3390/molecules26030748] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
With the increasing prevalence of growing population, aging and chronic diseases continuously rising healthcare costs, the healthcare system is undergoing a vital transformation from the traditional hospital-centered system to an individual-centered system. Since the 20th century, wearable sensors are becoming widespread in healthcare and biomedical monitoring systems, empowering continuous measurement of critical biomarkers for monitoring of the diseased condition and health, medical diagnostics and evaluation in biological fluids like saliva, blood, and sweat. Over the past few decades, the developments have been focused on electrochemical and optical biosensors, along with advances with the non-invasive monitoring of biomarkers, bacteria and hormones, etc. Wearable devices have evolved gradually with a mix of multiplexed biosensing, microfluidic sampling and transport systems integrated with flexible materials and body attachments for improved wearability and simplicity. These wearables hold promise and are capable of a higher understanding of the correlations between analyte concentrations within the blood or non-invasive biofluids and feedback to the patient, which is significantly important in timely diagnosis, treatment, and control of medical conditions. However, cohort validation studies and performance evaluation of wearable biosensors are needed to underpin their clinical acceptance. In the present review, we discuss the importance, features, types of wearables, challenges and applications of wearable devices for biological fluids for the prevention of diseased conditions and real-time monitoring of human health. Herein, we summarize the various wearable devices that are developed for healthcare monitoring and their future potential has been discussed in detail.
Collapse
Affiliation(s)
- Atul Sharma
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Budhera, Gurugram, Haryana 122505, India
| | - Mihaela Badea
- Fundamental, Prophylactic and Clinical Specialties Department, Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania;
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt Ravishankar Shukla University, Raipur, CHATTISGARH 492010, India;
| | - Jean Louis Marty
- University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
20
|
Algieri L, Todaro MT, Guido F, Blasi L, Mastronardi V, Desmaële D, Qualtieri A, Giannini C, Sibillano T, De Vittorio M. Piezoelectricity and Biocompatibility of Flexible Sc xAl (1-x)N Thin Films for Compliant MEMS Transducers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18660-18666. [PMID: 32216304 DOI: 10.1021/acsami.0c00552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is huge research activity in the development of flexible and biocompatible piezoelectric materials for next-generation compliant micro electro-mechanical systems (MEMS) transducers to be exploited in wearable devices and implants. This work reports for the first time on the development of flexible ScxAl(1-x)N films deposited by sputtering technique onto polyimide substrates, assessing their piezoelectricity and biocompatibility. Flexible ScxAl(1-x)N films have been analyzed in terms of morphological, structural, and piezoelectric properties. ScxAl(1-x)N layer exhibits a good surface roughness of 4.40 nm and moderate piezoelectricity with an extracted effective piezoelectric coefficient (d33eff) value of 1.87 ± 0.06 pm/V, in good agreement with the diffraction pattern analysis results. Cell viability assay, performed to study the interaction of the ScxAl(1-x)N films with human cell lines, shows that this material does not have significant effects on tested cells. Furthermore, the ScxAl(1-x)N layer, integrated onto a flexible device and analyzed by bending/unbending measurements, shows a peak-to-peak open-circuit voltage (VOC) of 0.32 V and a short-circuit current (ISC) of 0.27 μA, with a generated power of 19.28 nW under optimal resistive load, thus demonstrating the potential of flexible ScxAl(1-x)N films as active layers for next-generation wearable/implantable piezoelectrics.
Collapse
Affiliation(s)
- Luciana Algieri
- Piezoskin S.r.l., via Trinchese 61/D, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia (IIT), via Barsanti, 73010 Arnesano, Italy
| | - Maria Teresa Todaro
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia (IIT), via Barsanti, 73010 Arnesano, Italy
- Consiglio Nazionale Delle Ricerche, Istituto di Nanotecnologia, c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Francesco Guido
- Piezoskin S.r.l., via Trinchese 61/D, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia (IIT), via Barsanti, 73010 Arnesano, Italy
| | - Laura Blasi
- Consiglio Nazionale Delle Ricerche, Instituto di Microelettonica e Microsistemi, via Monteroni, 73100 Lecce, Italy
| | - Vincenzo Mastronardi
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia (IIT), via Barsanti, 73010 Arnesano, Italy
| | - Denis Desmaële
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia (IIT), via Barsanti, 73010 Arnesano, Italy
| | - Antonio Qualtieri
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia (IIT), via Barsanti, 73010 Arnesano, Italy
| | - Cinzia Giannini
- Consiglio Nazionale Delle Ricerche, Istituto di Cristallografia, v. Amendola 122/O, 70126 Bari, Italy
| | - Teresa Sibillano
- Consiglio Nazionale Delle Ricerche, Istituto di Cristallografia, v. Amendola 122/O, 70126 Bari, Italy
| | - Massimo De Vittorio
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia (IIT), via Barsanti, 73010 Arnesano, Italy
- Dipartimento Ingegneria Dell'Innovazione, Università Del Salento, via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Hypertension (HTN) and chronic kidney disease (CKD) are significant problems. With recent advances in technologies, biosensors have shown a great potential to provide better home monitoring in hypertension (HTN), medication compliance, diagnostic device for kidney disease, CKD/end-stage renal disease (ESRD) care, and post kidney transplant management. RECENT FINDINGS Multiple devices/biosensors have been developed related to HTN, kidney function including real-time glomerular filtration rate, CKD/end-stage renal disease, and transplant care. In recent advances in wearable biosensors, point of care monitoring system could provide more integrated care to the patients via telenephrology. SUMMARY This review focuses on the recent advances in biosensors which may be useful for HTN and nephrology. We will discuss future potential clinical implication of these biosensors.
Collapse
|
22
|
Wang Q, Si H, Zhang L, Li L, Wang X, Wang S. A fast and facile electrochemical method for the simultaneous detection of epinephrine, uric acid and folic acid based on ZrO 2/ZnO nanocomposites as sensing material. Anal Chim Acta 2020; 1104:69-77. [PMID: 32106959 DOI: 10.1016/j.aca.2020.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022]
Abstract
A novel electrochemical sensor based on ZrO2 and ZnO hybrid nanocomposites was developed for simultaneous determination of epinephrine (EA), uric acid (UA) and folic acid (FA) with the highly selective and ultrasensitive. The nanocomposites have been synthesized by chemical precipitation and thermal calcine method with economical, eco-friendly and practical nature. Their structure and electrochemical properties were investigated by X-ray diffraction (XRD), X-ray photo electron spectroscopy (XPS), scanning electron microscopy (SEM) and electrochemical techniques. The results reveal that the ZrO2/ZnO nanocomposites can possesses highly exposed catalytic sites, favorable conductivity, and the sensor excellent signal response for EP, UA and FA under the optimal condition. The electrochemical sensing platform has a low detection limit of 0.039 μM, 0.29 μM and 0.037 μM and a wide detection range of 0.8-420 μM, 10-2400 μM and 2-480 μM, respectively. It was also tested with a human blood serum sample at physiological pH with recovery 97.3-103.8% and relation standard deviation less than 5%. It indicates that the electrochemical sensors has a hopeful capacity of extensive applications in bioanalysis and diseases diagnosis.
Collapse
Affiliation(s)
- Qiwen Wang
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, PR China
| | - Haipei Si
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, PR China
| | - Lihui Zhang
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, PR China
| | - Ling Li
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, PR China
| | - Xiaohong Wang
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, PR China
| | - Shengtian Wang
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, PR China.
| |
Collapse
|
23
|
Guo B, Ma Z, Pan L, Shi Y. Properties of conductive polymer hydrogels and their application in sensors. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24899] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bin Guo
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and EngineeringNanjing University Nanjing Jiangsu 210093 China
| | - Zhong Ma
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and EngineeringNanjing University Nanjing Jiangsu 210093 China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and EngineeringNanjing University Nanjing Jiangsu 210093 China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and EngineeringNanjing University Nanjing Jiangsu 210093 China
| |
Collapse
|
24
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019; 6:91. [PMID: 31750312 PMCID: PMC6843074 DOI: 10.3389/fmolb.2019.00091] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
25
|
Ling W, Hao Y, Wang H, Xu H, Huang X. A novel Cu-metal-organic framework with two-dimensional layered topology for electrochemical detection using flexible sensors. NANOTECHNOLOGY 2019; 30:424002. [PMID: 31368448 DOI: 10.1088/1361-6528/ab30b6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We present a novel Cu-metal-organic framework (MOF) with two-dimensional layered topology and techniques to integrate it with flexible sensors for electrochemical detection. The unique Cu-MOF is formed by coordinating Cu2+ ions with carboxylic oxygen groups, resulting in layered structures interlayerly connected by hydrogen bonds. The resulting flexible sensors exhibit capability in detecting ascorbic acid (AA), hydrogen peroxide (H2O2) and L-Histidine (L-His) with detection limits of 2.94, 4.1 and 5.3 μM, respectively. The linear ranges of the sensors compare favorably with other sensors based on rigid platforms that offer similar sensitivity. According to the result of cytotoxicity study, the MOFs-modified flexible sensors exhibit good biocompatibility to cells, suggesting potential use in in vivo chemical detection. The results presented here demonstrate applications of MOFs in facilitating highly stable electrochemical detection in flexible electronics, and provide fundamental knowledge about structure-dependent electrochemical properties of MOFs and changing behaviors of flexible MOFs membranes under external strain. More MOFs-based flexible sensors may be developed to explore different properties of MOFs by varying their compositions and structures for healthcare and clinic applications.
Collapse
Affiliation(s)
- Wei Ling
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019. [PMID: 31750312 DOI: 10.3389/fmolb.2019.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
27
|
Li M, Wu Y, Zhang L, Wo H, Huang S, Li W, Zeng X, Ye Q, Xu T, Luo J, Dong S, Li Y, Jin H, Wang X. Liquid metal-based electrical interconnects and interfaces with excellent stability and reliability for flexible electronics. NANOSCALE 2019; 11:5441-5449. [PMID: 30855048 DOI: 10.1039/c8nr09503e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stable and reliable electrical properties of interconnects and interfaces between flexible/stretchable and rigid materials/components are essential for the practical applications of flexible electronic devices and systems; traditional metal thin films and hard solder interconnects and interfaces can no longer meet these requirements. As an emerging soft conductive material, liquid metal has the advantages of high stretchability, flexibility, etc. over other soldering materials, and it has been used in interconnects and interfaces for some flexible electronics. In this study, we report a detailed investigation on the reliability and stability of liquid metal-based interconnects/interfaces under various mechanical deformations, including extension, bending, torsion, high frequency vibration and high temperature operation; we also compared the results with those of interconnects and interfaces using silver paste, the most commonly used solder for flexible electronics. The results show that liquid metal interconnects and interfaces maintain high conductivity under severe elongation up to 95% and 130%, upon bending with a curvature radius as low as ∼1.5 mm, and upon twisting up to 360°; meanwhile, interconnects and interfaces with silver paste filler lose electrical conductivity at elongations of 0.6% and 60%, respectively. Liquid metal interconnects and interfaces show superior performance to silver paste interconnects and interfaces because liquid metal can be re-shaped to make good contact with objects, while the silver paste becomes solid and rigid once dried and thus loses contact with other objects under deformation.
Collapse
Affiliation(s)
- Menglu Li
- Key Laboratory of Micro-nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu T, Wang Y, Zhong W, Li B, Mequanint K, Luo G, Xing M. Biomedical Applications of Layer-by-Layer Self-Assembly for Cell Encapsulation: Current Status and Future Perspectives. Adv Healthc Mater 2019; 8:e1800939. [PMID: 30511822 DOI: 10.1002/adhm.201800939] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/10/2018] [Indexed: 12/23/2022]
Abstract
Encapsulating living cells within multilayer functional shells is a crucial extension of cellular functions and a further development of cell surface engineering. In the last decade, cell encapsulation has been widely utilized in many cutting-edge biomedical fields. Compared with other techniques for cell encapsulation, layer-by-layer (LbL) self-assembly technology, due to the versatility and tunability to fabricate diverse multilayer shells with controllable compositions and structures, is considered as a promising approach for cell encapsulation. This review summarizes the state-of-the-art and potential future biomedical applications of LbL cell encapsulation. First of all, a brief introduction to the LbL self-assembly technique, including assembly mechanisms and technologies, is made. Next, different cell encapsulation strategies by LbL self-assembly techniques are explained. Then, the biomedical applications of LbL cell encapsulation in cell-based biosensors, cell transplantation, cell/molecule delivery, and tissue engineering, are highlighted. Finally, discussions on the current limitations and future perspectives of LbL cell encapsulation are also provided.
Collapse
Affiliation(s)
- Tengfei Liu
- Institute of Burn Research; State Key Laboratory of Trauma; Burn and Combined Injury; Southwest Hospital; Third Military Medical University (Army Medical University); Gaotanyan Street Chongqing 400038 China
| | - Ying Wang
- Institute of Burn Research; State Key Laboratory of Trauma; Burn and Combined Injury; Southwest Hospital; Third Military Medical University (Army Medical University); Gaotanyan Street Chongqing 400038 China
| | - Wen Zhong
- Department of Biosystem Engineering; Faculty of Agriculture; University of Manitoba; Winnpeg MB Canada
| | - Bingyun Li
- School of Medicine; West Virginia University; Morgantown WV 26506-9196 USA
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering; University of Western; Ontario London N6A 5B9 Canada
| | - Gaoxing Luo
- Institute of Burn Research; State Key Laboratory of Trauma; Burn and Combined Injury; Southwest Hospital; Third Military Medical University (Army Medical University); Gaotanyan Street Chongqing 400038 China
| | - Malcolm Xing
- Institute of Burn Research; State Key Laboratory of Trauma; Burn and Combined Injury; Southwest Hospital; Third Military Medical University (Army Medical University); Gaotanyan Street Chongqing 400038 China
- Department of Mechanical Engineering; Faculty of Engineering; University of Manitoba; Winnipeg MB R3T 2N2 Canada
| |
Collapse
|
29
|
Ma Z, Li S, Wang H, Cheng W, Li Y, Pan L, Shi Y. Advanced electronic skin devices for healthcare applications. J Mater Chem B 2018; 7:173-197. [PMID: 32254546 DOI: 10.1039/c8tb02862a] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electronic skin, a kind of flexible electronic device and system inspired by human skin, has emerged as a promising candidate for wearable personal healthcare applications. Wearable electronic devices with skin-like properties will provide platforms for continuous and real-time monitoring of human physiological signals such as tissue pressure, body motion, temperature, metabolites, electrolyte balance, and disease-related biomarkers. Transdermal drug delivery devices can also be integrated into electronic skin to enhance its non-invasive, real-time dynamic therapy functions. This review summarizes the recent progress in electronic skin devices for applications in human health monitoring and therapy systems as well as several potential mass production technologies such as inkjet printing and 3D printing. The opportunities and challenges in broadening the applications of electronic skin devices in practical healthcare are also discussed.
Collapse
Affiliation(s)
- Zhong Ma
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, 210093 Nanjing, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Sun Q, Qian B, Uto K, Chen J, Liu X, Minari T. Functional biomaterials towards flexible electronics and sensors. Biosens Bioelectron 2018; 119:237-251. [DOI: 10.1016/j.bios.2018.08.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022]
|
31
|
Zhao T, Li J, Zeng H, Fu Y, He H, Xing L, Zhang Y, Xue X. Self-powered wearable sensing-textiles for real-time detecting environmental atmosphere and body motion based on surface-triboelectric coupling effect. NANOTECHNOLOGY 2018; 29:405504. [PMID: 30015628 DOI: 10.1088/1361-6528/aad3fc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-powered wearable sensing-textiles for real-time detecting environmental atmosphere and body motion have been presented. The textile is based on highly-stretchable conductive ecoflex fiber modified with multiwall carbon nanotube and polyaniline (PANI) derivatives (acting as one electrode). The surface of the fiber is twined with varnished wire (acting as the other electrode). Upon applied deformation of stretching or bending, the sensing-textile can harvest the mechanical energy and output electric signals through the triboelectrification effect between PANI and varnished wire. After being attached on the human body, the triboelectric output of the sensing-textile can be used to monitor body motion, including finger bending and body stretching. Interestingly, the triboelectric output of the sensing-textile is significantly dependent on the atmosphere, which can actively distinguish different gas species in the environment. The sensitivity, stability and selectivity against ethanol, ammonia, acetone and formaldehyde are high. The response against 400 ppm ethanol vapor at room temperature is up to 54.73%. The current density is 2.1 × 10-4 A m-2, and the power density is 4.2 × 10-5 W m-2. During both the motion detecting and gas sensing processes, no external electricity power is needed. The triboelectric signal can be treated as not only the sensing signal but also the power source for driving the device. The working mechanism is based on surface-triboelectric coupling effect. The present results can promote the development of self-powered wearable electronics.
Collapse
Affiliation(s)
- Tianming Zhao
- College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Economou A, Kokkinos C, Prodromidis M. Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing. LAB ON A CHIP 2018; 18:1812-1830. [PMID: 29855637 DOI: 10.1039/c8lc00025e] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Flexible biosensors represent an increasingly important and rapidly developing field of research. Flexible materials offer several advantages as supports of biosensing platforms in terms of flexibility, weight, conformability, portability, cost, disposability and scope for integration. On the other hand, electrochemical detection is perfectly suited to flexible biosensing devices. The present paper reviews the field of integrated electrochemical bionsensors fabricated on flexible materials (plastic, paper and textiles) which are used as functional base substrates. The vast majority of electrochemical flexible lab-on-a-chip (LOC) biosensing devices are based on plastic supports in a single or layered configuration. Among these, wearable devices are perhaps the ones that most vividly demonstrate the utility of the concept of flexible biosensors while diagnostic cards represent the state-of-the art in terms of integration and functionality. Another important type of flexible biosensors utilize paper as a functional support material enabling the fabrication of low-cost and disposable paper-based devices operating on the lateral flow, drop-casting or folding (origami) principles. Finally, textile-based biosensors are beginning to emerge enabling real-time measurements in the working environment or in wound care applications. This review is timely due to the significant advances that have taken place over the last few years in the area of LOC biosensors and aims to direct the readers to emerging trends in this field.
Collapse
|