1
|
Caschera D, Brugnoli B, Primitivo L, De Angelis M, Righi G, Pilloni L, Campi G, Imperatori P, Pentimalli M, Masi A, Liscio A, Rea G, Suber L. Synthesis of Photoluminescent 2D Self-Assembled Silver Thiolate Nanoclusters for Sensors and Biomolecule Support. Inorg Chem 2024; 63:3724-3734. [PMID: 38359353 DOI: 10.1021/acs.inorgchem.3c03738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Silver thiolate nanoclusters (Ag NCs) show distinctive optical properties resulting from their hybrid nature, metallic and molecular, exhibiting size-, structure-, and surface-dependent photoluminescence, thus enabling the exploitation of Ag NCs for potential applications in nanobiotechnology, catalysis, and biomedicine. However, tailoring Ag NCs for specific applications requires achieving long-term stability and may involve modifying surface chemistry, fine-tuning ligand composition, or adding functional groups. In this study, we report the synthesis of novel Ag NCs using 2-ethanephenylthiolate (SR) as a ligand, highlight critical points addressing stability, and characterize their optical and structural properties. A preliminary electrical characterization revealed high anisotropy, well suited for potential use in electronics/sensing applications. We also present the synthesis and characterization of Ag NCs using 10-carboxylic 2-ol thiolate (SR'COOH) having a terminal carboxylic group for conjugation with amine-containing molecules. We present a preliminary assessment of its bioconjugation capability using bovine serum albumin as a model protein indicating its prospective application as a biomolecule support.
Collapse
Affiliation(s)
- Daniela Caschera
- ISMN-CNR, Strada Provinciale 35d, n.9, 00010 Montelibretti, Rome, Italy
| | - Benedetta Brugnoli
- Dipartimento di Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Rome, Italy
| | - Ludovica Primitivo
- Dipartimento di Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Rome, Italy
| | - Martina De Angelis
- Dipartimento di Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Rome, Italy
| | - Giuliana Righi
- IBPM-CNR-c/o DipDipartimento di Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Rome, Italy
| | - Luciano Pilloni
- ENEA-SSPT-PROMAS-MATPRO, Materials Technology Division, Casaccia Research Centre, 00123 Rome, Italy
| | - Gaetano Campi
- IC-CNR, Strada Provinciale 35d, n.9, 00010 Montelibretti, Rome, Italy
| | | | - Marzia Pentimalli
- ENEA-SSPT-PROMAS-MATPRO, Materials Technology Division, Casaccia Research Centre, 00123 Rome, Italy
| | - Andrea Masi
- ENEA FSN-COND, Superconductivity Section, Frascati Research Center, 00044 Frascati, Italy
| | - Andrea Liscio
- IMM-CNR, via del Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Giuseppina Rea
- IC-CNR, Strada Provinciale 35d, n.9, 00010 Montelibretti, Rome, Italy
| | - Lorenza Suber
- ISM-CNR, Strada Provinciale 35d, n.9, 00010 Montelibretti, Rome, Italy
| |
Collapse
|
2
|
Primitivo L, De Angelis M, Necci A, Di Pietro F, Ricelli A, Caschera D, Pilloni L, Suber L, Righi G. Silver thiolate nanoclusters as support for chiral ligands: application in heterogeneous phase asymmetric catalysis. NANOSCALE ADVANCES 2023; 5:627-632. [PMID: 36756516 PMCID: PMC9890582 DOI: 10.1039/d2na00692h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Silver thiolate nanoclusters have been functionalized with a chiral amino alcohol ligand that has previously shown high catalytic efficiency in different asymmetric reactions. The as-developed nanostructured catalyst, which can be easily recovered by simple centrifugation, has been tested in the addition of nitromethane to aromatic aldehydes, showing the same catalytic activity as the homogeneous ligand. Moreover, it was reused for two further recycling cycles without loss of efficiency. To the best of our knowledge, this is the first example of silver nanoclusters employed as a support for chiral ligands for heterogeneous phase asymmetric catalysis.
Collapse
Affiliation(s)
- Ludovica Primitivo
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Martina De Angelis
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Andrea Necci
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Federica Di Pietro
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Alessandra Ricelli
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
- CNR-IBPM-c/o Dep. Chemistry, Sapienza University of Rome 00185 Rome Italy
| | | | - Luciano Pilloni
- ENEA SSPT-PROMAS-MATPRO, Materials Technology Division, Casaccia Research Centre 00123 Rome Italy
| | - Lorenza Suber
- CNR-ISM Via Salaria km 29,300, 00015 Monterotondo St. Italy
| | - Giuliana Righi
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
- CNR-IBPM-c/o Dep. Chemistry, Sapienza University of Rome 00185 Rome Italy
| |
Collapse
|
3
|
Desai D, Shende P. Experimental aspects of NPY-decorated gold nanoclusters using randomized hybrid design against breast cancer cell line. Biotechnol J 2021; 16:e2100319. [PMID: 34595845 DOI: 10.1002/biot.202100319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022]
Abstract
Gold nanoclusters (AuNCs) are potential carrier system for bioactive like proteins and peptides used in various therapeutics against various ailments. Neuropeptide Y (NPY) is consists of 36 amino acids used to treat depression, obesity, epilepsy, and so on. but possess instability at higher temperatures causing its limited usage. The present study focused on the NPY-decorated AuNCs prepared using desolvation reduction technique and optimized through randomized hybrid design. ATR-FTIR, 1 H NMR and CD spectroscopic studies confirmed the AuNCs structure interaction with NPY. The optimized NPY-decorated AuNCs possessed 85.6 ± 2.08% of entrapment efficiency with 85.32 ± 7.55% of NPY release for 24 h. It displayed dose-dependent cell cytotoxicity, IC50 value of 0.7 ± 0.05 μg mL-1 and apoptosis of 68.48 ± 7.35% with controlled cell migration causing G0G1 cell arrest by penetrating cancer cell membrane on MCF-7 cell line. Furthermore, the AuNCs caused surface disruption of the cancerous cell further interrupting the protein synthesis by MAPK pathway leading to cell death. The AuNCs were stable for 3 months at 25 ± 2°C due to steric hindrance. Hence, NPY-decorated AuNCs were found to be effective on MCF-7 cell line with a significant anti-apoptotic effect, further emerging as a novel therapeutic delivery system in the management of breast cancer.
Collapse
Affiliation(s)
- Drashti Desai
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, Maharashtra, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Toro RG, Adel AM, de Caro T, Federici F, Cerri L, Bolli E, Mezzi A, Barbalinardo M, Gentili D, Cavallini M, Al-Shemy MT, Montanari R, Caschera D. Evaluation of Long-Lasting Antibacterial Properties and Cytotoxic Behavior of Functionalized Silver-Nanocellulose Composite. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4198. [PMID: 34361390 PMCID: PMC8347877 DOI: 10.3390/ma14154198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/10/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022]
Abstract
Materials possessing long-term antibacterial behavior and high cytotoxicity are of extreme interest in several applications, from biomedical devices to food packaging. Furthermore, for the safeguard of the human health and the environment, it is also stringent keeping in mind the need to gather good functional performances with the development of ecofriendly materials and processes. In this study, we propose a green fabrication method for the synthesis of silver nanoparticles supported on oxidized nanocellulose (ONCs), acting as both template and reducing agent. The complete structural and morphological characterization shows that well-dispersed and crystalline Ag nanoparticles of about 10-20 nm were obtained in the cellulose matrix. The antibacterial properties of Ag-nanocomposites (Ag-ONCs) were evaluated through specific Agar diffusion tests against E. coli bacteria, and the results clearly demonstrate that Ag-ONCs possess high long-lasting antibacterial behavior, retained up to 85% growth bacteria inhibition, even after 30 days of incubation. Finally, cell viability assays reveal that Ag-ONCs show a significant cytotoxicity in mouse embryonic fibroblasts.
Collapse
Affiliation(s)
- Roberta Grazia Toro
- Institute for the Study of Nanostructured Materials, National Council of Research, Via Salaria km 29,300, Monterotondo, 00015 Rome, Italy; (R.G.T.); (T.d.C.); (F.F.); (L.C.); (E.B.); (A.M.)
| | - Abeer Mohamed Adel
- Cellulose and Paper Department, National Research Centre, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, Giza, Cairo 12622, Egypt; (A.M.A.); (M.T.A.-S.)
| | - Tilde de Caro
- Institute for the Study of Nanostructured Materials, National Council of Research, Via Salaria km 29,300, Monterotondo, 00015 Rome, Italy; (R.G.T.); (T.d.C.); (F.F.); (L.C.); (E.B.); (A.M.)
| | - Fulvio Federici
- Institute for the Study of Nanostructured Materials, National Council of Research, Via Salaria km 29,300, Monterotondo, 00015 Rome, Italy; (R.G.T.); (T.d.C.); (F.F.); (L.C.); (E.B.); (A.M.)
| | - Luciana Cerri
- Institute for the Study of Nanostructured Materials, National Council of Research, Via Salaria km 29,300, Monterotondo, 00015 Rome, Italy; (R.G.T.); (T.d.C.); (F.F.); (L.C.); (E.B.); (A.M.)
| | - Eleonora Bolli
- Institute for the Study of Nanostructured Materials, National Council of Research, Via Salaria km 29,300, Monterotondo, 00015 Rome, Italy; (R.G.T.); (T.d.C.); (F.F.); (L.C.); (E.B.); (A.M.)
| | - Alessio Mezzi
- Institute for the Study of Nanostructured Materials, National Council of Research, Via Salaria km 29,300, Monterotondo, 00015 Rome, Italy; (R.G.T.); (T.d.C.); (F.F.); (L.C.); (E.B.); (A.M.)
| | - Marianna Barbalinardo
- Institute for the Study of Nanostructured Materials, National Council of Research, Via P. Gobetti, 40129 Bologna, Italy; (M.B.); (D.G.); (M.C.)
| | - Denis Gentili
- Institute for the Study of Nanostructured Materials, National Council of Research, Via P. Gobetti, 40129 Bologna, Italy; (M.B.); (D.G.); (M.C.)
| | - Massimiliano Cavallini
- Institute for the Study of Nanostructured Materials, National Council of Research, Via P. Gobetti, 40129 Bologna, Italy; (M.B.); (D.G.); (M.C.)
| | - Mona Tawfik Al-Shemy
- Cellulose and Paper Department, National Research Centre, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, Giza, Cairo 12622, Egypt; (A.M.A.); (M.T.A.-S.)
| | - Roberta Montanari
- Institute of Crystallography, National Council of Research, Via Salaria Km 29,300, Monterotondo, 00015 Rome, Italy;
| | - Daniela Caschera
- Institute for the Study of Nanostructured Materials, National Council of Research, Via Salaria km 29,300, Monterotondo, 00015 Rome, Italy; (R.G.T.); (T.d.C.); (F.F.); (L.C.); (E.B.); (A.M.)
| |
Collapse
|
5
|
Campi G, Suber L, Righi G, Primitivo L, De Angelis M, Caschera D, Pilloni L, Del Giudice A, Palma A, Satta M, Fortunelli A, Sementa L. Design of a fluorescent and clickable Ag 38(SRN 3) 24 nanocluster platform: synthesis, modeling and self-assembling. NANOSCALE ADVANCES 2021; 3:2948-2960. [PMID: 36134198 PMCID: PMC9418538 DOI: 10.1039/d1na00090j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/07/2021] [Indexed: 06/16/2023]
Abstract
Fluorescent atomically precise Ag38(11-azido-2-ol-undecane-thiolate)24 nanoclusters are easily prepared using sodium ascorbate as a "green" reducer and are extensively characterized by way of elemental analyses, ATR-FTIR, XRD, SAXS, UV-vis, fluorescence spectroscopies, and theoretical modeling. The fluorescence and the atomically determined stoichiometry and structure, the facile and environmentally green synthesis, together with the novel presence of terminal azido groups in the ligands which opens the way to "click"-binding a wide set of molecular species, make Ag38(11-azido-2-ol-undecane-thiolate)24 nanoclusters uniquely appealing systems for biosensing, recognition and functionalization in biomedicine applications and in catalysis.
Collapse
Affiliation(s)
- Gaetano Campi
- CNR-Istituto di Cristallografia Via Salaria km 29,300-00015 Monterotondo Scalo Rome Italy
| | - Lorenza Suber
- CNR-Istituto di Struttura della Materia Via Salaria km 29,300-00015 Monterotondo Scalo Rome Italy
| | - Giuliana Righi
- CNR-IBPM-c/o Dip. Chimica, Sapienza Università di Roma p.le A. Moro 5 00185 Rome Italy
| | - Ludovica Primitivo
- CNR-IBPM-c/o Dip. Chimica, Sapienza Università di Roma p.le A. Moro 5 00185 Rome Italy
- Dip. Chimica, Sapienza Università di Roma p.le A. Moro 5 00185 Rome Italy
| | - Martina De Angelis
- CNR-IBPM-c/o Dip. Chimica, Sapienza Università di Roma p.le A. Moro 5 00185 Rome Italy
- Dip. Chimica, Sapienza Università di Roma p.le A. Moro 5 00185 Rome Italy
| | - Daniela Caschera
- CNR-Istituto per lo Studio dei Materiali Nanostrutturati Via Salaria km 29,300-00015 Monterotondo Scalo Rome Italy
| | - Luciano Pilloni
- ENEA SSPT-PROMAS-MATPRO, Materials Technology Division, Casaccia Research Centre 00123 Rome Italy
| | | | - Amedeo Palma
- CNR-Istituto di Struttura della Materia Via Salaria km 29,300-00015 Monterotondo Scalo Rome Italy
| | - Mauro Satta
- CNR-Istituto per lo Studio dei Materiali Nanostrutturati Via Salaria km 29,300-00015 Monterotondo Scalo Rome Italy
| | - Alessandro Fortunelli
- CNR-Istituto di Chimica dei Composti Organometallici Via G. Moruzzi 1 56127 Pisa Italy
| | - Luca Sementa
- CNR-Istituto per i Processi Chimico Fisici Via G. Moruzzi 1 56127 Pisa Italy
| |
Collapse
|
6
|
Suber L, Pilloni L, Khanna K, Righi G, Primitivo L, De Angelis M, Caschera D. Fine-Tuning Synthesis of Fluorescent Silver Thiolate Nanoclusters. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2816-2823. [PMID: 33653446 DOI: 10.1166/jnn.2021.19048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Noble metal thiolate nanoclusters are a new class of nanomaterials with molecular-like properties such as high dispersibility and fluorescence in the visible and infrared spectral region, properties highly requested in biomedicine for imaging, sensing and drug delivery applications. We report on three new silver phenylethane thiolate nanoclusters, differing for slight modifications of the preparation, i.e., the reaction solvent and the thiolate quantity, producing changes in the nanocluster composition as well as in the fluorescence behavior. All samples, excited in the range 250-500 nm, emit around 400 and 700 nm differing in the emission maxima and behavior. The silver thiolate nanoclusters have been characterized by way of C, H, S elemental analyses and Thermal Gravimetric Analysis (TGA) to determine the nanocluster composition, Scanning Transmission Electron Microscopy (STEM) to investigate the nanocluster morphology and UV-Vis and fluorescence spectroscopy to study their optical properties.
Collapse
Affiliation(s)
- Lorenza Suber
- ISM-CNR, Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015, Monterotondo Scalo, RM, Italy
| | - Luciano Pilloni
- SSPT-PROMAS-MATPRO ENEA CR CASACCIA, Via Anguillarese 301, 00123, Roma, Italy
| | - Kshitij Khanna
- ISM-CNR, Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015, Monterotondo Scalo, RM, Italy
| | - Giuliana Righi
- CNR-IBPM at Department of Chemisty, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy
| | - Ludovica Primitivo
- Department of Chemisty, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy
| | - Martina De Angelis
- Department of Chemisty, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy
| | - Daniela Caschera
- ISMN-CNR, Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM, Italy
| |
Collapse
|
7
|
Zeng C, Weitz A, Withers G, Higaki T, Zhao S, Chen Y, Gil RR, Hendrich M, Jin R. Controlling magnetism of Au 133(TBBT) 52 nanoclusters at single electron level and implication for nonmetal to metal transition. Chem Sci 2019; 10:9684-9691. [PMID: 32015802 PMCID: PMC6977549 DOI: 10.1039/c9sc02736j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
The [Au133(SR)52]q nanocluster is discovered to possess one spin per particle when q = 0, but no unpaired electron when q = +1.
The transition from the discrete, excitonic state to the continuous, metallic state in thiolate-protected gold nanoclusters is of fundamental interest and has attracted significant efforts in recent research. Compared with optical and electronic transition behavior, the transition in magnetism from the atomic gold paramagnetism (Au 6s1) to the band behavior is less studied. In this work, the magnetic properties of 1.7 nm [Au133(TBBT)52]0 nanoclusters (where TBBT = 4-tert-butylbenzenethiolate) with 81 nominal “valence electrons” are investigated by electron paramagnetic resonance (EPR) spectroscopy. Quantitative EPR analysis shows that each cluster possesses one unpaired electron (spin), indicating that the electrons fill into discrete orbitals instead of a continuous band, for that one electron in the band would give a much smaller magnetic moment. Therefore, [Au133(TBBT)52]0 possesses a nonmetallic electronic structure. Furthermore, we demonstrate that the unpaired spin can be removed by oxidizing [Au133(TBBT)52]0 to [Au133(TBBT)52]+ and the nanocluster transforms from paramagnetism to diamagnetism accordingly. The UV-vis absorption spectra remain the same in the process of single-electron loss or addition. Nuclear magnetic resonance (NMR) is applied to probe the charge and magnetic states of Au133(TBBT)52, and the chemical shifts of 52 surface TBBT ligands are found to be affected by the spin in the gold core. The NMR spectrum of Au133(TBBT)52 shows a 13-fold splitting with 4-fold degeneracy of 52 TBBT ligands, which are correlated to the quasi-D2 symmetry of the ligand shell. Overall, this work provides important insights into the electronic structure of Au133(TBBT)52 by combining EPR, optical and NMR studies, which will pave the way for further understanding of the transition behavior in metal nanoclusters.
Collapse
Affiliation(s)
- Chenjie Zeng
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Andrew Weitz
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Gayathri Withers
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Tatsuya Higaki
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Shuo Zhao
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Yuxiang Chen
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Roberto R Gil
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Michael Hendrich
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Rongchao Jin
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| |
Collapse
|
8
|
Samai B, Mati SS, Singharoy D, Bhattacharya SC. The Application of Silver Nanoclusters to Sensing, Cell Imaging and Construction of Molecular Logic Gates. ChemistrySelect 2019. [DOI: 10.1002/slct.201804042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Boby Samai
- Department of ChemistryJadavpur University Kolkata- 700032 India
| | - Soumya Sundar Mati
- Department of ChemistryGovernment General Degree College, Keshiary Paschim Medinipur- 721135
| | - Dipti Singharoy
- Department of ChemistryJadavpur University Kolkata- 700032 India
| | | |
Collapse
|