1
|
Sengupta S, Shyamala D, Kannan S, Fidal Kumar VT, Bhattacharya E. Microfabricated free standing, tuneable, porous microfilters from an epoxy based photoresist for effective bioseparation. Biointerphases 2024; 19:011004. [PMID: 38407470 DOI: 10.1116/6.0003165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
SU-8 is an epoxy-based, biocompatible thermosetting polymer, which has been utilized mainly to fabricate biomedical devices and scaffolds. In this study, thin, single-layered, freestanding tuneable porous SU-8 membranes were microfabricated and surface hydrophilized for efficient bioseparation. Unlike the previous thicker membranes of 200-300 μm, these thin SU-8 membranes of 50-60 μm thickness and pores with 6-10 μm diameter were fabricated and tested for blood-plasma separation, without any additional support structure. The method is based on making a patterned SU-8 layer by electrospin coating and UV lithography on a sacrificial polyethylene terephthalate (PET) sheet attached to a silicon wafer. Poor adhesion between PET and SU-8 aid in the convenient release of the thin porous membranes with uniform pore formation. The single-layered self-supporting membranes were strong, safe, sterilizable, reusable, and suitable for plasma separation and postfermentation broth enrichment.
Collapse
Affiliation(s)
- Sudeshna Sengupta
- Centre for NEMS and Nanophotonics, Indian Institute of Technology-Madras, Chennai 600036, India
| | - D Shyamala
- Centre for NEMS and Nanophotonics, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Sivasundari Kannan
- Centre for NEMS and Nanophotonics, Indian Institute of Technology-Madras, Chennai 600036, India
| | - V T Fidal Kumar
- Centre for NEMS and Nanophotonics, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Enakshi Bhattacharya
- Centre for NEMS and Nanophotonics, Indian Institute of Technology-Madras, Chennai 600036, India
- Department of Electrical Engineering, Indian Institute of Technology-Madras, Chennai 600036, India
| |
Collapse
|
2
|
Corral-Nájera K, Chauhan G, Serna-Saldívar SO, Martínez-Chapa SO, Aeinehvand MM. Polymeric and biological membranes for organ-on-a-chip devices. MICROSYSTEMS & NANOENGINEERING 2023; 9:107. [PMID: 37649779 PMCID: PMC10462672 DOI: 10.1038/s41378-023-00579-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 09/01/2023]
Abstract
Membranes are fundamental elements within organ-on-a-chip (OOC) platforms, as they provide adherent cells with support, allow nutrients (and other relevant molecules) to permeate/exchange through membrane pores, and enable the delivery of mechanical or chemical stimuli. Through OOC platforms, physiological processes can be studied in vitro, whereas OOC membranes broaden knowledge of how mechanical and chemical cues affect cells and organs. OOCs with membranes are in vitro microfluidic models that are used to replace animal testing for various applications, such as drug discovery and disease modeling. In this review, the relevance of OOCs with membranes is discussed as well as their scaffold and actuation roles, properties (physical and material), and fabrication methods in different organ models. The purpose was to aid readers with membrane selection for the development of OOCs with specific applications in the fields of mechanistic, pathological, and drug testing studies. Mechanical stimulation from liquid flow and cyclic strain, as well as their effects on the cell's increased physiological relevance (IPR), are described in the first section. The review also contains methods to fabricate synthetic and ECM (extracellular matrix) protein membranes, their characteristics (e.g., thickness and porosity, which can be adjusted depending on the application, as shown in the graphical abstract), and the biological materials used for their coatings. The discussion section joins and describes the roles of membranes for different research purposes and their advantages and challenges.
Collapse
Affiliation(s)
- Kendra Corral-Nájera
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Gaurav Chauhan
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Sergio O. Serna-Saldívar
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Sergio O. Martínez-Chapa
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Mohammad Mahdi Aeinehvand
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| |
Collapse
|
3
|
Feng H, Bu L, Li Z, Xu S, Hu B, Xu M, Jiang S, Wang X. Multimodal MEMS vibration energy harvester with cascaded flexible and silicon beams for ultralow frequency response. MICROSYSTEMS & NANOENGINEERING 2023; 9:33. [PMID: 36969966 PMCID: PMC10033895 DOI: 10.1038/s41378-023-00500-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Scavenged energy from ambient vibrations has become a promising energy supply for autonomous microsystems. However, restricted by device size, most MEMS vibration energy harvesters have much higher resonant frequencies than environmental vibrations, which reduces scavenged power and limits practical applicability. Herein, we propose a MEMS multimodal vibration energy harvester with specifically cascaded flexible PDMS and "zigzag" silicon beams to simultaneously lower the resonant frequency to the ultralow-frequency level and broaden the bandwidth. A two-stage architecture is designed, in which the primary subsystem consists of suspended PDMS beams characterized by a low Young's modulus, and the secondary system consists of zigzag silicon beams. We also propose a PDMS lift-off process to fabricate the suspended flexible beams and the compatible microfabrication method shows high yield and good repeatability. The fabricated MEMS energy harvester can operate at ultralow resonant frequencies of 3 and 23 Hz, with an NPD index of 1.73 μW/cm3/g2 @ 3 Hz. The factors underlying output power degradation in the low-frequency range and potential enhancement strategies are discussed. This work offers new insights into achieving MEMS-scale energy harvesting with ultralow frequency response.
Collapse
Affiliation(s)
- Haizhao Feng
- School of Integrated Circuit, Tsinghua University, 100084 Beijing, China
| | - Ling Bu
- School of Information Engineering, China University of Geosciences, 100083 Beijing, China
| | - Zhangshanhao Li
- School of Integrated Circuit, Tsinghua University, 100084 Beijing, China
| | - Sixing Xu
- College of Semiconductors (College of Integrated circuits), Hunan University, 430001 Changsha, China
| | - Bingmeng Hu
- School of Integrated Circuit, Tsinghua University, 100084 Beijing, China
| | - Minghao Xu
- School of Integrated Circuit, Tsinghua University, 100084 Beijing, China
| | - Siyao Jiang
- School of Integrated Circuit, Tsinghua University, 100084 Beijing, China
| | - Xiaohong Wang
- School of Integrated Circuit, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
4
|
Chen L, Guo X, Sun X, Zhang S, Wu J, Yu H, Zhang T, Cheng W, Shi Y, Pan L. Porous Structural Microfluidic Device for Biomedical Diagnosis: A Review. MICROMACHINES 2023; 14:547. [PMID: 36984956 PMCID: PMC10051279 DOI: 10.3390/mi14030547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Microfluidics has recently received more and more attention in applications such as biomedical, chemical and medicine. With the development of microelectronics technology as well as material science in recent years, microfluidic devices have made great progress. Porous structures as a discontinuous medium in which the special flow phenomena of fluids lead to their potential and special applications in microfluidics offer a unique way to develop completely new microfluidic chips. In this article, we firstly introduce the fabrication methods for porous structures of different materials. Then, the physical effects of microfluid flow in porous media and their related physical models are discussed. Finally, the state-of-the-art porous microfluidic chips and their applications in biomedicine are summarized, and we present the current problems and future directions in this field.
Collapse
Affiliation(s)
| | | | - Xidi Sun
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | | | | | | | | | | | - Yi Shi
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | - Lijia Pan
- Correspondence: (X.S.); (Y.S.); (L.P.)
| |
Collapse
|
5
|
Advances in cell coculture membranes recapitulating in vivo microenvironments. Trends Biotechnol 2023; 41:214-227. [PMID: 36030108 DOI: 10.1016/j.tibtech.2022.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 01/24/2023]
Abstract
Porous membranes play a critical role in in vitro heterogeneous cell coculture systems because they recapitulate the in vivo microenvironment to mediate physical and biochemical crosstalk between cells. While the conventionally available Transwell® system has been widely used for heterogeneous cell coculture, there are drawbacks to precise control over cell-cell interactions and separation for implantation. The size and numbers of the pores and the thickness of the porous membranes are crucial in determining the efficiency of paracrine signaling and direct junctions between cocultured cells, and significantly impact on the performance of heterogeneous cell cultures. These opportunities and challenges have motivated the design of advanced coculture platforms through improvement of the structural and functional properties of porous membranes.
Collapse
|
6
|
Kang J, Lim YW, Lee I, Kim S, Kim KY, Lee W, Bae BS. Photopatternable Poly(dimethylsiloxane) (PDMS) for an Intrinsically Stretchable Organic Electrochemical Transistor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24840-24849. [PMID: 35584034 DOI: 10.1021/acsami.2c06343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Patterning elastomers is an essential process for the application of elastomers to stretchable bioelectric devices. In general, replication of a mold and laser ablation are used for patterning elastomers. However, these methods are inefficient and time consuming due to complex patterning procedures and a heat-induced curing mechanism. In this work, we developed a photopatternable elastomer called thiol-ene cross-linked poly(dimethylsiloxane) (TC-PDMS). TC-PDMS showed high-resolution patternability (∼100 μm) through a direct patterning process. It also had high stretchability (∼140%) and low Young's modulus (∼2.9 MPa) similar to conventional PDMS. To demonstrate its practicability in stretchable bioelectric devices, TC-PDMS was applied to a passivation layer of an intrinsically stretchable organic electrochemical transistor (OECT), which showed a low leakage current (∼20 μA) and a high transconductance (0.432 mS) at high strain (60%). The stretchable OECT was able to record electrocardiographic (ECG) signals from human skin, and the measured ECG signals exhibited a high signal-to-noise ratio of 12.2 dB.
Collapse
Affiliation(s)
- Joohyuk Kang
- Wearable Platform Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young-Woo Lim
- Wearable Platform Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Injun Lee
- Wearable Platform Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seungwan Kim
- Wearable Platform Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyung Yeun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Wonryung Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Byeong-Soo Bae
- Wearable Platform Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Tringides CM, Mooney DJ. Materials for Implantable Surface Electrode Arrays: Current Status and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107207. [PMID: 34716730 DOI: 10.1002/adma.202107207] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Surface electrode arrays are mainly fabricated from rigid or elastic materials, and precisely manipulated ductile metal films, which offer limited stretchability. However, the living tissues to which they are applied are nonlinear viscoelastic materials, which can undergo significant mechanical deformation in dynamic biological environments. Further, the same arrays and compositions are often repurposed for vastly different tissues rather than optimizing the materials and mechanical properties of the implant for the target application. By first characterizing the desired biological environment, and then designing a technology for a particular organ, surface electrode arrays may be more conformable, and offer better interfaces to tissues while causing less damage. Here, the various materials used in each component of a surface electrode array are first reviewed, and then electrically active implants in three specific biological systems, the nervous system, the muscular system, and skin, are described. Finally, the fabrication of next-generation surface arrays that overcome current limitations is discussed.
Collapse
Affiliation(s)
- Christina M Tringides
- Harvard Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
8
|
Youn J, Hong H, Shin W, Kim D, Kim HJ, Kim DS. Thin and stretchable extracellular matrix (ECM) membrane reinforced by nanofiber scaffolds for developing in vitro barrier models. Biofabrication 2022; 14. [DOI: 10.1088/1758-5090/ac4dd7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/21/2022] [Indexed: 11/11/2022]
Abstract
Abstract
An extracellular matrix (ECM) membrane made up of ECM hydrogels has great potentials to develop a physiologically relevant organ-on-a-chip because of its biochemical and biophysical similarity to in vivo basement membranes (BMs). However, the limited mechanical stability of the ECM hydrogels makes it difficult to utilize the ECM membrane in long-term and dynamic cell/tissue cultures. This study proposes an ultra-thin but robust and transparent ECM membrane reinforced with silk fibroin (SF)/polycaprolactone (PCL) nanofibers, which is achieved by in situ self-assembly throughout a freestanding SF/PCL nanofiber scaffold. The SF/PCL nanofiber-reinforced ECM (NaRE) membrane shows biophysical characteristics reminiscent of native BMs, including small thickness (< 5 μm), high permeability (< 9 × 10−5 cm s-1), and nanofibrillar architecture (~10 to 100 nm). With the BM-like characteristics, the nanofiber reinforcement ensured that the NaRE membrane stably supported the construction of various types of in vitro barrier models, from epithelial or endothelial barrier models to complex co-culture models, even over two weeks of cell culture periods. Furthermore, the stretchability of the NaRE membrane allowed emulating the native organ-like cyclic stretching motions (10 to 15%) and was demonstrated to manipulate the cell and tissue-level functions of the in vitro barrier model.
Collapse
|
9
|
Shiohara A, Prieto-Simon B, Voelcker NH. Porous polymeric membranes: fabrication techniques and biomedical applications. J Mater Chem B 2021; 9:2129-2154. [PMID: 33283821 DOI: 10.1039/d0tb01727b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Porous polymeric membranes have shown great potential in biological and biomedical applications such as tissue engineering, bioseparation, and biosensing, due to their structural flexibility, versatile surface chemistry, and biocompatibility. This review outlines the advantages and limitations of the fabrication techniques commonly used to produce porous polymeric membranes, with especial focus on those featuring nano/submicron scale pores, which include track etching, nanoimprinting, block-copolymer self-assembly, and electrospinning. Recent advances in membrane technology have been key to facilitate precise control of pore size, shape, density and surface properties. The review provides a critical overview of the main biological and biomedical applications of these porous polymeric membranes, especially focusing on drug delivery, tissue engineering, biosensing, and bioseparation. The effect of the membrane material and pore morphology on the role of the membranes for each specific application as well as the specific fabrication challenges, and future prospects of these membranes are thoroughly discussed.
Collapse
Affiliation(s)
- Amane Shiohara
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Melbourne Centre of Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Beatriz Prieto-Simon
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain and ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Nicolas H Voelcker
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Melbourne Centre of Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| |
Collapse
|
10
|
Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Bossink EGBM, Zakharova M, de Bruijn DS, Odijk M, Segerink LI. Measuring barrier function in organ-on-chips with cleanroom-free integration of multiplexable electrodes. LAB ON A CHIP 2021; 21:2040-2049. [PMID: 33861228 DOI: 10.1016/j.ooc.2021.100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Transepithelial/transendothelial electrical resistance (TEER) measurements can be applied in organ-on-chips (OoCs) to estimate the barrier properties of a tissue or cell layer in a continuous, non-invasive, and label-free manner. Assessing the barrier integrity in in vitro models is valuable for studying and developing barrier targeting drugs. Several systems for measuring the TEER have been shown, but each of them having their own drawbacks. This article presents a cleanroom-free fabrication method for the integration of platinum electrodes in a polydimethylsiloxane OoC, allowing the real-time assessment of the barrier function by employing impedance spectroscopy. The proposed method and electrode arrangement allow visual inspection of the cells cultured in the device at the site of the electrodes, and multiplexing of both the electrodes in one OoC and the number of OoCs in one device. The effectiveness of our system is demonstrated by lining the OoC with intestinal epithelial cells, creating a gut-on-chip, where we monitored the formation, as well as the disruption and recovery of the cell barrier during a 21 day culture period. The application is further expanded by creating a blood-brain-barrier, to show that the proposed fabrication method can be applied to monitor the barrier formation in the OoC for different types of biological barriers.
Collapse
Affiliation(s)
- Elsbeth G B M Bossink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Mariia Zakharova
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Douwe S de Bruijn
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Mathieu Odijk
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Loes I Segerink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| |
Collapse
|
12
|
Sun M, Han K, Hu R, Liu D, Fu W, Liu W. Advances in Micro/Nanoporous Membranes for Biomedical Engineering. Adv Healthc Mater 2021; 10:e2001545. [PMID: 33511718 DOI: 10.1002/adhm.202001545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Porous membrane materials at the micro/nanoscale have exhibited practical and potential value for extensive biological and medical applications associated with filtration and isolation, cell separation and sorting, micro-arrangement, in-vitro tissue reconstruction, high-throughput manipulation and analysis, and real-time sensing. Herein, an overview of technological development of micro/nanoporous membranes (M/N-PMs) is provided. Various membrane types and the progress documented in membrane fabrication techniques, including the electrochemical-etching, laser-based technology, microcontact printing, electron beam lithography, imprinting, capillary force lithography, spin coating, and microfluidic molding are described. Their key features, achievements, and limitations associated with micro/nanoporous membrane (M/N-PM) preparation are discussed. The recently popularized applications of M/N-PMs in biomedical engineering involving the separation of cells and biomolecules, bioparticle operations, biomimicking, micropatterning, bioassay, and biosensing are explored too. Finally, the challenges that need to be overcome for M/N-PM fabrication and future applications are highlighted.
Collapse
Affiliation(s)
- Meilin Sun
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Kai Han
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Rui Hu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Dan Liu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Wenzhu Fu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Wenming Liu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| |
Collapse
|
13
|
Lee H, Chae S, Yi A, Kim HJ. Hydrophobic stretchable polydimethylsiloxane films with wrinkle patterns prepared via a metal‐assisted chemical etching process using a Si master mold. J Appl Polym Sci 2020. [DOI: 10.1002/app.50398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hanbin Lee
- School of Chemical Engineering Pusan National University Busan Republic of Korea
| | - Sangmin Chae
- School of Chemical Engineering Pusan National University Busan Republic of Korea
| | - Ahra Yi
- School of Chemical Engineering Pusan National University Busan Republic of Korea
| | - Hyo Jung Kim
- School of Chemical Engineering Pusan National University Busan Republic of Korea
| |
Collapse
|
14
|
Sabo S, Waters LJ. Poly(dimethylsiloxane): A Sustainable Human Skin Alternative for Transdermal Drug Delivery Prediction. J Pharm Sci 2020; 110:1018-1024. [PMID: 33275991 DOI: 10.1016/j.xphs.2020.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Despite the advantages of transdermal drug delivery (TDD), which makes it a fast-growing area of research in pharmaceutics, numerous challenges affect their development, which limits exploring the full potential of this alternate drug delivery route. In trying to address one of these problems, it is strongly believed that the need for a sustainable skin alternative is paramount. Efforts made in an attempt to provide a sustainable alternative to employing skin in pharmaceutical analysis, by better utilising a polymer membrane, namely poly(dimethylsiloxane), also known as PDMS are discussed. Several combined properties of this polymer, which includes its relative stability in comparison with human skin, make it a good candidate for the replacement of skin. Modifications undertaken to this polymer membrane (to create an enhanced skin mimic for permeation analysis) are discussed and reviewed in this paper, including the improved ability to predict permeability for both hydrophobic and hydrophilic drugs. Optimisations related to studying TDD including limitations encountered are also documented and reviewed. It is hoped that such developments in this field will ultimately lead to researchers replacing skin with optimised polymer-based alternatives to predict transdermal drug delivery.
Collapse
Affiliation(s)
- Sani Sabo
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; Department of Pure and Industrial Chemistry, Umaru Musa Yar'adua University, Katsina, Nigeria
| | - Laura J Waters
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| |
Collapse
|
15
|
Pasman T, Baptista D, van Riet S, Truckenmüller RK, Hiemstra PS, Rottier RJ, Stamatialis D, Poot AA. Development of Porous and Flexible PTMC Membranes for In Vitro Organ Models Fabricated by Evaporation-Induced Phase Separation. MEMBRANES 2020; 10:E330. [PMID: 33167539 PMCID: PMC7694515 DOI: 10.3390/membranes10110330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
Polymeric membranes are widely applied in biomedical applications, including in vitro organ models. In such models, they are mostly used as supports on which cells are cultured to create functional tissue units of the desired organ. To this end, the membrane properties, e.g., morphology and porosity, should match the tissue properties. Organ models of dynamic (barrier) tissues, e.g., lung, require flexible, elastic and porous membranes. Thus, membranes based on poly (dimethyl siloxane) (PDMS) are often applied, which are flexible and elastic. However, PDMS has low cell adhesive properties and displays small molecule ad- and absorption. Furthermore, the introduction of porosity in these membranes requires elaborate methods. In this work, we aim to develop porous membranes for organ models based on poly(trimethylene carbonate) (PTMC): a flexible polymer with good cell adhesive properties which has been used for tissue engineering scaffolds, but not in in vitro organ models. For developing these membranes, we applied evaporation-induced phase separation (EIPS), a new method in this field based on solvent evaporation initiating phase separation, followed by membrane photo-crosslinking. We optimised various processing variables for obtaining form-stable PTMC membranes with average pore sizes between 5 to 8 µm and water permeance in the microfiltration range (17,000-41,000 L/m2/h/bar). Importantly, the membranes are flexible and are suitable for implementation in in vitro organ models.
Collapse
Affiliation(s)
- Thijs Pasman
- Department of Biomaterials Science and Technology, Technical Medical (TechMed) Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands; (T.P.); (D.S.)
| | - Danielle Baptista
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.B.); (R.K.T.)
| | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; (S.v.R.); (P.S.H.)
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.B.); (R.K.T.)
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; (S.v.R.); (P.S.H.)
| | - Robbert J. Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, 3000 CB Rotterdam, The Netherlands;
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, Technical Medical (TechMed) Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands; (T.P.); (D.S.)
| | - André A. Poot
- Department of Biomaterials Science and Technology, Technical Medical (TechMed) Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands; (T.P.); (D.S.)
| |
Collapse
|
16
|
Ismail E, Lazim NH, Nakata A, Iwasawa A, Yamanaka R, Ichinose I. Plasma-induced Interfacial Crosslinking of Liquid Polydimethylsiloxane Films and Their Organic Solvent Permeation Performance. CHEM LETT 2020. [DOI: 10.1246/cl.200504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Edhuan Ismail
- Research Center for Functional Materials, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Nurul Hakimah Lazim
- Research Center for Functional Materials, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ayako Nakata
- International Center for Materials Nanoarchitectonics, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ayumi Iwasawa
- Research Center for Functional Materials, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Risako Yamanaka
- Research Center for Functional Materials, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Izumi Ichinose
- Research Center for Functional Materials, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
17
|
Zakharova M, Palma do Carmo MA, van der Helm MW, Le-The H, de Graaf MNS, Orlova V, van den Berg A, van der Meer AD, Broersen K, Segerink LI. Multiplexed blood-brain barrier organ-on-chip. LAB ON A CHIP 2020; 20:3132-3143. [PMID: 32756644 DOI: 10.1039/d0lc00399a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organ-on-chip devices are intensively studied in academia and industry due to their high potential in pharmaceutical and biomedical applications. However, most of the existing organ-on-chip models focus on proof of concept of individual functional units without the possibility of testing multiple experimental stimuli in parallel. Here we developed a polydimethylsiloxane (PDMS) multiplexed chip with eight parallel channels branching from a common access port through which all eight channels can be addressed simultaneously without the need for extra pipetting steps thus increasing the reproducibility of the experimental results. At the same time, eight outlets provide individual entry to each channel with the opportunity to create eight different experimental conditions. A multiplexed chip can be assembled as a one-layer device for studying monocultures or as a two-layer device for studying barrier tissue functions. For a two-layer device, a ∼2 μm thick transparent PDMS membrane with 5 μm through-hole pores was fabricated in-house using a soft lithography technique, thereby allowing visual inspection of the cell-culture in real-time. The functionality of the chip was studied by recapitulating the blood-brain barrier. For this, human cerebral microvascular endothelial cells (hCMEC/D3) were cultured in mono- or coculture with human astrocytes. Immunostaining revealed a cellular monolayer with the expression of tight junction ZO-1 and adherence junction VE-cadherin proteins in endothelial cells as well as glial fibrillary acidic protein (GFAP) expression in astrocytes. Furthermore, multiplexed permeability studies of molecule passage through the cellular barrier exhibited expected high permeability coefficients for smaller molecules (4 kDa FITC-dextran) whereas larger molecules (20 kDa) crossed the barrier at a lower rate. With these results, we show that our device can be used as an organ-on-chip model for future multiplexed drug testing.
Collapse
Affiliation(s)
- M Zakharova
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - M A Palma do Carmo
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - M W van der Helm
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - H Le-The
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands. and Physics of Fluids, MESA+ Institute for Nanotechnology, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands
| | - M N S de Graaf
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - A van den Berg
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - A D van der Meer
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, The Netherlands
| | - K Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, The Netherlands
| | - L I Segerink
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| |
Collapse
|
18
|
Rapid Fabrication of Membrane-Integrated Thermoplastic Elastomer Microfluidic Devices. MICROMACHINES 2020; 11:mi11080731. [PMID: 32731570 PMCID: PMC7463978 DOI: 10.3390/mi11080731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023]
Abstract
Leveraging the advantageous material properties of recently developed soft thermoplastic elastomer materials, this work presents the facile and rapid fabrication of composite membrane-integrated microfluidic devices consisting of FlexdymTM polymer and commercially available porous polycarbonate membranes. The three-layer devices can be fabricated in under 2.5 h, consisting of a 2-min hot embossing cycle, conformal contact between device layers and a low-temperature baking step. The strength of the FlexdymTM-polycarbonate seal was characterized using a specialized microfluidic delamination device and an automated pressure controller configuration, offering a standardized and high-throughput method of microfluidic burst testing. Given a minimum bonding distance of 200 μm, the materials showed bonding that reliably withstood pressures of 500 mbar and above, which is sufficient for most microfluidic cell culture applications. Bonding was also stable when subjected to long term pressurization (10 h) and repeated use (10,000 pressure cycles). Cell culture trials confirmed good cell adhesion and sustained culture of human dermal fibroblasts on a polycarbonate membrane inside the device channels over the course of one week. In comparison to existing porous membrane-based microfluidic platforms of this configuration, most often made of polydimethylsiloxane (PDMS), these devices offer a streamlined fabrication methodology with materials having favourable properties for cell culture applications and the potential for implementation in barrier model organ-on-chips.
Collapse
|
19
|
Tan X, Rodrigue D. A Review on Porous Polymeric Membrane Preparation. Part II: Production Techniques with Polyethylene, Polydimethylsiloxane, Polypropylene, Polyimide, and Polytetrafluoroethylene. Polymers (Basel) 2019; 11:polym11081310. [PMID: 31387315 PMCID: PMC6723832 DOI: 10.3390/polym11081310] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/03/2022] Open
Abstract
The development of porous polymeric membranes is an important area of application in separation technology. This article summarizes the development of porous polymers from the perspectives of materials and methods for membrane production. Polymers such as polyethylene, polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene are reviewed due to their outstanding thermal stability, chemical resistance, mechanical strength, and low cost. Six different methods for membrane fabrication are critically reviewed, including thermally induced phase separation, melt-spinning and cold-stretching, phase separation micromolding, imprinting/soft molding, manual punching, and three-dimensional printing. Each method is described in details related to the strategy used to produce the porous polymeric membranes with a specific morphology and separation performances. The key factors associated with each method are presented, including solvent/non-solvent system type and composition, polymer solution composition and concentration, processing parameters, and ambient conditions. Current challenges are also described, leading to future development and innovation to improve these membranes in terms of materials, fabrication equipment, and possible modifications.
Collapse
Affiliation(s)
- XueMei Tan
- College of Environment and Resources, Chongqing Technology and Business University, No.19, Xuefu Ave, Nan'an District, Chongqing 400067, China.
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Quebec, QC G1V 0A6, Canada.
| | - Denis Rodrigue
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Quebec, QC G1V 0A6, Canada.
| |
Collapse
|
20
|
Zhou LY, Gao Q, Fu JZ, Chen QY, Zhu JP, Sun Y, He Y. Multimaterial 3D Printing of Highly Stretchable Silicone Elastomers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23573-23583. [PMID: 31184459 DOI: 10.1021/acsami.9b04873] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
3D printing of silicone elastomers with the direct ink writing (DIW) process has demonstrated great potential in areas as diverse as flexible electronics, medical devices, and soft robotics. However, most of current silicones are not printable because of their low viscosity and long curing time. The lack of systematic research on materials, devices, and processes during printing makes it a huge challenge to apply the DIW process more deeply and widely. In this report, aiming at the dilemmas in materials, devices, and processes, we proposed a comprehensive guide for printing highly stretchable silicone. Specifically, to improve the printability of silicone elastomers, nanosilica was added as a rheology modifier without sacrificing any stretching ability. To effectively control print speed and accuracy, a theoretical model was built and verified. With this strategy, silicone elastomers with different mechanical properties can all be printed and can realize infinite time and high speed printing (>25 mm/s) while maintaining accuracy. Here, super-stretchable silicone that can be stretched to 2000% was printed for the first time, and complex structures can be printed with high quality. For further demonstration, prosthetic nose, data glove capable of detecting fingers' movement, and artificial muscle that can lift objects were printed directly. We believe that this work could provide a guide for further work using the DIW process to print soft matters in a wide range of application scenarios.
Collapse
Affiliation(s)
| | | | | | | | - Jia-Pei Zhu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body , Changsha 410082 , China
| | | | - Yong He
- Key Laboratory of Materials Processing and Mold, Ministry of Education , Zhengzhou University , Zhengzhou 450002 , China
| |
Collapse
|
21
|
Morss Clyne A, Swaminathan S, Díaz Lantada A. Biofabrication strategies for creating microvascular complexity. Biofabrication 2019; 11:032001. [PMID: 30743247 DOI: 10.1088/1758-5090/ab0621] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Design and fabrication of effective biomimetic vasculatures constitutes a relevant and yet unsolved challenge, lying at the heart of tissue repair and regeneration strategies. Even if cell growth is achieved in 3D tissue scaffolds or advanced implants, tissue viability inevitably requires vascularization, as diffusion can only transport nutrients and eliminate debris within a few hundred microns. This engineered vasculature may need to mimic the intricate branching geometry of native microvasculature, referred to herein as vascular complexity, to efficiently deliver blood and recreate critical interactions between the vascular and perivascular cells as well as parenchymal tissues. This review first describes the importance of vascular complexity in labs- and organs-on-chips, the biomechanical and biochemical signals needed to create and maintain a complex vasculature, and the limitations of current 2D, 2.5D, and 3D culture systems in recreating vascular complexity. We then critically review available strategies for design and biofabrication of complex vasculatures in cell culture platforms, labs- and organs-on-chips, and tissue engineering scaffolds, highlighting their advantages and disadvantages. Finally, challenges and future directions are outlined with the hope of inspiring researchers to create the reliable, efficient and sustainable tools needed for design and biofabrication of complex vasculatures.
Collapse
Affiliation(s)
- Alisa Morss Clyne
- Vascular Kinetics Laboratory, Mechanical Engineering & Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, United States of America
| | | | | |
Collapse
|
22
|
Rathod ML, Ahn J, Saha B, Purwar P, Lee Y, Jeon NL, Lee J. PDMS Sylgard 527-Based Freely Suspended Ultrathin Membranes Exhibiting Mechanistic Characteristics of Vascular Basement Membranes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40388-40400. [PMID: 30360091 DOI: 10.1021/acsami.8b12309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the past, significant effort has been made to develop ultrathin membranes exhibiting physiologically relevant mechanical properties, such as thickness and elasticity of native basement membranes. However, most of these fabricated membranes have a relatively high elastic modulus, ∼MPa-GPa, relevant only to retinal and epithelial basement membranes. Vascular basement membranes exhibiting relatively low elastic modulus, ∼kPa, on the contrary, have seldom been mimicked. Membranes demonstrating high compliance, with moduli ranging in ∼kPa along with sub-microscale thicknesses have rarely been reported, and would be ideal to mimic vascular basement membranes in vitro. To address this, we fabricate ultrathin membranes demonstrating the mechanistic features exhibited by their vascular biological counterparts. Salient features of the fabricated ultrathin membranes include free suspension, physiologically relevant thickness ∼sub-micrometers, relatively low modulus ∼kPa, and sufficiently large culture area ∼20 mm2. To fabricate such ultrathin membranes, undiluted PDMS Sylgard 527 was utilized as opposed to the conventional diluted polymer-solvent mixture approach. In addition, the necessity to have a sacrificial layer for releasing membranes from the underlying substrates was also eliminated in our approach. The novelty of our work lies in achieving the distinct combination of membranes having thickness in sub-micrometers and the associated elasticity in kilopascal using undiluted polymer, which past approaches with dilution have not been able to accomplish. The ultrathin membranes with average thickness of 972 nm (thick) and 570 nm (thin) were estimated to have an elastic modulus of 45 and 214 kPa, respectively. Contact angle measurements revealed the ultrathin membranes exhibited hybrophobic characteristics in unpeeled state and transformed to hydrophilic behavior when freely suspended. Human umbilical vein endothelial cells were cultured on the polymeric ultrathin membranes, and the temporal cell response to change in local compliance of the membranes was studied by evaluating the cell spread area, density, percentage area coverage, and spread rate. After 24 h, single cells, pairs, and group of three to four cells were noticed on highly compliant thick membranes, having average thickness of 972 nm and modulus of 45 kPa. On the contrary, the cell monolayer was noted on the glass slide acting as a control. For the thin membranes featuring average thickness of 570 nm and modulus of 214 kPa, the cells tend to exhibit response similar to that on control with initiation of monolayer formation. Our results indicate, the local compliance, in turn, the membrane thickness governs the cell behavior and this can have vital implications during disease initiation and progression, wound healing, and cancer cell metastasis.
Collapse
Affiliation(s)
- Mitesh L Rathod
- School of Mechanical and Aerospace Engineering , Seoul National University , Seoul 151-744 , South Korea
| | - Jungho Ahn
- School of Mechanical and Aerospace Engineering , Seoul National University , Seoul 151-744 , South Korea
- George W. Woodruff School of Mechanical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Biswajit Saha
- Chemical Engineering Department , National Institute of Technology , Rourkela , Odisha , India 769008
| | - Prashant Purwar
- School of Mechanical and Aerospace Engineering , Seoul National University , Seoul 151-744 , South Korea
| | - Yejin Lee
- School of Mechanical and Aerospace Engineering , Seoul National University , Seoul 151-744 , South Korea
| | - Noo Li Jeon
- School of Mechanical and Aerospace Engineering , Seoul National University , Seoul 151-744 , South Korea
| | - Junghoon Lee
- School of Mechanical and Aerospace Engineering , Seoul National University , Seoul 151-744 , South Korea
| |
Collapse
|
23
|
|
24
|
Wei X, Shen J, Gu Z, Zhu Y, Chen F, Zhong M, Yin L, Xie Y, Liu Z, Jin W, Nouri M, Chang L. Bioinspired pH-Sensitive Surface on Bioinert Substrate. ACS APPLIED BIO MATERIALS 2018; 1:2167-2175. [PMID: 34996277 DOI: 10.1021/acsabm.8b00579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xiaojuan Wei
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, P R China
| | - Jian Shen
- Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P R China
| | - Zheng Gu
- Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P R China
| | - Yazhi Zhu
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, P R China
| | - Feng Chen
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, P R China
| | - Mingqiang Zhong
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, P R China
| | - Li Yin
- Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P R China
| | - Yao Xie
- Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P R China
| | - Zhenjie Liu
- Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P R China
| | - Wei Jin
- Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P R China
| | - Mehdi Nouri
- Department of Biomaterial Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Lingqian Chang
- Department of Biomaterial Engineering, University of North Texas, Denton, Texas 76207, United States
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P R China
| |
Collapse
|
25
|
Yanagishita T, Okubo Y, Kondo T, Masuda H. Selective through-holing of anodic porous alumina membranes with large area. RSC Adv 2018; 8:38455-38460. [PMID: 35559098 PMCID: PMC9090565 DOI: 10.1039/c8ra07646d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/09/2018] [Indexed: 11/21/2022] Open
Abstract
Anodic porous alumina membranes with site controlled through-holes were prepared by the formation of a masking layer on the surface of anodic porous alumina and subsequent selective second anodization in concentrated sulfuric acid to form a readily soluble layer. After the anodization, the residual Al substrate was removed, and the highly soluble alumina layer formed in concentrated sulfuric acid was dissolved selectively by wet etching. An advantageous point of this process is the controllability of the pattern of through-holes, and the preparation of large samples with selective through-holes is possible. The pattern of through-holes was controlled by changing the mask pattern formed on the surface of anodic porous alumina. The alumina membranes obtained by this process are expected to be used for various applications that require porous alumina membranes with site controlled through-holes.
Collapse
Affiliation(s)
- Takashi Yanagishita
- Department of Applied Chemistry, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| | - Yuki Okubo
- Department of Applied Chemistry, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| | - Toshiaki Kondo
- Department of Applied Chemistry, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| | - Hideki Masuda
- Department of Applied Chemistry, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| |
Collapse
|
26
|
Wong HC, Grenci G, Wu J, Viasnoff V, Low HY. Roll-to-Roll Fabrication of Residual-Layer-Free Micro/Nanoscale Membranes with Precise Pore Architectures and Tunable Surface Textures. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Him Cheng Wong
- Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Gianluca Grenci
- Mechano Biology Institute (MBI), National University of Singapore (NUS), 5A Engineering Drive 1, Singapore 117411, Singapore
- Biomedical Engineering Department, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583 Singapore
| | - Jumiati Wu
- Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Virgile Viasnoff
- Mechano Biology Institute (MBI), National University of Singapore (NUS), 5A Engineering Drive 1, Singapore 117411, Singapore
- Bio Mechanics of Cellular Contacts, Centre National de la Recherche Scientifique, UMI 3639, Singapore 117411, Singapore
| | - Hong Yee Low
- Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| |
Collapse
|