1
|
Bouz G, Žádný J, Storch J, Vacek J. Chiral helical scaffolds: Unlocking their potential in biomolecular interactions and biomedical applications. Biotechnol Adv 2025; 79:108513. [PMID: 39756629 DOI: 10.1016/j.biotechadv.2024.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
In nature, various molecules possess spiral geometry. Such helical structures are even prevalent within the human body, represented classically by DNA and three-dimensional (secondary structure) protein folding. In this review, we chose helicenes and helicene-like structures -synthetically accessible carbon-rich molecules- as a compelling example of helically chiral scaffolds. Helicene chemistry, traditionally anchored in materials science, has been a subject of increasing interest in the biomedical field due to the unique optical and chiral properties of these helical structures. This review explores the diverse applications of helicenes in biomedicine, focusing on their role in cell imaging, protective coatings for implants, drug delivery systems, biosensors, and drug discovery. We discuss the unique properties of helicenes and helicene-like structures, highlighting their ability to form complex interactions with various biomolecules and their potential in the development of candidates for therapeutic agents. Recent advances in helicene derivatives with enhanced circularly polarized luminescence and other photochemical properties are also reviewed, underlining their utility in precise bio-imaging and diagnostic techniques. The review consolidates the current literature and emphasizes the growing importance of helicenes in bridging chemistry, materials science, and biology for innovative technological and biomedical applications.
Collapse
Affiliation(s)
- Ghada Bouz
- Research Group of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 1/135, 165 00 Prague 6, Czech Republic.
| | - Jaroslav Žádný
- Research Group of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 1/135, 165 00 Prague 6, Czech Republic.
| | - Jan Storch
- Research Group of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 1/135, 165 00 Prague 6, Czech Republic.
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Tang X, Li Y, Li Q, Yu J, Bai H. The role of electrostatic potential in the translocation of triangulene across membranes. RSC Adv 2023; 13:21545-21549. [PMID: 37469968 PMCID: PMC10352715 DOI: 10.1039/d3ra03259k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
Triangulene and its derivatives show broad application prospects in the fields of biological imaging and biosensing. However, its interaction with cell membranes is still poorly studied. In this study, classical molecular dynamics simulations were used to adjust the electrostatic potential of triangulene to observe its interactions with cell membranes. We found that electrostatic potential not only affects the behavior as it enters the cell membrane, but also spatial distribution within the cell membrane. The angle distribution of inside-0 and all-0 triangulene when penetrating the membrane is more extensive than that of ESP triangulene. However, inside-0 triangulene could cross the midline of the cell membrane and prefers to stay in the upper leaflet, while all-0 triangulene and ESP triangulene can reach the lower leaflet. These findings can help us regulate the distribution of nanoparticles in cells, so as to design functional nanoparticles that conform to the requirements.
Collapse
Affiliation(s)
- Xiaofeng Tang
- Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Kunming People's Republic of China
| | - Youyun Li
- The Second Affiliated Hospital of Kunming Medical University Kunming People's Republic of China
| | - Qianyan Li
- Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Kunming People's Republic of China
| | - Jinhui Yu
- Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Kunming People's Republic of China
| | - Han Bai
- Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Kunming People's Republic of China
- School of Physics and Astronomy, Yunnan University Kunming People's Republic of China
| |
Collapse
|
3
|
Rushworth J, Thawani AR, Fajardo-Ruiz E, Meiring JCM, Heise C, White AJP, Akhmanova A, Brandt JR, Thorn-Seshold O, Fuchter MJ. [5]-Helistatins: Tubulin-Binding Helicenes with Antimitotic Activity. JACS AU 2022; 2:2561-2570. [PMID: 36465552 PMCID: PMC9709948 DOI: 10.1021/jacsau.2c00435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
Helicenes are high interest synthetic targets with unique conjugated helical structures that have found important technological applications. Despite this interest, helicenes have had limited impact in chemical biology. Herein, we disclose a first-in-class antimitotic helicene, helistatin 1 (HA-1), where the helicene scaffold acts as a structural mimic of colchicine, a known antimitotic drug. The synthesis proceeds via sequential Pd-catalyzed coupling reactions and a π-Lewis acid cycloisomerization mediated by PtCl2. HA-1 was found to block microtubule polymerization in both cell-free and live cell assays. Not only does this demonstrate the feasibility of using helicenes as bioactive scaffolds against protein targets, but also suggests wider potential for the use of helicenes as isosteres of biaryls or cis-stilbenes-themselves common drug and natural product scaffolds. Overall, this study further supports future opportunities for helicenes for a range of chemical biological applications.
Collapse
Affiliation(s)
- James
L. Rushworth
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 OBZ, U.K.
| | - Aditya R. Thawani
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 OBZ, U.K.
| | - Elena Fajardo-Ruiz
- Department
of Pharmacy, Ludwig-Maximilians University
of Munich, Munich 81377, Germany
| | - Joyce C. M. Meiring
- Cell
Biology, Neurobiology and Biophysics, Department of Biology, Faculty
of Science, Utrecht University, Utrecht 3584 CH, Netherlands
| | - Constanze Heise
- Department
of Pharmacy, Ludwig-Maximilians University
of Munich, Munich 81377, Germany
| | - Andrew J. P. White
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 OBZ, U.K.
| | - Anna Akhmanova
- Cell
Biology, Neurobiology and Biophysics, Department of Biology, Faculty
of Science, Utrecht University, Utrecht 3584 CH, Netherlands
| | - Jochen R. Brandt
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 OBZ, U.K.
| | - Oliver Thorn-Seshold
- Department
of Pharmacy, Ludwig-Maximilians University
of Munich, Munich 81377, Germany
| | - Matthew J. Fuchter
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 OBZ, U.K.
| |
Collapse
|
4
|
Nikolova Y, Fabri B, Moneva Lorente P, Guarnieri‐Ibáñez A, de Aguirre A, Soda Y, Pescitelli G, Zinna F, Besnard C, Guénée L, Moreau D, Di Bari L, Bakker E, Poblador‐Bahamonde AI, Lacour J. Chemo- and Regioselective Multiple C(sp 2 )-H Insertions of Malonate Metal Carbenes for Late-Stage Functionalizations of Azahelicenes. Angew Chem Int Ed Engl 2022; 61:e202210798. [PMID: 35943860 PMCID: PMC9825994 DOI: 10.1002/anie.202210798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 01/11/2023]
Abstract
Chiral quinacridines react up to four times, step-by-step, with α-diazomalonates under RuII and RhII catalysis. By selecting the catalyst, [CpRu(CH3 CN)3 ][PF6 ] (Cp=cyclopentadienyl) or Rh2 (oct)4 , chemo and regioselective insertions of derived metal carbenes are achieved in favor of mono- or bis-functionalized malonate derivatives, respectively, (r.r.>49 : 1, up to 77 % yield, 12 examples). This multi-introduction of malonate groups is particularly useful to tune optical and chemical properties such as absorption, emission or Brønsted acidity but also cellular bioimaging. Density-functional theory further elucidates the origin of the carbene insertion selectivity and also showcases the importance of conformations in the optical response.
Collapse
Affiliation(s)
- Yana Nikolova
- Department of Organic ChemistryUniversity of GenevaQuai Ernest Ansermet 301211Geneva 4Switzerland
| | - Bibiana Fabri
- Department of Organic ChemistryUniversity of GenevaQuai Ernest Ansermet 301211Geneva 4Switzerland
| | - Pau Moneva Lorente
- Department of Organic ChemistryUniversity of GenevaQuai Ernest Ansermet 301211Geneva 4Switzerland
| | | | - Adiran de Aguirre
- Department of Organic ChemistryUniversity of GenevaQuai Ernest Ansermet 301211Geneva 4Switzerland
| | - Yoshiki Soda
- Department of Inorganic and Analytical ChemistryUniversity of GenevaQuai Ernest Ansermet 301211Geneva 4Switzerland
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica IndustrialeUniversity of PisaVia G. Moruzzi 1356124PisaItaly
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica IndustrialeUniversity of PisaVia G. Moruzzi 1356124PisaItaly
| | - Céline Besnard
- Laboratory of CrystallographyUniversity of GenevaQuai Ernest Ansermet 241211Geneva 4Switzerland
| | - Laure Guénée
- Laboratory of CrystallographyUniversity of GenevaQuai Ernest Ansermet 241211Geneva 4Switzerland
| | - Dimitri Moreau
- Department of BiochemistryUniversity of GenevaQuai Ernest Ansermet 241211Geneva 4Switzerland
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica IndustrialeUniversity of PisaVia G. Moruzzi 1356124PisaItaly
| | - Eric Bakker
- Department of Inorganic and Analytical ChemistryUniversity of GenevaQuai Ernest Ansermet 301211Geneva 4Switzerland
| | | | - Jérôme Lacour
- Department of Organic ChemistryUniversity of GenevaQuai Ernest Ansermet 301211Geneva 4Switzerland
| |
Collapse
|
5
|
Frédéric L, Fabri B, Guénée L, Zinna F, Di Bari L, Lacour J. Triple Regioselective Functionalization of Cationic [4]Helicenes via Iridium-Catalyzed Borylation and Suzuki Cross-Coupling Reactivity. Chemistry 2022; 28:e202201853. [PMID: 35796630 DOI: 10.1002/chem.202201853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 01/07/2023]
Abstract
In essentially one-pot, using Ir- and Pd-catalysis, tris(arene)-functionalized cationic [4]helicenes are synthesized with full regioselectivity and enantiospecificity starting from a trivial precursor (17 examples). This poly-addition of aryl groups improves key optical properties, that is, fluorescence quantum yields and lifetimes. Electronic circular dichroism and circularly polarized luminescence signatures are observed up to the far-red domain, in particular with additional arenes prone to aggregation.
Collapse
Affiliation(s)
- Lucas Frédéric
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland
| | - Bibiana Fabri
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland
| | - Laure Guénée
- Laboratoire de Cristallographie, University of Geneva, Quai Ernest Ansermet 24, 1211, Geneva 4, Switzerland
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa, Italy
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland
| |
Collapse
|
6
|
Nikolova Y, Fabri B, Moneva Lorente P, Guarnieri-Ibáñez A, de Aguirre A, Soda Y, Pescitelli G, Zinna F, Besnard C, Guénée L, Moreau D, Di Bari L, Bakker E, Poblador Bahamonde AI, Lacour J. Chemo‐ and Regioselective Multiple C(sp2)−H Insertions of Malonate Metal Carbenes for Late‐Stage Functionalizations of Azahelicenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yana Nikolova
- Université de Genève: Universite de Geneve Organic Chemistry SWITZERLAND
| | - Bibiana Fabri
- Université de Genève: Universite de Geneve Organic Chemistry SWITZERLAND
| | - Pau Moneva Lorente
- Université de Genève: Universite de Geneve Organic Chemistry SWITZERLAND
| | | | - Adiran de Aguirre
- Université de Genève: Universite de Geneve Organic Chemistry SWITZERLAND
| | - Yoshiki Soda
- Université de Genève: Universite de Geneve Inorganic and Analytical Chemistry SWITZERLAND
| | - Gennaro Pescitelli
- Università di Pisa: Universita degli Studi di Pisa chemistry and industrial chemistry ITALY
| | - Francesco Zinna
- Università di Pisa: Universita degli Studi di Pisa chemistry and industrial chemistry ITALY
| | - Céline Besnard
- Université de Genève: Universite de Geneve Laboratory of Crystallography SWITZERLAND
| | - Laure Guénée
- Université de Genève: Universite de Geneve Laboratory of Crystallography SWITZERLAND
| | - Dimitri Moreau
- Université de Genève: Universite de Geneve Department of Biochemistry SWITZERLAND
| | - Lorenzo Di Bari
- Università di Pisa: Universita degli Studi di Pisa chemistry and industrial chemistry ITALY
| | - Eric Bakker
- Université de Genève: Universite de Geneve Inorganic and Analytical Chemistry SWITZERLAND
| | | | - Jerome Lacour
- University of Geneva Department of Organic Chemistry Quai Ernest Ansermet 30 CH-1211 Geneva 4 SWITZERLAND
| |
Collapse
|
7
|
Ondrisek P, Elie M, Pupier M, de Aguirre A, Poblador‐Bahamonde AI, Besnard C, Lacour J. Acetylene Derivatives of Cationic Diazaoxatriangulenes and Diaza [4]Helicenes ‐ Access to Red Emitters and Planar Chiral Stereochemical Traits. Chemistry 2022; 28:e202104405. [PMID: 35040214 PMCID: PMC9305763 DOI: 10.1002/chem.202104405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/25/2022]
Abstract
Cationic triangulenes, and related helicenes, constitute a rich class of dyes and fluorophores, usually absorbing and emitting light at low energy, in the orange to red domains. Recently, to broaden the scope of applications, regioselective late‐stage functionalizations on these core moieties have been developed. For instance, with the introduction of electron‐donating groups (EDGs), important bathochromic shifts are observed pushing absorptions towards or in the near‐infrared (NIR) spectral domain while emissive properties disappear essentially completely. Herein, to upset this drawback, acetylene derivatives of cationic diazaoxa triangulenes (DAOTA) and [4]helicenes are prepared (16 examples). Contrary to other EDG‐functionalized derivatives, C≡C− functionalized products remain broadly fluorescent, with red‐shifted absorptions (Δλabs up to 25 nm) and emissions (Δλem up to 73 nm, ΦPL up to 51 %). Quite interestingly, a general dynamic stereoisomerism phenomenon is evidenced for the compounds derived from achiral DAOTA cores. At low temperature in 1H NMR spectroscopy (218 K), N−CH2 protons become diastereotopic with chemical shifts differences (Δδ) as high as +1.64 ppm. The signal coalescence occurs around 273 K with a barrier of ∼12 kcal mol−1. This phenomenon is due to planar chiral conformations (Sp and Rp configurations), induced by the geometry of the alkyl (n‐propyl) side‐chains next to the acetylenic substituents. Ion pairing studies with Δ‐TRISPHAT anion not only confirm the occurrence of the chiral conformations but evidence a moderate but definite asymmetric induction from the chiral anion onto the cations. Finally, DFT calculations offer a valuable insight on the geometries, the corresponding stereodynamics and also on the very large difference in NMR for some of the diastereotopic protons.
Collapse
Affiliation(s)
- Pavol Ondrisek
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Margaux Elie
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Marion Pupier
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Adiran de Aguirre
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | | | - Céline Besnard
- Laboratoire de Cristallographie University of Geneva Quai Ernest Ansermet 24 1211 Geneva 4 Switzerland
| | - Jérôme Lacour
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
8
|
Soni R, Soman SS. Metal free synthesis of Coumarin containing hetero[n]helicene like molecules with TICT and AIE propertie. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rina Soni
- The Maharaja Sayajirao University of Baroda Faculty of Science Chemistry Sayajigunj 390002 Vadodara INDIA
| | - Shubhangi S Soman
- The Maharaja Sayajirao University of Baroda Faculty of Science Chemistry INDIA
| |
Collapse
|
9
|
Li Q, Hamamoto Y, Kwek G, Xing B, Li Y, Ito S. Diazapentabenzocorannulenium: A Hydrophilic/Biophilic Cationic Buckybowl. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang‐Qiang Li
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yosuke Hamamoto
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Germain Kwek
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
10
|
Zhao H, Xu X, Zhou L, Hu Y, Huang Y, Narita A. Water-Soluble Nanoparticles with Twisted Double [7]Carbohelicene for Lysosome-Targeted Cancer Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105365. [PMID: 34741415 DOI: 10.1002/smll.202105365] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Helicene-based therapeutic agents for organelle-targeted photodynamic therapy (PDT) involving both type I and II are challenging and still underexplored. Herein, water-soluble nanoparticles containing twisted double [7]carbohelicene (D7H-NPs) are prepared through self-assembly with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] by a nanoprecipitation method. D7H-NPs display high water solubility with an average size of 46 ± 2 nm. Notably, D7H-NPs can generate efficient singlet oxygen (1 O2 ) and superoxide anion (O2· - ) upon white light irradiation, forming the basis of PDT. Moreover, the typical accumulation in lysosomes of 4T1 cancer cells paves the way to use D7H-NPs for lysosome-targeted cancer phototherapeutics. This paper reports a promising helicene-based phototherapeutic agent involving both type I and II PDT for organelle-targeted biotherapy.
Collapse
Affiliation(s)
- Hao Zhao
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiushang Xu
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Long Zhou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yunbin Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yiming Huang
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| |
Collapse
|
11
|
Li QQ, Hamamoto Y, Kwek G, Xing B, Li Y, Ito S. Diazapentabenzocorannulenium: A Hydrophilic/Biophilic Cationic Buckybowl. Angew Chem Int Ed Engl 2021; 61:e202112638. [PMID: 34863045 DOI: 10.1002/anie.202112638] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 11/05/2022]
Abstract
Polycyclic aromatic molecules are promising functional materials for a wide range of applications, especially in organic electronics. However, their largely hydrophobic nature has impeded further applications. As such, imparting high solubility/hydrophilicity to polycyclic aromatic molecules leads to a breakthrough in this research field. Herein, we report the synthesis of diazapentabenzocorannulenium, a cationic nitrogen-embedded buckybowl bearing a central imidazolium core, by a bottom-up strategy from polycyclic aromatic azomethine ylide. X-ray crystallography analyses have revealed a bowl-shaped molecular structure that is capable of forming charge-segregated one-dimensional columns by bowl-in-bowl packing. In addition to its fluorescence capabilities and high dispersibility in water, the molecule was found to selectively localize in the mitochondria of various tumor cells, showing potential as viable mitochondria-selective fluorescent probes.
Collapse
Affiliation(s)
- Qiang-Qiang Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yosuke Hamamoto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Germain Kwek
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
12
|
Summers PA, Thomas AP, Kench T, Vannier JB, Kuimova MK, Vilar R. Cationic helicenes as selective G4 DNA binders and optical probes for cellular imaging. Chem Sci 2021; 12:14624-14634. [PMID: 34881015 PMCID: PMC8580066 DOI: 10.1039/d1sc04567a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 01/17/2023] Open
Abstract
The important role that G-quadruplex DNA (G4 DNA) structures play in regulating biological processes is becoming widely recognised. These structures have also been proposed to be attractive drug targets. Therefore, there has been significant interest in developing small molecules that can selectively bind to G4 DNA over other topologies. In this paper we investigate the interaction between DNA and helical compounds (helicenes) based on a central carbocation trisubstituted with aromatic rings. We show that the non-planar structure of these helicenes results in a significantly reduced affinity for dsDNA when compared to their planar analogues, whilst maintaining a high affinity for G4 DNA. Additionally, the right- and left-handed enantiomers of one of these helicenes recognise the chiral DNA environments of G4 and dsDNA differently. We show that upon DNA binding the helicenes display a fluorescence switch-on effect, which we have successfully used for cellular imaging in live and fixed U2OS cells, staining mitochondria and the nucleus, respectively.
Collapse
Affiliation(s)
- Peter A Summers
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane, White City Campus W12 0BZ UK +44 (0)20 7594 1967 +44 (0)20 7594 8558
| | - Ajesh P Thomas
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane, White City Campus W12 0BZ UK +44 (0)20 7594 1967 +44 (0)20 7594 8558
| | - Timothy Kench
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane, White City Campus W12 0BZ UK +44 (0)20 7594 1967 +44 (0)20 7594 8558
| | - Jean-Baptiste Vannier
- Telomere Replication and Stability Group, Medical Research Council - London Institute of Medical Sciences London W12 0NN UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London London W12 0NN UK
| | - Marina K Kuimova
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane, White City Campus W12 0BZ UK +44 (0)20 7594 1967 +44 (0)20 7594 8558
| | - Ramon Vilar
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane, White City Campus W12 0BZ UK +44 (0)20 7594 1967 +44 (0)20 7594 8558
| |
Collapse
|
13
|
Moneva Lorente P, Wallabregue A, Zinna F, Besnard C, Di Bari L, Lacour J. Synthesis and properties of chiral fluorescent helicene-BODIPY conjugates. Org Biomol Chem 2020; 18:7677-7684. [PMID: 32970060 DOI: 10.1039/d0ob01809k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of chiral fluorescent helicene-BODIPY conjugates was prepared by the regioselective formylation of aza[4]helicene precursors and then an efficient one-pot two-step BODIPY synthesis (13 examples, 28-82%). Fused conjugates exhibit absorption and fluorescence properties (ΦF 30-45%) in the red visible domain, and a CPL signature could be measured at 605 nm (glum ±5 × 10-4). Photophysical and electronic properties were investigated and rationalized through first principles.
Collapse
Affiliation(s)
- Pau Moneva Lorente
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | |
Collapse
|
14
|
Marinova M, Pascal S, Guénée L, Besnard C, Shivachev B, Kostova K, Villani C, Franzini R, Dimitrov V, Lacour J. Synthesis, Resolution, Configurational Stability, and Properties of Cationic Functionalized [5]Helicenes. J Org Chem 2020; 85:11908-11923. [PMID: 32907321 DOI: 10.1021/acs.joc.0c01716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A straightforward approach to the synthesis of two different series of cationic [5]helicenes has been achieved including, in dioxa series, the possibility to introduce aromatic functional groups at the periphery of the helical structure. While photophysical study highlights that the introduction of aryl substituents at position 23 of the helical moieties has a negligible impact on the optical properties, styryl substituents allow a welcoming extension of the conjugation pathways. Finally, a red shift of the optical properties was evidenced upon introduction of nitrogen atoms in the helicene scaffold, leading to particularly good fluorescence efficiencies in the red domain for a helicenic dye. Detailed information on racemization kinetics was collected for the most stable species upon direct high-performance liquid chromatography (HPLC) resolution or, when configurational lability was too high, through VT-HPLC analysis on the chiral stationary phase (ΔG‡ values ranging from 85.0 to 137.1 kJ·mol-1 and above).
Collapse
Affiliation(s)
- Maya Marinova
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland.,Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 9, Sofia 1113, Bulgaria
| | - Simon Pascal
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, Quai Ernest Ansermet 24, CH-1211 Geneva 4, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, Quai Ernest Ansermet 24, CH-1211 Geneva 4, Switzerland
| | - Boris Shivachev
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov", Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 107, Sofia 1113, Bulgaria
| | - Kalina Kostova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 9, Sofia 1113, Bulgaria
| | - Claudio Villani
- Dipartimento di Chimica e Tecnologie del Farmaco, Università "La Sapienza", 00185 Roma, Italy
| | - Roberta Franzini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università "La Sapienza", 00185 Roma, Italy
| | - Vladimir Dimitrov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 9, Sofia 1113, Bulgaria
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
15
|
Voci S, Duwald R, Grass S, Hayne DJ, Bouffier L, Francis PS, Lacour J, Sojic N. Self-enhanced multicolor electrochemiluminescence by competitive electron-transfer processes. Chem Sci 2020; 11:4508-4515. [PMID: 34122909 PMCID: PMC8159437 DOI: 10.1039/d0sc00853b] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
Controlling electrochemiluminescence (ECL) color(s) is crucial for many applications ranging from multiplexed bioassays to ECL microscopy. This can only be achieved through the fundamental understanding of high-energy electron-transfer processes in complex and competitive reaction schemes. Recently, this field has generated huge interest, but the effective implementation of multicolor ECL is constrained by the limited number of ECL-active organometallic dyes. Herein, the first self-enhanced organic ECL dye, a chiral red-emitting cationic diaza [4]helicene connected to a dimethylamino moiety by a short linker, is reported. This molecular system integrates bifunctional ECL features (i.e. luminophore and coreactant) and each function may be operated either separately or simultaneously. This unique level of control is enabled by integrating but decoupling both molecular functions in a single molecule. Through this dual molecular reactivity, concomitant multicolor ECL emission from red to blue with tunable intensity is readily obtained in aqueous media. This is done through competitive electron-transfer processes between the helicene and a ruthenium or iridium dye. The reported approach provides a general methodology to extend to other coreactant/luminophore systems, opening enticing perspectives for spectrally distinct detection of several analytes, and original analytical and imaging strategies.
Collapse
Affiliation(s)
- Silvia Voci
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
| | - Romain Duwald
- University of Geneva, Department of Organic Chemistry Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Stéphane Grass
- University of Geneva, Department of Organic Chemistry Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - David J Hayne
- Deakin University, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment Waurn Ponds Victoria 3216 Australia
| | - Laurent Bouffier
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
| | - Paul S Francis
- Deakin University, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment Waurn Ponds Victoria 3216 Australia
| | - Jérôme Lacour
- University of Geneva, Department of Organic Chemistry Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
| |
Collapse
|
16
|
Zhang X, Sakai N, Matile S. Methyl Scanning for Mechanochemical Chalcogen-Bonding Cascade Switches. ChemistryOpen 2020; 9:18-22. [PMID: 31921541 PMCID: PMC6946998 DOI: 10.1002/open.201900288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Chalcogen-bonding cascade switching was introduced recently to produce the chemistry tools needed to image physical forces in biological systems. In the original flipper probe, one methyl group appeared to possibly interfere with the cascade switch. In this report, this questionable methyl group is replaced by a hydrogen. The deletion of this methyl group in planarizable push-pull probes was not trivial because it required the synthesis of dithienothiophenes with four different substituents on the four available carbons. The mechanosensitivity of the resulting demethylated flipper probe was nearly identical to that of the original. Thus methyl groups in the switching region are irrelevant for function, whereas those in the twisting region are essential. This result supports the chalcogen-bonding cascade switching concept and, most importantly, removes significant synthetic demands from future probe development.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
17
|
Macchione M, Goujon A, Strakova K, Humeniuk HV, Licari G, Tajkhorshid E, Sakai N, Matile S. A Chalcogen-Bonding Cascade Switch for Planarizable Push-Pull Probes. Angew Chem Int Ed Engl 2019; 58:15752-15756. [PMID: 31539191 PMCID: PMC7035594 DOI: 10.1002/anie.201909741] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 11/08/2022]
Abstract
Planarizable push-pull probes have been introduced to demonstrate physical forces in biology. However, the donors and acceptors needed to polarize mechanically planarized probes are incompatible with their twisted resting state. The objective of this study was to overcome this "flipper dilemma" with chalcogen-bonding cascade switches that turn on donors and acceptors only in response to mechanical planarization of the probe. This concept is explored by molecular dynamics simulations as well as chemical double-mutant cycle analysis. Cascade switched flipper probes turn out to excel with chemical stability, red shifts adding up to high significance, and focused mechanosensitivity. Most important, however, is the introduction of a new, general and fundamental concept that operates with non-trivial supramolecular chemistry, solves an important practical problem and opens a wide chemical space.
Collapse
Affiliation(s)
- Mariano Macchione
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Antoine Goujon
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Karolina Strakova
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Heorhii V Humeniuk
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Giuseppe Licari
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Strakova K, Poblador‐Bahamonde AI, Sakai N, Matile S. Fluorescent Flipper Probes: Comprehensive Twist Coverage. Chemistry 2019; 25:14935-14942. [DOI: 10.1002/chem.201903604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/01/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Karolina Strakova
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| | | | - Naomi Sakai
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| |
Collapse
|
19
|
Macchione M, Goujon A, Strakova K, Humeniuk HV, Licari G, Tajkhorshid E, Sakai N, Matile S. A Chalcogen‐Bonding Cascade Switch for Planarizable Push–Pull Probes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mariano Macchione
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Antoine Goujon
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Karolina Strakova
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | | | - Giuseppe Licari
- NIH Center for Macromolecular Modeling and Bioinformatics Beckman Institute for Advanced Science and Technology and Department of Biochemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics Beckman Institute for Advanced Science and Technology and Department of Biochemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Naomi Sakai
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| |
Collapse
|
20
|
Labrador GM, Besnard C, Bürgi T, Poblador-Bahamonde AI, Bosson J, Lacour J. Stereochemical significance of O to N atom interchanges within cationic helicenes: experimental and computational evidence of near racemization to remarkable enantiospecificity. Chem Sci 2019; 10:7059-7067. [PMID: 31588273 PMCID: PMC6676467 DOI: 10.1039/c9sc02127b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/11/2019] [Indexed: 11/21/2022] Open
Abstract
Oxygen atoms of cationic dioxa and azaoxa [6]helicenes can be exchanged by amino groups to form azaoxa and diaza [6]helicenes respectively. The mild reaction conditions developed herein allow the construction of libraries of derivatives with sensitive and/or functionalized side chains. Using enantioenriched dioxa or azaoxa helicene precursors, these exchanges lead to either near racemization (es 3%) or to a remarkable enantiospecificity (es up to 97%). This unusual behavior is fully characterized via experimental and computational mechanistic evidence. Based on these investigations, the enantiospecificity of the first transformation can be improved to 57-61%.
Collapse
Affiliation(s)
| | - Céline Besnard
- Laboratory of Crystallography , University of Geneva , Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry , University of Geneva , Switzerland
| | | | - Johann Bosson
- Department of Organic Chemistry , University of Geneva , Switzerland . ; ;
| | - Jérôme Lacour
- Department of Organic Chemistry , University of Geneva , Switzerland . ; ;
| |
Collapse
|
21
|
Dhbaibi K, Favereau L, Crassous J. Enantioenriched Helicenes and Helicenoids Containing Main-Group Elements (B, Si, N, P). Chem Rev 2019; 119:8846-8953. [DOI: 10.1021/acs.chemrev.9b00033] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kais Dhbaibi
- ISCR (Institut des Sciences Chimiques de Rennes), UMR6226, CNRS, Université Rennes, F-35000 Rennes, France
- Faculty of Science of Gabès, University of Gabés, Zrig, 6072 Gabès Tunisia
| | - Ludovic Favereau
- ISCR (Institut des Sciences Chimiques de Rennes), UMR6226, CNRS, Université Rennes, F-35000 Rennes, France
| | - Jeanne Crassous
- ISCR (Institut des Sciences Chimiques de Rennes), UMR6226, CNRS, Université Rennes, F-35000 Rennes, France
| |
Collapse
|
22
|
Goujon A, Colom A, Straková K, Mercier V, Mahecic D, Manley S, Sakai N, Roux A, Matile S. Mechanosensitive Fluorescent Probes to Image Membrane Tension in Mitochondria, Endoplasmic Reticulum, and Lysosomes. J Am Chem Soc 2019; 141:3380-3384. [PMID: 30744381 DOI: 10.1021/jacs.8b13189] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Measuring forces inside cells is particularly challenging. With the development of quantitative microscopy, fluorophores which allow the measurement of forces became highly desirable. We have previously introduced a mechanosensitive flipper probe, which responds to the change of plasma membrane tension by changing its fluorescence lifetime and thus allows tension imaging by FLIM. Herein, we describe the design, synthesis, and evaluation of flipper probes that selectively label intracellular organelles, i.e., lysosomes, mitochondria, and the endoplasmic reticulum. The probes respond uniformly to osmotic shocks applied extracellularly, thus confirming sensitivity toward changes in membrane tension. At rest, different lifetimes found for different organelles relate to known differences in membrane organization rather than membrane tension and allow colabeling in the same cells. At the organelle scale, lifetime heterogeneity provides unprecedented insights on ER tubules and sheets, and nuclear membranes. Examples on endosomal trafficking or increase of tension at mitochondrial constriction sites outline the potential of intracellularly targeted fluorescent tension probes to address essential questions that were previously beyond reach.
Collapse
Affiliation(s)
- Antoine Goujon
- School of Chemistry and Biochemistry and ‡National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , CH-1211 Geneva , Switzerland
| | - Adai Colom
- School of Chemistry and Biochemistry and ‡National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , CH-1211 Geneva , Switzerland
| | - Karolína Straková
- School of Chemistry and Biochemistry and ‡National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , CH-1211 Geneva , Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry and ‡National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , CH-1211 Geneva , Switzerland
| | | | | | - Naomi Sakai
- School of Chemistry and Biochemistry and ‡National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , CH-1211 Geneva , Switzerland
| | - Aurélien Roux
- School of Chemistry and Biochemistry and ‡National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , CH-1211 Geneva , Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry and ‡National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , CH-1211 Geneva , Switzerland
| |
Collapse
|
23
|
Optically active iodohelicene derivatives exhibit histamine N-methyl transferase inhibitory activity. J Antibiot (Tokyo) 2018; 72:476-481. [PMID: 30459457 DOI: 10.1038/s41429-018-0118-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/12/2018] [Indexed: 02/06/2023]
Abstract
Optically active helicene derivatives inhibit the activity on histamine N-methyl transferase (HNMT). Specifically, methyl (P)-1,12-dimethylbenzo[c]phenanthrene-8-carboxylate with 6-iodo and 5-trifluoromethanesulfonyloxy groups inhibits HNMT activity on the μM order of IC50. Chirality is important, and (M)-isomers exhibits substantially reduced activity. The 6-iodo group is also essential, which suggests the involvement of halogen bonds in protein binding. Substituents on the sulfonate moiety also affect the inhibitory activity.
Collapse
|
24
|
Delgado IH, Pascal S, Besnard C, Voci S, Bouffier L, Sojic N, Lacour J. C-Functionalized Cationic Diazaoxatriangulenes: Late-Stage Synthesis and Tuning of Physicochemical Properties. Chemistry 2018; 24:10186-10195. [PMID: 29698563 PMCID: PMC6099254 DOI: 10.1002/chem.201801486] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Indexed: 01/24/2023]
Abstract
A series of nine C-functionalized cationic diazaoxatriangulene (DAOTA) dyes have been successfully synthesized and fully characterized, including X-ray structural analysis of four derivatives. The introduction of electron-withdrawing or -donating functions enables the tuning of both electro- and photochemical properties with, for instance, two consecutive (reversible) reductions or oxidations observed for nitro or amino derivatives, respectively. The substituents also impacted on the optical properties, with absorption maxima varying from λ=528 to 640 nm and fluorescence being shifted from the yellow to the red range, up to λ=656 nm.
Collapse
Affiliation(s)
- Irene Hernández Delgado
- Department of Organic ChemistryUniversity of Genevaquai Ernest Ansermet 301211Geneva 4Switzerland
| | - Simon Pascal
- Department of Organic ChemistryUniversity of Genevaquai Ernest Ansermet 301211Geneva 4Switzerland
| | - Céline Besnard
- Laboratory of CrystallographyUniversity of Genevaquai Ernest Ansermet 241211Geneva 4Switzerland
| | - Silvia Voci
- Univ. Bordeaux, CNRS, Bordeaux INPISM, UMR 525533400TalenceFrance
| | - Laurent Bouffier
- Univ. Bordeaux, CNRS, Bordeaux INPISM, UMR 525533400TalenceFrance
| | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INPISM, UMR 525533400TalenceFrance
| | - Jérôme Lacour
- Department of Organic ChemistryUniversity of Genevaquai Ernest Ansermet 301211Geneva 4Switzerland
| |
Collapse
|
25
|
Rosenberg M, Rostgaard KR, Liao Z, Madsen AØ, Martinez KL, Vosch T, Laursen BW. Design, synthesis, and time-gated cell imaging of carbon-bridged triangulenium dyes with long fluorescence lifetime and red emission. Chem Sci 2018; 9:3122-3130. [PMID: 29780456 PMCID: PMC5932597 DOI: 10.1039/c8sc00089a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/15/2018] [Indexed: 01/05/2023] Open
Abstract
Time-resolved fluorescence offers many advantages over normal steady-state detection and becomes increasingly important in bioimaging. However, only very few fluorophores with emission in the visible range and fluorescence lifetimes above 5 ns are available. In this work, we prepare a series of new aza/oxa-triangulenium dyes where one of the usual oxa or aza bridges is replaced by an isopropyl bridge. This leads to a significant redshift of fluorescence with only moderate reductions of quantum yields and a unique long fluorescence lifetime. The fluorescence of the isopropyl bridged diazatriangulenium derivative CDATA+ is red-shifted by 50 nm (1400 cm-1) as compared to the oxygen-bridged DAOTA+ chromophore and has intense emission in the red region (600-700 nm) with a quantum yield of 61%, and a fluorescence lifetime of 15.8 ns in apolar solution. When the CDATA+ dye is used as cell stain, high photostability and efficient time-gated cell imaging is demonstrated.
Collapse
Affiliation(s)
- M Rosenberg
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| | - K R Rostgaard
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| | - Z Liao
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| | - A Ø Madsen
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2, DK-2100 , Copenhagen Ø , Denmark
| | - K L Martinez
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| | - T Vosch
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| | - B W Laursen
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| |
Collapse
|
26
|
Jarolímová Z, Bosson J, Labrador GM, Lacour J, Bakker E. Ion Transfer Voltammetry in Polyurethane Thin Films Based on Functionalised Cationic [6]Helicenes for Carbonate Detection. ELECTROANAL 2018. [DOI: 10.1002/elan.201800080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zdeňka Jarolímová
- Department of Inorganic and Analytical Chemistry; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Johann Bosson
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Geraldine M. Labrador
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Jérôme Lacour
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|