1
|
Xiao M, Guo Z, Yang Y, Hu C, Cheng Q, Zhang C, Wu Y, Cheng Y, Benson WLM, Shamay SMN, Leung GPH, Li J, Gao H, Zhang J. Glycyrrhizic acid-based multifunctional nanoplatform for tumor microenvironment regulation. Chin J Nat Med 2024; 22:1089-1099. [PMID: 39725510 DOI: 10.1016/s1875-5364(24)60685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Indexed: 12/28/2024]
Abstract
Natural compounds demonstrate unique therapeutic advantages for cancer treatment, primarily through direct tumor suppression or interference with the tumor microenvironment (TME). Glycyrrhizic acid (GL), a bioactive ingredient derived from the medicinal herb Glycyrrhiza uralensis Fisch., and its sapogenin glycyrrhetinic acid (GA), have been recognized for their ability to inhibit angiogenesis and remodel the TME. Consequently, the combination of GL with other therapeutic agents offers superior therapeutic benefits. Given GL's amphiphilic structure, self-assembly capability, and liver cancer targeting capacity, various GL-based nanoscale drug delivery systems have been developed. These GL-based nanosystems exhibit angiogenesis suppression and TME regulation properties, synergistically enhancing anti-cancer effects. This review summarizes recent advances in GL-based nanosystems, including polymer-drug micelles, drug-drug assembly nanoparticles (NPs), liposomes, and nanogels, for cancer treatment and tumor postoperative care, providing new insights into the anti-cancer potential of natural compounds. Additionally, the review discusses existing challenges and future perspectives for translating GL-based nanosystems from bench to bedside.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yating Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfen Cheng
- School of Medicine, Chengdu University, Chengdu 610106, China
| | - Wui Lau Man Benson
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Sheung Mei Ng Shamay
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Nisa K, Lone IA, Arif W, Singh P, Rehmen SU, Kumar R. Applications of supramolecular assemblies in drug delivery and photodynamic therapy. RSC Med Chem 2023; 14:2438-2458. [PMID: 38107171 PMCID: PMC10718592 DOI: 10.1039/d3md00396e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023] Open
Abstract
One of the world's serious health challenges is cancer. Anti-cancer agents delivered to normal cells and tissues pose several problems and challenges. In this connection, photodynamic therapy (PDT) is a minimally invasive therapeutic technique used for selectively destroying malignant cells while sparing the normal tissues. Development in photosensitisers (PSs) and light sources have to be made for PDT as a first option treatment for patients. In the pursuit of developing new attractive molecules and their formulations for PDT, researchers are working on developing such type of PSs that perform better than those being currently used. For the widespread clinical utilization of PDT, effective PSs are of particular importance. Host-guest interactions based on nanographene assemblies such as functionalized hexa-cata-hexabenzocoronenes, hexa-peri-hexabenzocoronenes and coronene have attracted increasing attention owing to less complicated synthetic steps and purification processes (gel permeation chromatography) during fabrication. Noncovalent interactions provide easy and facile approaches for building supramolecular PSs and enable them to have sensitive and controllable photoactivities, which are important for maximizing photodynamic effects and minimizing side effects. Various versatile supramolecular assemblies based on cyclodextrins, cucurbiturils, calixarenes, porphyrins and pillararenes have been designed in order to make PDT an effective therapeutic technique for curing cancer and tumours. The supramolecular assemblies of porphyrins display efficient electron transfer and fluorescence for use in bioimaging and PDT. The multifunctionalization of supramolecular assemblies is used for designing biomedically active PSs, which are helpful in PDT. It is anticipated that the development of these functionalized supramolecular assemblies will provide more fascinating advances in PDT and will dramatically expand the potential and possibilities in cancer treatments.
Collapse
Affiliation(s)
- Kharu Nisa
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Ishfaq Ahmad Lone
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Waseem Arif
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Preeti Singh
- Department of Chemistry, Faculty of Science, Swami Vivekanand Subharti University Meerut-250005 India
| | - Sajad Ur Rehmen
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Ravi Kumar
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| |
Collapse
|
3
|
Karanlık CC, Karanlık G, Gok B, Budama-Kilinc Y, Kecel-Gunduz S, Erdoğmuş A. Exploring anticancer properties of novel Nano-Formulation of BODIPY Compound, Photophysicochemical, in vitro and in silico evaluations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122964. [PMID: 37302199 DOI: 10.1016/j.saa.2023.122964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
A new BODIPY complex (C4) composed of meso- thienyl-pyridine substituted core unit diiodinated from 2- and 6- positions and distyryl moieties at 3- and 5- positions is synthesized. Nano-sized formulation of C4 is prepared by single emulsion method using poly(ε-caprolactone)(PCL) polymer. Encapsulation efficiency and loading capacity values of C4 loaded PCL nanoparticles (C4@PCL-NPs) are calculated and in vitro release profile of C4 is determined. The cytotoxicity and anti-cancer activity are conducted on the L929 and MCF-7 cell lines. Cellular uptake study is performed and interaction between C4@PCL-NPs and MCF-7 cell line is investigated. Anti-cancer activity of C4 is predicted with molecular docking studies and the inhibition property on EGFR, ERα, PR and mTOR are investigated for its anticancer properties. Molecular interactions, binding positions and docking score energies between C4 and EGFR, ERα, PR and mTOR targets are revealed using in silico methods. The druglikeness and pharmacokinetic properties of C4 are evaluated using the SwissADME and its bioavailability and toxicity profiles are assessed using the SwissADME, preADMET and pkCSM servers. In conclusion, the potential use of C4 as an anti-cancer agent is evaluated in vitro and in silico methods. Also, photophysicochemical properties are studied to investigate the potential of using Photodynamic Therapy (PDT). In photochemical studies, the calculated singlet oxygen quantum yield (ΦΔ) value was 0.73 for C4 and in photopysical studies, the calculated fluorescence quantum yield ΦF value was 0.19 for C4.
Collapse
Affiliation(s)
- Ceren Can Karanlık
- Department of Chemistry, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey.
| | - Gürkan Karanlık
- Department of Chemistry, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey.
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey.
| | - Yasemin Budama-Kilinc
- Department of Bioengineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220, Istanbul, Turkey.
| | | | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220, Istanbul, Turkey.
| |
Collapse
|
4
|
Zou L, Li Q, Hou Y, Chen M, Xu X, Wu H, Sun Z, Ma G. Self-assembled glycyrrhetinic acid derivatives for functional applications: a review. Food Funct 2022; 13:12487-12509. [PMID: 36413139 DOI: 10.1039/d2fo02472a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycyrrhetinic acid (GA), a famous natural product, has been attracting more attention recently because of its remarkable biological activity, natural sweetness, and good biocompatibility. In the past few years, a considerable amount of literature has grown up around the theme of GA-based chemical modification to broaden its functional applications. Promising structures including gels, micelles, nanoparticles, liposomes, and so forth have been constantly reported. On the one hand, the assembly mechanisms of various materials based on GA derivatives have been elucidated via modern analytical techniques. On the other hand, their potential application prospects in edible additives, intelligent drug delivery, and other fields have been investigated fully due to availability, biocompatibility, and controllable degradability. Inspired by these findings, a systematic summary and classification of the materials formed by GA derivatives seems necessary and meaningful. This review sums up the new functional applications of GA derivatives for the first time and provides better prospects for their application and development.
Collapse
Affiliation(s)
- Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Liu Z, Li H, Tian Z, Liu X, Guo Y, He J, Wang Z, Zhou T, Liu Y. Porphyrin-Based Nanoparticles: A Promising Phototherapy Platform. Chempluschem 2022; 87:e202200156. [PMID: 35997087 DOI: 10.1002/cplu.202200156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Indexed: 11/10/2022]
Abstract
Phototherapy, including photodynamic therapy and photothermal therapy, is an emerging form of non-invasive treatment. The combination of imaging technology and phototherapy is becoming an attractive development in the treatment of cancer, as it allows for highly effective therapeutic results through image-guided phototherapy. Porphyrins have attracted significant interest in the treatment and diagnosis of cancer due to their excellent phototherapeutic effects in phototherapy and their remarkable imaging capabilities in fluorescence imaging, magnetic resonance imaging and photoacoustic imaging. However, porphyrins suffer from poor water solubility, low near-infrared absorption and insufficient tumor accumulation. The development of nanotechnology provides an effective way to improve the bioavailability, phototherapeutic effect and imaging capability of porphyrins. This review highlights the research results of porphyrin-based small molecule nanoparticles in phototherapy and image-guided phototherapy in the last decade and discusses the challenges and directions for the development of porphyrin-based small molecule nanoparticles in phototherapy.
Collapse
Affiliation(s)
- Zhenhua Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Hui Li
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Zejie Tian
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Xin Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Yu Guo
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, P.R. China
| | - Zhenyu Wang
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, P.R. China
| | - Tao Zhou
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| |
Collapse
|
6
|
Speciale A, Muscarà C, Molonia MS, Cristani M, Cimino F, Saija A. Recent Advances in Glycyrrhetinic Acid-Functionalized Biomaterials for Liver Cancer-Targeting Therapy. Molecules 2022; 27:1775. [PMID: 35335138 PMCID: PMC8954912 DOI: 10.3390/molecules27061775] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the most common causes of cancer mortality worldwide. Chemotherapy and radiotherapy are the conventional therapies generally employed in patients with liver tumors. The major issue associated with the administration of chemotherapeutics is their high toxicity and lack of selectivity, leading to systemic toxicity that can be detrimental to the patient's quality of life. An important approach to the development of original liver-targeted therapeutic products takes advantage of the employment of biologically active ligands able to bind specific receptors on the cytoplasmatic membranes of liver cells. In this perspective, glycyrrhetinic acid (GA), a pentacyclic triterpenoid present in roots and rhizomes of licorice, has been used as a ligand for targeting the liver due to the expression of GA receptors on the sinusoidal surface of mammalian hepatocytes, so it may be employed to modify drug delivery systems (DDSs) and obtain better liver or hepatocyte drug uptake and efficacy. In the current review, we focus on the most recent and interesting research advances in the development of GA-based hybrid compounds and DDSs developed for potential employment as efficacious therapeutic options for the treatment of hepatic cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (C.M.); (M.S.M.); (M.C.); (A.S.)
| | | |
Collapse
|
7
|
Casellas NM, Dai G, Xue Y, Vicente-Arana MJ, Ng DKP, Torres T, García-Iglesias M. Porphyrin-based supramolecular nanofibres as a dynamic and activatable photosensitiser for photodynamic therapy. Biomater Sci 2022; 10:3259-3267. [DOI: 10.1039/d2bm00173j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) represents a promising treatment modality for a range of cancers and other non-malignant diseases due to its non-invasive nature arising from the light-dependent activation. However, PDT has...
Collapse
|
8
|
Paramio I, Torres T, de la Torre G. Self-Assembled Porphyrinoids: One-Component Nanostructured Photomedicines. ChemMedChem 2021; 16:2441-2451. [PMID: 33900022 PMCID: PMC8453889 DOI: 10.1002/cmdc.202100201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 01/06/2023]
Abstract
Photodynamic therapy (PDT) is becoming a promising way to treat various kinds of cancers, with few side effects. Porphyrinoids are the most relevant photosensitizers (PS) in PDT, because they present high extinction coefficients, biocompatibility, and excellent photochemical behavior. To maximize therapeutic effects, polymer-PS conjugates, and PS-loaded nanoparticles have been developed, with insights in improving tumor delivery. However, some drawbacks such as non-biodegradability, multistep fabrication, and low reagent loadings limit their clinical application. A novel strategy, noted by some authors as the "one-for-all" approach, is emerging to circumvent the use of additional delivery agents. This approach relies on the self-assembly of amphiphilic PS to fabricate nanostructures with improved transport properties. In this review we focus on different rational designs of porphyrinoid PS to achieve some of the following attributes in nanoassembly: i) selective uptake, through the incorporation of recognizable biological vectors; ii) responsiveness to stimuli; iii) combination of imaging and therapeutic functions; and iv) multimodal therapy, including photothermal or chemotherapy abilities.
Collapse
Affiliation(s)
- Irene Paramio
- Department of Organic ChemistryUniversidad Autónoma de MadridC/Francisco Tomás y Valiente 728049MadridSpain
| | - Tomás Torres
- Department of Organic ChemistryUniversidad Autónoma de MadridC/Francisco Tomás y Valiente 728049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridC/Francisco Tomás y Valiente 728049MadridSpain
- Instituto Madrileño de Estudios Avanzados (IMDEA)-NanocienciaC/Faraday 928049MadridSpain
| | - Gema de la Torre
- Department of Organic ChemistryUniversidad Autónoma de MadridC/Francisco Tomás y Valiente 728049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridC/Francisco Tomás y Valiente 728049MadridSpain
| |
Collapse
|
9
|
Sun L, Wang J, Yang B, Wang X, Yang G, Wang X, Jiang Y, Wang T, Jiang J. Assembled small organic molecules for photodynamic therapy and photothermal therapy. RSC Adv 2021; 11:10061-10074. [PMID: 35423511 PMCID: PMC8695661 DOI: 10.1039/d1ra00579k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/02/2021] [Indexed: 01/22/2023] Open
Abstract
As a worldwide major public health problem, cancer is one of the leading causes of death. Effective treatment of cancer is an important challenge. Therefore, photodynamic therapy (PDT) and photothermal therapy (PTT) have been widely applied as anti-tumour strategies due to their high-performance and limited side effects. Inspired by natural supramolecular architectures, such as cytochromes and photosystems, the hierarchical supramolecular assembly of small organic molecules has been developed for their use as photosensitizers or photothermal agents for PDT and PTT, respectively. In this manuscript, we will summarize the recent progress of PDT and PTT based on the assembly of small organic molecules.
Collapse
Affiliation(s)
- Lixin Sun
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Jian Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Baochan Yang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Xinxin Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Gengxiang Yang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Xiqian Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Yuying Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
10
|
The novel glycyrrhetinic acid–tetramethylpyrazine conjugate TOGA induces anti-hepatocarcinogenesis by inhibiting the effects of tumor-associated macrophages on tumor cells. Pharmacol Res 2020; 161:105233. [DOI: 10.1016/j.phrs.2020.105233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
|
11
|
Excited-state investigations of meso-mono-substituted-(amino-ferrocenyl)porphyrins: Experimental and theoretical approaches. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Zhang T, Ma C, Sun T, Xie Z. Unadulterated BODIPY nanoparticles for biomedical applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Mahajan PG, Dige NC, Vanjare BD, Eo SH, Seo SY, Kim SJ, Hong SK, Choi CS, Lee KH. A potential mediator for photodynamic therapy based on silver nanoparticles functionalized with porphyrin. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Wang X, Lin W, Zhang W, Li C, Sun T, Chen G, Xie Z. Amphiphilic redox-sensitive NIR BODIPY nanoparticles for dual-mode imaging and photothermal therapy. J Colloid Interface Sci 2019; 536:208-214. [DOI: 10.1016/j.jcis.2018.10.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 02/05/2023]
|