1
|
Lehnen AC, Hanke S, Schneider M, Radelof CML, Perestrelo J, Reinicke S, Reifarth M, Taubert A, Arndt KM, Hartlieb M. Modification of 3D-Printed PLA Structures Using Photo-Iniferter Polymerization: Toward On-Demand Antimicrobial Water Filters. Macromol Rapid Commun 2023; 44:e2300408. [PMID: 37581256 DOI: 10.1002/marc.202300408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Indexed: 08/16/2023]
Abstract
Water filtration is an important application to ensure the accessibility of clean drinking water. As requirements and contaminants vary on a local level, adjustable filter devices and their evaluation with contaminants are required. Within this work, modular filter devices are designed featuring an adjustable surface functionalization. For this purpose, 3D-printed structures are created consisting of bio-based poly(lactic acid) (PLA) that are manufactured by extrusion printing. The surface of PLA is activated with amino groups that are used to install xanthates as chain transfer agents. Subsequently, photo-iniferter (PI) polymerization is used to create cationic polymer brushes on the surface of PLA substrates. Multiple surface characterization techniques are employed to prove successful growth of polymer brushes on PLA. After initial optimization studies on flat surfaces, filter devices are printed, functionalized, and used to remove bacteria from contaminated water. Significant reduction of the number of microorganisms is detected after filtration (single filtration or cycling) and contaminating organism can also be removed from freshwater samples by simple incubation with a 3D-printed filter. The herein developed setup for producing functional filter devices and probing their performance in affinity filtration is a useful platform technology, enabling the rapid testing of polymer brushes for such applications.
Collapse
Affiliation(s)
- Anne-Catherine Lehnen
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Sebastian Hanke
- Molecular Biotechnology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Matthias Schneider
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Charlotte M L Radelof
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Joana Perestrelo
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Stefan Reinicke
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Martin Reifarth
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Andreas Taubert
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Katja M Arndt
- Molecular Biotechnology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Matthias Hartlieb
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| |
Collapse
|
2
|
Kerr A, Häkkinen S, Hall SCL, Kirkman P, O’Hora P, Smith T, Kinane CJ, Caruana A, Perrier S. Anchor Group Bottlebrush Polymers as Oil Additive Friction Modifiers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48574-48583. [PMID: 37811661 PMCID: PMC10591277 DOI: 10.1021/acsami.3c12628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
Surface-tethered polymers have been shown to be an efficient lubrication strategy for boundary and mixed lubrication by providing a solvated film between solid surfaces. We have assessed the performance of various graft copolymers as friction modifier additives in oil and revealed important structure-property relationships for this application. The polymers consisted of an oil-soluble, grafted poly(lauryl acrylate) segment and a polar, linear poly(4-acryloylmorpholine) anchor group. Reversible addition-fragmentation chain transfer polymerization was used to access various architectures with control of the grafting density and position of the anchor group. Macrotribological studies displayed promising results with ≈50% reduction in friction coefficient at low polymer treatment rates. QCM-D experiments, neutron reflectometry, small-angle neutron scattering, and atomic force microscopy were used to gather detailed information on these polymers' surface adsorption characteristics, film structure, and solution behavior.
Collapse
Affiliation(s)
- Andrew Kerr
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| | - Satu Häkkinen
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| | - Stephen C. L. Hall
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| | - Paul Kirkman
- Lubrizol
Limited, The Knowle, Nether Lane, Hazelwood DE56 4AN, Derbyshire, U.K.
| | - Paul O’Hora
- Lubrizol
Limited, The Knowle, Nether Lane, Hazelwood DE56 4AN, Derbyshire, U.K.
| | - Timothy Smith
- Lubrizol
Limited, The Knowle, Nether Lane, Hazelwood DE56 4AN, Derbyshire, U.K.
| | - Christian J. Kinane
- Rutherford
Appleton Laboratory, ISIS Neutron and Muon
Sourcey, Didcot OX11 0QX, U.K.
| | - Andrew Caruana
- Rutherford
Appleton Laboratory, ISIS Neutron and Muon
Sourcey, Didcot OX11 0QX, U.K.
| | - Sébastien Perrier
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, The University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
3
|
Akarsu P, Reinicke S, Lehnen AC, Bekir M, Böker A, Hartlieb M, Reifarth M. Fabrication of Patchy Silica Microspheres with Tailor-Made Patch Functionality using Photo-Iniferter Reversible-Addition-Fragmentation Chain-Transfer (PI-RAFT) Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301761. [PMID: 37381652 DOI: 10.1002/smll.202301761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/29/2023] [Indexed: 06/30/2023]
Abstract
Their inherent directional information renders patchy particles interesting building blocks for advanced applications in materials science. In this study, a feasible method to fabricate patchy silicon dioxide microspheres is demonstrated, which they are able to equip with tailor-made polymeric materials as patches. Their fabrication method relies on a solid-state supported microcontact printing (µCP) routine optimized for the transfer of functional groups to capillary-active substrates, which is used to introduce amino functionalities as patches to a monolayer of particles. Acting as anchor groups for polymerization, photo-iniferter reversible addition-fragmentation chain-transfer (RAFT) is used to graft polymer from the patch areas. Accordingly, particles with poly(N-acryloyl morpholine), poly(N-isopropyl acrylamide), and poly(n-butyl acrylate) are prepared as representative acrylic acid-derived functional patch materials. To facilitate their handling in water, a passivation strategy of the particles for aqueous systems is introduced. The protocol introduced here, therefore, promises a vast degree of freedom in engineering the surface properties of highly functional patchy particles. This feature is unmatched by other techniques to fabricate anisotropic colloids. The method, thus, can be considered a platform technology, culminating in the fabrication of particles that possess locally precisely formed patches on particles at a low µm scale with a high material functionality.
Collapse
Affiliation(s)
- Pinar Akarsu
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
- Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstr. 69, 14476, Potsdam, Germany
| | - Stefan Reinicke
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
- Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstr. 69, 14476, Potsdam, Germany
| | - Anne-Catherine Lehnen
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
- Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstr. 69, 14476, Potsdam, Germany
| | - Marek Bekir
- University of Potsdam, Institute of Physics and Astronomy, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Alexander Böker
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
- Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstr. 69, 14476, Potsdam, Germany
| | - Matthias Hartlieb
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
- Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstr. 69, 14476, Potsdam, Germany
| | - Martin Reifarth
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
- Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstr. 69, 14476, Potsdam, Germany
| |
Collapse
|
4
|
Lehnen AC, Bapolisi AM, Krass M, AlSawaf A, Kurki J, Kersting S, Fuchs H, Hartlieb M. Shape Matters: Highly Selective Antimicrobial Bottle Brush Copolymers via a One-Pot RAFT Polymerization Approach. Biomacromolecules 2022; 23:5350-5360. [PMID: 36455024 DOI: 10.1021/acs.biomac.2c01187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The one-pot synthesis of antimicrobial bottle brush copolymers is presented. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is used for the production of the polymeric backbone, as well as for the grafts, which were installed using a grafting-from approach. A combination of N-isopropyl acrylamide and a Boc-protected primary amine-containing acrylamide was used in different compositions. After deprotection, polymers featuring different charge densities were obtained in both linear and bottle brush topologies. Antimicrobial activity was tested against three clinically relevant bacterial strains, and growth inhibition was significantly increased for bottle brush copolymers. Blood compatibility investigations revealed strong hemagglutination for linear copolymers and pronounced hemolysis for bottle brush copolymers. However, one bottle brush copolymer with a 50% charge density revealed strong antibacterial activity and negligible in vitro blood toxicity (regarding hemolysis and hemagglutination tests) resulting in selectivity values as high as 320. Membrane models were used to probe the mechanism of shown polymers that was found to be based on membrane disruption. The trends from bioassays are accurately reflected in model systems indicating that differences in lipid composition might be responsible for selectivity. However, bottle brush copolymers were found to possess increased cytotoxicity against human embryonic kidney (HEK) cells compared with linear analogues. The introduced synthetic platform enables screening of further, previously inaccessible parameters associated with the bottle brush topology, paving the way to further improve their activity profiles.
Collapse
Affiliation(s)
- Anne-Catherine Lehnen
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476Potsdam, Germany.,Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476Potsdam, Germany
| | - Alain M Bapolisi
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476Potsdam, Germany
| | - Melanie Krass
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353Berlin, Germany
| | - Ahmad AlSawaf
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476Potsdam, Germany
| | - Jan Kurki
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476Potsdam, Germany
| | - Sebastian Kersting
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476Potsdam, Germany
| | - Hendrik Fuchs
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353Berlin, Germany
| | - Matthias Hartlieb
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476Potsdam, Germany.,Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476Potsdam, Germany
| |
Collapse
|
5
|
Kim J, Cattoz B, Leung AHM, Parish JD, Becer CR. Enabling Reversible Addition-Fragmentation Chain-Transfer Polymerization for Brush Copolymers with a Poly(2-oxazoline) Backbone. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jungyeon Kim
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Beatrice Cattoz
- Infineum UK Ltd., Milton Hill Business & Technology Centre, Abingdon, Oxfordshire OX13 6BB, United Kingdom
| | - Alice H. M. Leung
- Infineum UK Ltd., Milton Hill Business & Technology Centre, Abingdon, Oxfordshire OX13 6BB, United Kingdom
| | - James D. Parish
- Infineum UK Ltd., Milton Hill Business & Technology Centre, Abingdon, Oxfordshire OX13 6BB, United Kingdom
| | - C. Remzi Becer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
6
|
Akarsu P, Grobe R, Nowaczyk J, Hartlieb M, Reinicke S, Böker A, Sperling M, Reifarth M. Solid-Phase Microcontact Printing for Precise Patterning of Rough Surfaces: Using Polymer-Tethered Elastomeric Stamps for the Transfer of Reactive Silanes. ACS APPLIED POLYMER MATERIALS 2021; 3:2420-2431. [PMID: 34056615 PMCID: PMC8154209 DOI: 10.1021/acsapm.1c00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 06/02/2023]
Abstract
We present a microcontact printing (μCP) routine suitable to introduce defined (sub-) microscale patterns on surface substrates exhibiting a high capillary activity and receptive to a silane-based chemistry. This is achieved by transferring functional trivalent alkoxysilanes, such as (3-aminopropyl)-triethoxysilane (APTES) as a low-molecular weight ink via reversible covalent attachment to polymer brushes grafted from elastomeric polydimethylsiloxane (PDMS) stamps. The brushes consist of poly{N-[tris(hydroxymethyl)-methyl]acrylamide} (PTrisAAm) synthesized by reversible addition-fragmentation chain-transfer (RAFT)-polymerization and used for immobilization of the alkoxysilane-based ink by substituting the alkoxy moieties with polymer-bound hydroxyl groups. Upon physical contact of the silane-carrying polymers with surfaces, the conjugated silane transfers to the substrate, thus completely suppressing ink-flow and, in turn, maximizing printing accuracy even for otherwise not addressable substrate topographies. We provide a concisely conducted investigation on polymer brush formation using atomic force microscopy (AFM) and ellipsometry as well as ink immobilization utilizing two-dimensional proton nuclear Overhauser enhancement spectroscopy (1H-1H-NOESY-NMR). We analyze the μCP process by printing onto Si-wafers and show how even distinctively rough surfaces can be addressed, which otherwise represent particularly challenging substrates.
Collapse
Affiliation(s)
- Pinar Akarsu
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
- Chair
of Polymer Materials and Polymer Technologies, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Richard Grobe
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Julius Nowaczyk
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
- Chair
of Polymer Materials and Polymer Technologies, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Matthias Hartlieb
- Chair
of Polymer Materials and Polymer Technologies, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Stefan Reinicke
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Alexander Böker
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
- Chair
of Polymer Materials and Polymer Technologies, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Marcel Sperling
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Martin Reifarth
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
| |
Collapse
|
7
|
Cortez-Lemus NA, Licea-Claverie A. Preparation of a Mini-Library of Thermo-Responsive Star (NVCL/NVP-VAc) Polymers with Tailored Properties Using a Hexafunctional Xanthate RAFT Agent. Polymers (Basel) 2017; 10:E20. [PMID: 30966057 PMCID: PMC6414999 DOI: 10.3390/polym10010020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 01/02/2023] Open
Abstract
A mini-library of star-shaped thermoresponsive polymers having six arms was prepared using a hexafunctional xanthate by reversible addition⁻fragmentation chain transfer (RAFT) polymerization. Star polymers with homopolymeric arms of poly(N-vinylcaprolactam) (PNVCL), copolymeric arms of poly(N-vinylcaprolactam-co-N-vinylpyrrolidone) (PNVCL-co-PNVP) and also arms of block copolymers of PNVCL-b-PVAc, (PNVCL-co-PNVP)-b-PVAc, and combinations of them changing the order of the block was achieved exploiting the R-RAFT synthetic methodology (or R-group approach), wherein the thiocarbonyl group is transferred to the polymeric chain end. Taking advantage of the RAFT benefits, the molecular weight of the star polymers was controlled (Mn = 11,880⁻153,400 g/mol) to yield star polymers of different sizes and lower critical solution temperature (LCST) values. Removing the xanthate group of the star polymers allowed for the introduction of specific functional groups at the ends of the star arms and resulted in an increase of the LCST values. Star PNVCL-b-PVAc diblock copolymers with PVAc contents of 5⁻26 mol % were prepared; the hydrophobic segment (PVAc) is located at the end of the star arms. Interestingly, when the PVAc content was 5⁻7 mol %, the hydrodynamic diameter (Dh) value of the aggregates formed in water was almost the same sa the Dh of the corresponding PNVCL star homopolymers. It is proposed that these star block copolymers self-assemble into single flowerlike micelles, showing great stability in aqueous solution. Star block copolymers with the PVAc hydrophobic block in the core of the star, such as PVAc-b-(PNVCL-co-PNVP), form micellar aggregates in aqueous solution with Dh values in the range from ~115 to 245 nm while maintaining a thermoresponsive behavior. Micellar aggregates of selected star polymers were used to encapsulate methotrexate (MTX) showing their potential in the temperature controlled release of this antineoplasic drug. The importance of the order in which each block constituent is introduced in the arms of the star polymers for their solution/aggregation behavior is demonstrated.
Collapse
Affiliation(s)
- Norma Aidé Cortez-Lemus
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, A. P. 1166, Tijuana 22000, B. C., Mexico.
| | - Angel Licea-Claverie
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, A. P. 1166, Tijuana 22000, B. C., Mexico.
| |
Collapse
|
8
|
Chen L, Li Y, Yue S, Ling J, Ni X, Shen Z. Chemoselective RAFT Polymerization of a Trivinyl Monomer Derived from Carbon Dioxide and 1,3-Butadiene: From Linear to Hyperbranched. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02238] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Lifeng Chen
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yao Li
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sicong Yue
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xufeng Ni
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Kerr A, Hartlieb M, Sanchis J, Smith T, Perrier S. Complex multiblock bottle-brush architectures by RAFT polymerization. Chem Commun (Camb) 2017; 53:11901-11904. [DOI: 10.1039/c7cc07241d] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of the reversible addition fragmentation chain transfer (RAFT) polymerization R-group grafting from approach and RAFT one-pot acrylamide multiblock methodology is used to synthesise complex bottle-brush architectures.
Collapse
Affiliation(s)
- Andrew Kerr
- Department of Chemistry
- The University of Warwick
- Coventry CV4 7AL
- UK
| | | | - Joaquin Sanchis
- Faculty of Pharmacy and Pharmaceutical Sciences
- Monash University
- Australia
| | - Timothy Smith
- Lubrizol Limited. The Knowle
- Nether Lane
- Derbyshire DE56 4AN
- UK
| | - Sébastien Perrier
- Department of Chemistry
- The University of Warwick
- Coventry CV4 7AL
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|