1
|
Wang X, Zhang Z, Hadjichristidis N. Poly(amino ester)s as an emerging synthetic biodegradable polymer platform: Recent developments and future trends. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Ren S, Zhang G, Shi W, Li W, Jia X. Fabrication of pH/H 2O 2-responsive polyhedral oligomeric silsesquioxane self-assembled fluorescent vesicles for enhanced in vivo anti-tumor efficacy. Nanomedicine (Lond) 2022; 17:671-682. [PMID: 35475381 DOI: 10.2217/nnm-2021-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The rational design of a fluorescence imaging-guided, highly efficient multiresponsive delivery system is important for improving drug delivery efficiency. Materials and methods: Herein, pH/H2O2-responsive polyhedral oligomeric silsesquioxane (POSS) molecule functionalized 4-(phenyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-phenyl)amino)benzaldehyde (OTB) copolymer (PEG-POSS-OTB) was synthesized to encapsulate doxorubicin (DOX) for precise drug delivery. Results: The self-assembly fluorescent vesicles exhibited excellent pH/H2O2-responsive drug release properties under physiological conditions and efficient drug-targeting ability. In vitro, compared with the DOX group, PEG-POSS-OTB fluorescent vesicles exhibited improved drug delivery and reduced toxicity. Importantly, we performed a proof-of-concept study demonstrating that PEG-POSS-OTB fluorescent vesicles were a high-efficiency nanoassembly drug-delivery platform for improving drug delivery efficiency. In vivo studies demonstrated that PEG-POSS-OTB vesicles with enhanced stability could be used in targeted drug delivery and controlled intelligent release.
Collapse
Affiliation(s)
- Shuxian Ren
- State Key Laboratory of Coordination Chemistry, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wanling Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weizhi Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xudong Jia
- State Key Laboratory of Coordination Chemistry, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Wang Q, Cao M, Kan X, Lv A, Du F, Li Z. Ring‐opening polymerization of 1,4‐oxathian‐2‐one and its copolymerization with δ‐valerolactone. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qi‐Yuan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering Peking University Beijing China
| | - Meng‐Xue Cao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering Peking University Beijing China
| | - Xiao‐Wei Kan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering Peking University Beijing China
| | - An Lv
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering Peking University Beijing China
| | - Fu‐Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering Peking University Beijing China
| | - Zi‐Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering Peking University Beijing China
| |
Collapse
|
4
|
Jiang T, Aseyev V, Niskanen J, Hietala S, Zhang Q, Tenhu H. Polyzwitterions with LCST Side Chains: Tunable Self-Assembly. Macromolecules 2020; 53:8267-8275. [PMID: 33122865 PMCID: PMC7586405 DOI: 10.1021/acs.macromol.0c01708] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/05/2020] [Indexed: 12/20/2022]
Abstract
![]()
Manipulation
of self-assembly behavior of copolymers via environmental
change is attractive in the fabrication of smart polymeric materials.
We present tunable self-assembly behavior of graft copolymers, poly(sulfobetaine
methacrylate)-graft-poly[oligo(ethylene glycol) methyl
ether methacrylate)-co-di(ethylene glycol) methyl
ether methacrylate] (PSBM-g-P(OEGMA-co-DEGMA)). Upon heating the aqueous solutions, the graft copolymers
undergo a transition from micelles with PSBM cores to unimers (i.e.,
individual macromolecules) and then to reversed micelles with P(OEGMA-co-DEGMA) cores, thus demonstrating the tunability of the
self-assembling through temperature change. In the presence of salt
the temperature response of PSBM is eliminated, and the structure
of the micelles with the P(OEGMA-co-DEGMA) core changes.
Moreover, for the graft copolymer with long side chains, micelles
with aggregation number ∼ 2 were formed with
a PSBM core at low temperature, which is ascribed to the steric effect
of the P(OEGMA-co-DEGMA) shell.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Vladimir Aseyev
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Jukka Niskanen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland.,Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Qilu Zhang
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland.,State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Heikki Tenhu
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| |
Collapse
|
5
|
Double hydrophilic block copolymers self-assemblies in biomedical applications. Adv Colloid Interface Sci 2020; 283:102213. [PMID: 32739324 DOI: 10.1016/j.cis.2020.102213] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
Abstract
Double-hydrophilic block copolymers (DHBCs), consisting of at least two different water-soluble blocks, are an alternative to the classical amphiphilic block copolymers and have gained increasing attention in the field of biomedical applications. Although the chemical nature of the two blocks can be diverse, most classical DHBCs consist of a bioeliminable non-ionic block to promote solubilization in water, like poly(ethylene glycol), and a second block that is more generally a pH-responsive block capable of interacting with another ionic polymer or substrate. This second block is generally non-degradable and the presence of side chain functional groups raises the question of its fate and toxicity, which is a limitation in the frame of biomedical applications. In this review, following a first part dedicated to recent examples of non-degradable DHBCs, we focus on the DHBCs that combine a biocompatible and bioeliminable non-ionic block with a degradable functional block including polysaccharides, polypeptides, polyesters and other miscellaneous polymers. Their use to design efficient drug delivery systems for various biomedical applications through stimuli-dependent self-assembly is discussed along with the current challenges and future perspectives for this class of copolymers.
Collapse
|
6
|
Zhu S, Wen L, Xiao Y, Lang M. Poly( ε-caprolactone) with pH and UCST responsiveness as a 5-fluorouracil carrier. Polym Chem 2020. [DOI: 10.1039/d0py00865f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive polymers with excellent biocompatibility and biodegradability are highly demanded as carriers for controlled drug delivery.
Collapse
Affiliation(s)
- Shuang Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Lianlei Wen
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| |
Collapse
|
7
|
Yan B, Hou J, Wei C, Xiao Y, Lang M, Huang F. Facile preparation of long-chain aliphatic polycarbonates containing block copolycarbonates via one-pot sequential organic catalyzed polymerization of macrocyclic carbonates and trimethylene carbonates. Polym Chem 2020. [DOI: 10.1039/d0py00031k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A universal and effective approach was reported to synthesize block copolycarbonates containing long-chain aliphatic polycarbonates and PTMC segments using the ROP differences between macrocyclic and small cyclic carbonates with TBD as catalyst.
Collapse
Affiliation(s)
- Bingkun Yan
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Jiaqian Hou
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Chao Wei
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Yan Xiao
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Meidong Lang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Farong Huang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
8
|
Shahriari M, Torchilin VP, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. “Smart” self-assembled structures: toward intelligent dual responsive drug delivery systems. Biomater Sci 2020; 8:5787-5803. [DOI: 10.1039/d0bm01283a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the current review, we summarized the polymer and peptide-based schizophrenic copolymers which could form micellar and vesicular (polymersome) systems providing novel structures with beneficial applications.
Collapse
Affiliation(s)
- Mahsa Shahriari
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine
- Northeastern University
- Boston
- USA
- Department of Oncology
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Khalil Abnous
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| |
Collapse
|
9
|
Wang X, Hadjichristidis N. Poly(amine-co-ester)s by Binary Organocatalytic Ring-Opening Polymerization of N-Boc-1,4-oxazepan-7-one: Synthesis, Characterization, and Self-Assembly. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xin Wang
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
10
|
El Jundi A, Buwalda S, Bethry A, Hunger S, Coudane J, Bakkour Y, Nottelet B. Double-Hydrophilic Block Copolymers Based on Functional Poly(ε-caprolactone)s for pH-Dependent Controlled Drug Delivery. Biomacromolecules 2019; 21:397-407. [DOI: 10.1021/acs.biomac.9b01006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ayman El Jundi
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
- Laboratory of Applied Chemistry (LAC), Faculty of Science III, Lebanese University, P.O. Box 826, Tripoli, Lebanon
| | - Sytze Buwalda
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Audrey Bethry
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Sylvie Hunger
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Jean Coudane
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Youssef Bakkour
- Laboratory of Applied Chemistry (LAC), Faculty of Science III, Lebanese University, P.O. Box 826, Tripoli, Lebanon
| | - Benjamin Nottelet
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| |
Collapse
|
11
|
Luo X, Wang S, Xu S, Lang M. Relevance of the Polymeric Prodrug and Its Drug Loading Efficiency: Comparison between Computer Simulation and Experiment. MACROMOL THEOR SIMUL 2019. [DOI: 10.1002/mats.201900026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xueli Luo
- School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Shenchun Wang
- School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Sishi Xu
- School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Meidong Lang
- School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
12
|
Dzhardimalieva GI, Uflyand IE. Synthetic Methodologies for Chelating Polymer Ligands: Recent Advances and Future Development. ChemistrySelect 2018. [DOI: 10.1002/slct.201802516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of MetallopolymersThe Institute of Problems of Chemical Physics RAS Academician Semenov avenue 1, Chernogolovka, Moscow Region 142432 Russian Federation
| | - Igor E. Uflyand
- Department of ChemistrySouthern Federal University B. Sadovaya str. 105/42, Rostov-on-Don 344006 Russian Federation
| |
Collapse
|
13
|
Xiao Y, Pan J, Wang D, Heise A, Lang M. Chemo-Enzymatic Synthesis of Poly(4-piperidine lactone- b-ω-pentadecalactone) Block Copolymers as Biomaterials with Antibacterial Properties. Biomacromolecules 2018; 19:2673-2681. [PMID: 29698599 DOI: 10.1021/acs.biomac.8b00296] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With increasing troubles in bacterial contamination and antibiotic-resistance, new materials possessing both biocompatibility and antimicrobial efficacy are supposed to be developed for future biomedical application. Herein, we demonstrated a chemo-enzymatic ring opening polymerization (ROP) approach for block copolyester, that is, poly(4-benzyl formate piperidine lactone- b-ω-pentadecalactone) (PNPIL- b-PPDL), in a one-pot two-step process. Afterward, cationic poly(4-piperidine lactone- b-ω-pentadecalactone) (PPIL- b-PPDL) with pendent secondary amino groups was obtained via acidic hydrolysis of PNPIL- b-PPDL. The resulting cationic block copolyester exhibited high antibacterial activity against Gram negative E. coli and Gram positive S. aureus, while showed low toxicity toward NIH-3T3 cells. Moreover, the antibacterial property, cytotoxicity and degradation behavior could be tuned simply by variation of PPIL content. Therefore, we anticipate that such cationic block copolymers could potentially be applied as biomaterials for medicine or implants.
Collapse
Affiliation(s)
- Yan Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai , 200237 , China
| | - Jinghao Pan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai , 200237 , China
| | - Dong Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai , 200237 , China
| | - Andreas Heise
- Department of Pharmaceutical and Medicinal Chemistry , Royal College of Surgeons in Ireland , St. Stephens Green , Dublin 2 , Ireland
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai , 200237 , China
| |
Collapse
|
14
|
Li L, Wang Q, Lyu R, Yu L, Su S, Du FS, Li ZC. Synthesis of a ROS-responsive analogue of poly(ε-caprolactone) by the living ring-opening polymerization of 1,4-oxathiepan-7-one. Polym Chem 2018. [DOI: 10.1039/c8py00798e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A well-defined ROS-responsive block amphiphilic diblock copolymer PEO-b-POTO was synthesized to elucidate the oxidative degradation mechanism in assemblies.
Collapse
Affiliation(s)
- Linggao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Center for Soft Matter Science & Engineering
| | - Qiyuan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Center for Soft Matter Science & Engineering
| | - Ruiliang Lyu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Center for Soft Matter Science & Engineering
| | - Li Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Center for Soft Matter Science & Engineering
| | - Shan Su
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Center for Soft Matter Science & Engineering
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Center for Soft Matter Science & Engineering
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Center for Soft Matter Science & Engineering
| |
Collapse
|
15
|
Wei C, Zhang Y, Yan B, Du Z, Lang M. A Versatile Strategy to Main Chain Sulfur/Selenium-Functionalized Polycarbonates by Macro-Ring Closure of Diols and Subsequent Ring-Opening Polymerization. Chemistry 2017; 24:789-792. [DOI: 10.1002/chem.201704301] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Chao Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Yan Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Bingkun Yan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Zhengzhen Du
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
16
|
Canning S, Neal TJ, Armes SP. pH-Responsive Schizophrenic Diblock Copolymers Prepared by Polymerization-Induced Self-Assembly. Macromolecules 2017; 50:6108-6116. [PMID: 28867829 PMCID: PMC5577634 DOI: 10.1021/acs.macromol.7b01005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/03/2017] [Indexed: 01/28/2023]
Abstract
Polymerization-induced self-assembly (PISA) is used for the highly convenient and efficient preparation of ampholytic diblock copolymer nanoparticles directly in acidic aqueous solution. Cationic nanoparticles comprising a protonated polyamine stabilizer block and a hydrophobic polyacid core-forming block are formed at pH 2. Micelle inversion occurs at pH 10 to produce anionic nanoparticles with an ionized polyacid stabilizer block and a hydrophobic polyamine core-forming block. Macroscopic precipitation occurs at around pH 6-7, which lies close to the isoelectric point of this ampholytic diblock copolymer. Incorporation of fluorescein and rhodamine dye labels into the acid and amine blocks, respectively, leads to dual-color bifluorescent self-reporting pH-responsive nanoparticles.
Collapse
Affiliation(s)
- Sarah
L. Canning
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Thomas J. Neal
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|