1
|
Hu C, Wang Y, Lee YM. Ether-Free Alkaline Polyelectrolytes for Water Electrolyzers: Recent Advances and Perspectives. Angew Chem Int Ed Engl 2025; 64:e202418324. [PMID: 39485307 DOI: 10.1002/anie.202418324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/03/2024]
Abstract
Anion exchange membrane (AEM) water electrolyzers (AEMWEs) have attracted great interest for their potential as sustainable, environmentally friendly, low-cost sources of renewable energy. Alkaline polyelectrolytes play a crucial role in AEMWEs, determining their performance and longevity. Because heteroatom-containing polymers have been shown to have poor durability in alkaline conditions, this review focuses on ether-free alkaline polyelectrolytes, which are more chemically stable. The merits, weaknesses, and challenges in preparing ether-free AEMs are summarized and highlighted. The evaluation of synthesis methods for polymers, modification strategies, and cationic stability will provide insights valuable for the structural design of future alkaline polyelectrolytes. Moreover, the in situ degradation mechanisms of AEMs and ionomers during AEMWE operation are revealed. This review provides insights into the design of alkaline polyelectrolytes for AEMWEs to accelerate their widespread commercialization.
Collapse
Affiliation(s)
- Chuan Hu
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- School of Energy and Environment, Southeast University, No. 2, Southeast University Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Yong Wang
- School of Energy and Environment, Southeast University, No. 2, Southeast University Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Young Moo Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
2
|
Clemens AL, Jayathilake BS, Karnes JJ, Schwartz JJ, Baker SE, Duoss EB, Oakdale JS. Tuning Alkaline Anion Exchange Membranes through Crosslinking: A Review of Synthetic Strategies and Property Relationships. Polymers (Basel) 2023; 15:polym15061534. [PMID: 36987313 PMCID: PMC10051716 DOI: 10.3390/polym15061534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Alkaline anion exchange membranes (AAEMs) are an enabling component for next-generation electrochemical devices, including alkaline fuel cells, water and CO2 electrolyzers, and flow batteries. While commercial systems, notably fuel cells, have traditionally relied on proton-exchange membranes, hydroxide-ion conducting AAEMs hold promise as a method to reduce cost-per-device by enabling the use of non-platinum group electrodes and cell components. AAEMs have undergone significant material development over the past two decades; however, challenges remain in the areas of durability, water management, high temperature performance, and selectivity. In this review, we survey crosslinking as a tool capable of tuning AAEM properties. While crosslinking implementations vary, they generally result in reduced water uptake and increased transport selectivity and alkaline stability. We survey synthetic methodologies for incorporating crosslinks during AAEM fabrication and highlight necessary precautions for each approach.
Collapse
Affiliation(s)
- Auston L. Clemens
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Correspondence: (A.L.C.); (J.S.O.)
| | | | - John J. Karnes
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Johanna J. Schwartz
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Sarah E. Baker
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Eric B. Duoss
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - James S. Oakdale
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Correspondence: (A.L.C.); (J.S.O.)
| |
Collapse
|
3
|
Wang M, Xu B, Zou Q, Dong X, Shao R, Qiao J. Graphene oxide prompted double-crosslinked Poly(vinyl alcohol)/Poly(diallyldimethylammonium chloride) Anion-exchange membrane for superior CO2 electrochemical reduction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
4
|
Yang W, Chen J, Yan J, Liu S, Yan Y, Zhang Q. Advance of click chemistry in anion exchange membranes for energy application. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Weihong Yang
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Jin Chen
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Jing Yan
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Shuang Liu
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Yi Yan
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| |
Collapse
|
5
|
Hu C, Deng X, Dong X, Hong Y, Zhang Q, Liu Q. Rigid crosslinkers towards constructing highly-efficient ion transport channels in anion exchange membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118806] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Shen B, Sana B, Pu H. Multi-block poly(ether sulfone) for anion exchange membranes with long side chains densely terminated by piperidinium. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Pore-Filled Anion-Exchange Membranes with Double Cross-Linking Structure for Fuel Cells and Redox Flow Batteries. ENERGIES 2020. [DOI: 10.3390/en13184761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, high-performance pore-filled anion-exchange membranes (PFAEMs) with double cross-linking structures have been successfully developed for application to promising electrochemical energy conversion systems, such as alkaline direct liquid fuel cells (ADLFCs) and vanadium redox flow batteries (VRFBs). Specifically, two kinds of porous polytetrafluoroethylene (PTFE) substrates, with different hydrophilicities, were utilized for the membrane fabrication. The PTFE-based PFAEMs revealed, both excellent electrochemical characteristics, and chemical stability in harsh environments. It was proven that the use of a hydrophilic porous substrate is more desirable for the efficient power generation of ADLFCs, mainly owing to the facilitated transport of hydroxyl ions through the membrane, showing an excellent maximum power density of around 400 mW cm−2 at 60 °C. In the case of VRFB, however, the battery cell employing the hydrophobic PTFE-based PFAEM exhibited the highest energy efficiency (87%, cf. AMX = 82%) among the tested membranes, because the crossover rate of vanadium redox species through the membrane most significantly affects the VRFB efficiency. The results imply that the properties of a porous substrate for preparing the membranes should match the operating environment, for successful applications to electrochemical energy conversion processes.
Collapse
|
8
|
Zhang S, Wang Y, Liu P, Wang X, Zhu X. Photo-cross-linked poly(N-allylisatin biphenyl)-co-poly(alkylene biphenyl)s with pendant N-cyclic quaternary ammonium as anion exchange membranes for direct borohydride/hydrogen peroxide fuel cells. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Jang J, Kim DH, Ahn MK, Min CM, Lee SB, Byun J, Pak C, Lee JS. Phosphoric acid doped triazole-containing cross-linked polymer electrolytes with enhanced stability for high-temperature proton exchange membrane fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117508] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Song HB, Kim DH, Kang MS. Thin Reinforced Poly(2,6-dimethyl-1,4-phenylene oxide)-based Anion-exchange Membranes with High Mechanical and Chemical Stabilities. CHEM LETT 2019. [DOI: 10.1246/cl.190671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hyeon-Bee Song
- Department of Green Chemical Engineering, Sangmyung University, 31 Sangmyungdae-gil, Dongnam-gu, Cheonan 31066, Korea
| | - Do-Hyeong Kim
- Department of Green Chemical Engineering, Sangmyung University, 31 Sangmyungdae-gil, Dongnam-gu, Cheonan 31066, Korea
| | - Moon-Sung Kang
- Department of Green Chemical Engineering, Sangmyung University, 31 Sangmyungdae-gil, Dongnam-gu, Cheonan 31066, Korea
| |
Collapse
|
11
|
Hao L, Wang C, Chen Q, Yu X, Liao J, Shen J, Gao C. A facile approach to fabricate composite anion exchange membranes with enhanced ionic conductivity and dimensional stability for electrodialysis. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Hao L, Liao J, Liu Y, Ruan H, Sotto A, der Bruggen BV, Shen J. Highly conductive anion exchange membranes with low water uptake and performance evaluation in electrodialysis. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Comb-shaped 2-Methylimidazolium Poly(arylene ether sulfone) Anion Exchange Membranes with High Alkaline Stability. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Nagane SS, Kuhire SS, Mane SR, Wadgaonkar PP. Partially bio-based aromatic poly(ether sulfone)s bearing pendant furyl groups: synthesis, characterization and thermo-reversible cross-linking with a bismaleimide. Polym Chem 2019. [DOI: 10.1039/c8py01477a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fully bio-based bisphenol, namely, 4,4′-(furan-2-ylmethylene)bis(2-methoxyphenol) was synthesized and its utility for synthesis of aromatic poly(ether sulfone)s bearing clickable pendant furyl groups was demonstrated.
Collapse
Affiliation(s)
- Samadhan S. Nagane
- Polymers and Advanced Materials Laboratory
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune-411 008
- India
| | - Sachin S. Kuhire
- Polymers and Advanced Materials Laboratory
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune-411 008
- India
| | - Shivshankar R. Mane
- Polymers and Advanced Materials Laboratory
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune-411 008
- India
| | - Prakash P. Wadgaonkar
- Polymers and Advanced Materials Laboratory
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune-411 008
- India
| |
Collapse
|
15
|
Bai Y, Yuan Y, Miao L, Lü C. Functionalized rGO as covalent crosslinkers for constructing chemically stable polysulfone-based anion exchange membranes with enhanced ion conductivity. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Cheng X, Wang J, Liao Y, Li C, Wei Z. Enhanced Conductivity of Anion-Exchange Membrane by Incorporation of Quaternized Cellulose Nanocrystal. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23774-23782. [PMID: 29938488 DOI: 10.1021/acsami.8b05298] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High ion conductivity of anion-exchange membrane is essential for the operation of alkaline anion-exchange membrane fuel cell. In this work, we demonstrated an effective strategy to enhance the conductivity of anion-exchange membrane (AEM), by incorporation of quaternized cellulose nanocrystal (QCNC) for the first time. Morphology observation demonstrated a uniform distribution of QCNC within QPPO matrix, as well as a clear QCNC network, which led to significant enhancement in hydroxide conductivities of composite membranes, for example, 2 wt % QCNC/QPPO membrane possessed a conductivity of 160% (60 mS cm-1, @80 °C) of that of QPPO. Furthermore, H2/O2 cell performance of membrane electrode assembly based on 2 wt % QCNC/QPPO AEM showed an excellent peak power density of 392 mV cm-2 at 60 °C without back pressure, whereas that of neat QPPO AEM was only 270 mV cm-2.
Collapse
Affiliation(s)
- Xia Cheng
- School of Chemistry & Chemical Engineering , Chongqing University , Chongqing 400044 , P. R. China
| | - Jianchuan Wang
- School of Chemistry & Chemical Engineering , Chongqing University , Chongqing 400044 , P. R. China
- State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , Sichuan , P. R. China
| | - Yunchuan Liao
- School of Chemistry & Chemical Engineering , Chongqing University , Chongqing 400044 , P. R. China
| | - Cunpu Li
- School of Chemistry & Chemical Engineering , Chongqing University , Chongqing 400044 , P. R. China
| | - Zidong Wei
- School of Chemistry & Chemical Engineering , Chongqing University , Chongqing 400044 , P. R. China
| |
Collapse
|