1
|
Zhang Z, Zhong M, Xiang H, Ding Y, Wang Y, Shi Y, Yang G, Tang B, Tam KC, Zhou G. Antibacterial polylactic acid fabricated via Pickering emulsion approach with polyethyleneimine and polydopamine modified cellulose nanocrystals as emulsion stabilizers. Int J Biol Macromol 2023; 253:127263. [PMID: 37802443 DOI: 10.1016/j.ijbiomac.2023.127263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Antibacterial biodegradable plastics are highly demanded for food package and disposable medical plastic consumables. Incorporating antibacterial nanoagents into polymer matrices is an effective method to endow polymers with antibacterial activity. However, synthesis of sustainable antibacterial nanoagents with high antibacterial activity via facile approach and well dispersion of them in polymer matrices are still challenging. In this study, polyethyleneimine (PEI) was grafted on surface of cellulose nanocrystals (CNCs) via the oxidation self-polymerization of dopamine (DA) and the Michael addition/Schiff base reaction between DA and PEI. The resulted PEI and polydopamine modified CNCs (PPCs) showed substantially enhanced antibacterial activity and reduced cytotoxicity for NIH3T3 than PEI due to increased local concentration and anchoring of PEI. The minimum concentration of PPCs to achieve antibacterial rate of 99.99 % against S. aureus and E. coli were about 50 and 20 μg/mL, respectively. PPCs displayed outstanding emulsifying ability, and PPC coated polylactic acid (PLA) microspheres were obtained by drying PPC stabilized PLA Pickering emulsion, leading to a well dispersion of PPCs in PLA. PPC/PLA film prepared by hot-pressing displayed great antibacterial performance and enhanced mechanical properties. Therefore, this study proposed a facile approach to fabricate biocompatible antibacterial nanoagents and plastics.
Collapse
Affiliation(s)
- Zhen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China; ScienceK Ltd, Huzhou 313000, China.
| | - Mengqiu Zhong
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Haosheng Xiang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yugao Ding
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | | | - Yijing Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Guang Yang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China.
| | - Biao Tang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Kam C Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Guofu Zhou
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
2
|
Controlled hydrophobic modification of cellulose nanocrystals for tunable Pickering emulsions. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
3
|
Yang X, Yang S, Wang L. Cellulose or chitin nanofibril-stabilized latex for medical adhesion via tailoring colloidal interactions. Carbohydr Polym 2022; 278:118916. [PMID: 34973735 DOI: 10.1016/j.carbpol.2021.118916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/24/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
The objective of this research is to develop a functional medical adhesive from natural nanofibril-stabilized latex through an aqueous process. Surface charged cellulose or chitin nanofibrils are used to form Pickering emulsions of acrylic monomers, followed by in situ polymerization. Charged initiators are selected to tailor the interactions between them and nanofibrils, and it is found that the repulsive electrostatic interactions play a key role in stabilizing the heterogeneous system. As a result, poly(2-ethylhexyl acrylate-co-methyl methacrylate) latexes are successfully prepared for surfactant-free adhesives with a high shear strength of 72.0 ± 6.5 kPa. In addition, drug can be easily incorporated in the nanopaper substrate or adhesive layer to form a medical tape, exhibiting long-term drug release and antibacterial behaviors. We managed developing a facile method to integrate green synthesis, versatile functionalities and excellent adhesion into one adhesive, which remains a great challenge.
Collapse
Affiliation(s)
- Xianpeng Yang
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Shuang Yang
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Lei Wang
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
4
|
Rigg A, Champagne P, Cunningham MF. Polysaccharide-Based Nanoparticles as Pickering Emulsifiers in Emulsion Formulations and Heterogenous Polymerization Systems. Macromol Rapid Commun 2021; 43:e2100493. [PMID: 34841604 DOI: 10.1002/marc.202100493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Bio-based Pickering emulsifiers are a nontoxic alternative to surfactants in emulsion formulations and heterogenous polymerizations. Recent demand for biocompatible and sustainable formulations has accelerated academic interest in polysaccharide-based nanoparticles as Pickering emulsifiers. Despite the environmental advantages, the inherent hydrophilicity of polysaccharides and their nanoparticles limits efficiency and application range. Modification of the polysaccharide surface is often required in the development of ultrastable, functional, and water-in-oil (W/O) systems. Complex surface modification calls into question the sustainability of polysaccharide-based nanoparticles and is identified as a significant barrier to commercialization. This review summarizes the use of nanocelluloses, -starches, and -chitins as Pickering emulsifiers, highlights trends and best practices in surface modification, and provides recommendations to expedite commercialization.
Collapse
Affiliation(s)
- Amanda Rigg
- Department of Chemical Engineering, 19 Division Street, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Pascale Champagne
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, ON, K7L 3N6, Canada.,Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Quebec City, Quebec, G1K 9A9, Canada
| | - Michael F Cunningham
- Department of Chemical Engineering, 19 Division Street, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Chemistry, 90 Bader Lane, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
5
|
Pang B, Liu H, Zhang K. Recent progress on Pickering emulsions stabilized by polysaccharides-based micro/nanoparticles. Adv Colloid Interface Sci 2021; 296:102522. [PMID: 34534752 DOI: 10.1016/j.cis.2021.102522] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/16/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
Pickering emulsions stabilized by micro/nanoparticles have attracted considerable attention owing to their great potential in various applications ranging from cosmetic and food industries to catalysis, tissue engineering and drug delivery. There is a growing demand to design "green" micro/nanoparticles for constructing stable Pickering emulsions. Micro/nanoparticles derived from the naturally occurring polysaccharides including cellulose, chitin, chitosan and starch are capable of assembling at oil/water interfaces and are promising green candidates because of their excellent biodegradability and renewability. The physicochemical properties of the micro/nanoparticles, which are determined by the fabricating approaches and/or post-modification methods, have a significant effect on the characteristics of the final Pickering emulsions and their applications. Herein, recent advances on Pickering emulsions stabilized by polysaccharides-based micro/nanoparticles and the construction of functional materials including porous foams, microcapsules and latex particles from these emulsions as templates, are reviewed. In particular, the effects of micro/nanoparticles properties on the characteristics of the Pickering emulsions and their applications are discussed. Furthermore, the obstacles that hinder the practical applications of polysaccharides-based micro/nanoparticles and Pickering emulsions as well as the prospects for the future development, are discussed.
Collapse
|
6
|
Gabriel VA, Champagne P, Cunningham MF, Dubé MA. In‐situ addition of carboxylated cellulose nanocrystals in seeded semi‐batch emulsion polymerization. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vida A. Gabriel
- Department of Chemical and Biological Engineering Centre for Catalysis Research and Innovation, University of Ottawa Ottawa Ontario Canada
| | - Pascale Champagne
- Department of Chemical Engineering Queen's University Kingston Ontario Canada
| | | | - Marc A. Dubé
- Department of Chemical and Biological Engineering Centre for Catalysis Research and Innovation, University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
7
|
Gestranius M, Kontturi KS, Mikkelson A, Virtanen T, Schirp C, Cranston ED, Kontturi E, Tammelin T. Creaming Layers of Nanocellulose Stabilized Water-Based Polystyrene: High-Solids Emulsions for 3D Printing. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.738643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oil-in-water emulsions stabilized using cellulose nanofibrils (CNF) form extremely stable and high-volume creaming layers which do not coalesce over extended periods of time. The stability is a result of the synergistic action of Pickering stabilization and the formation of a CNF percolation network in the continuous phase. The use of methyl cellulose (MC) as a co-emulsifier together with CNF further increases the viscosity of the system and is known to affect the droplet size distribution of the formed emulsion. Here, we utilize these highly stable creaming layer systems for in situ polymerization of styrene with the aim to prepare an emulsion-based dope for additive manufacturing. We show that the approach exploiting the creaming layer enables the effortless water removal yielding a paste-like material consisting of polystyrene beads decorated with CNF and MC. Further, we report comprehensive characterization that reveals the properties and the performance of the creaming layer. Solid-state NMR measurements confirmed the successful polymerization taking place inside the nanocellulosic network, and size exclusion chromatography revealed average molecular weight (Mw) of polystyrene as approximately 700,000 Da. Moreover, the amount of the leftover monomer was found to be less than 1% as detected by gas chromatography. The dry solids content of the paste was ∼20% which is a significant increase compared to the solids content of the original CNF dispersion (1.7 wt%). The shrinkage of the CNF, MC and polystyrene structures upon drying—an often-faced challenge—was found to be acceptable for this composite containing highly hygroscopic biobased materials. At best, the two dimensional shrinkage was no more than ca. 20% which is significantly lower than the shrinkage of pure CNF being as high as 50%. The paste, which is a composite of biobased materials and a synthetic polymer, was demonstrated in direct-ink-writing to print small objects. With further optimization of the formulation, we find the emulsion templating approach as a promising route to prepare composite materials.
Collapse
|
8
|
Dupont H, Laurichesse E, Héroguez V, Schmitt V. Green Hydrophilic Capsules from Cellulose Nanocrystal-Stabilized Pickering Emulsion Polymerization: Morphology Control and Spongelike Behavior. Biomacromolecules 2021; 22:3497-3509. [PMID: 34260207 DOI: 10.1021/acs.biomac.1c00581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pickering inverse emulsions of hydroxyl oligoethylene glycol methacrylate were stabilized in isopropyl myristate, a biofriendly oil, using surface-modified cellulose nanocrystals (CNCs) as stabilizing particles. The emulsions were further polymerized by free or controlled radical polymerization (ATRP), taking advantage of the bromoisobutyrate functions grafted on the CNC surface. Suspension polymerization of the emulsion led to full bead or empty capsule morphologies, depending on the initiation locus. The thickness of the CNC shell surrounding the polymerized emulsions could be tuned by modulating the aggregation state of the CNCs after their surface modification. An increase from 6 to 40 CNC layers helped improve the compression moduli of the beads from a dozen to hundreds of kPa.
Collapse
Affiliation(s)
- Hanaé Dupont
- Centre de Recherche Paul Pascal, UMR 5031 Univ. Bordeaux CNRS, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France.,Laboratoire de Chimie des Polymères Organiques, Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| | - Eric Laurichesse
- Centre de Recherche Paul Pascal, UMR 5031 Univ. Bordeaux CNRS, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
| | - Valérie Héroguez
- Laboratoire de Chimie des Polymères Organiques, Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| | - Véronique Schmitt
- Centre de Recherche Paul Pascal, UMR 5031 Univ. Bordeaux CNRS, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
| |
Collapse
|
9
|
Kedzior SA, Gabriel VA, Dubé MA, Cranston ED. Nanocellulose in Emulsions and Heterogeneous Water-Based Polymer Systems: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002404. [PMID: 32797718 DOI: 10.1002/adma.202002404] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Nanocelluloses (i.e., bacterial nanocellulose, cellulose nanocrystals, and cellulose nanofibrils) are cellulose-based materials with at least one dimension in the nanoscale. These materials have unique and useful properties and have been shown to assemble at oil-water interfaces and impart new functionality to emulsion and latex systems. Herein, the use of nanocellulose in both emulsions and heterogeneous water-based polymers is reviewed, including dispersion, suspension, and emulsion polymerization. Comprehensive tables describe past work employing nanocellulose as stabilizers or additives and the properties that can be tailored through the use of nanocellulose are highlighted. Even at low loadings, nanocellulose offers an unprecedented level of control as a property modifier for a range of emulsion and polymer applications, influencing, for example, emulsion type, stability, and stimuli-responsive behavior. Nanocellulose can tune polymer particle properties such as size, surface charge, and morphology, or be used to produce capsules and polymer nanocomposites with enhanced mechanical, thermal, and adhesive properties. The role of nanocellulose is discussed, and a perspective for future direction is presented.
Collapse
Affiliation(s)
- Stephanie A Kedzior
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Vida A Gabriel
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON, K1N 6N5, Canada
| | - Marc A Dubé
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON, K1N 6N5, Canada
| | - Emily D Cranston
- Department of Wood Science, Department of Chemical & Biological Engineering, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
10
|
Li MC, Wu Q, Moon RJ, Hubbe MA, Bortner MJ. Rheological Aspects of Cellulose Nanomaterials: Governing Factors and Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006052. [PMID: 33870553 DOI: 10.1002/adma.202006052] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/01/2020] [Indexed: 05/20/2023]
Abstract
Cellulose nanomaterials (CNMs), mainly including nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNCs), have attained enormous interest due to their sustainability, biodegradability, biocompatibility, nanoscale dimensions, large surface area, facile modification of surface chemistry, as well as unique optical, mechanical, and rheological performance. One of the most fascinating properties of CNMs is their aqueous suspension rheology, i.e., CNMs helping create viscous suspensions with the formation of percolation networks and chemical interactions (e.g., van der Waals forces, hydrogen bonding, electrostatic attraction/repulsion, and hydrophobic attraction). Under continuous shearing, CNMs in an aqueous suspension can align along the flow direction, producing shear-thinning behavior. At rest, CNM suspensions regain some of their initial structure immediately, allowing rapid recovery of rheological properties. These unique flow features enable CNMs to serve as rheological modifiers in a wide range of fluid-based applications. Herein, the dependence of the rheology of CNM suspensions on test protocols, CNM inherent properties, suspension environments, and postprocessing is systematically described. A critical overview of the recent progress on fluid applications of CNMs as rheology modifiers in some emerging industrial sectors is presented as well. Future perspectives in the field are outlined to guide further research and development in using CNMs as the next generation rheological modifiers.
Collapse
Affiliation(s)
- Mei-Chun Li
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA
| | - Robert J Moon
- Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
| | - Martin A Hubbe
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695-8005, USA
| | - Michael J Bortner
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, 24061, USA
| |
Collapse
|
11
|
Dupont H, Maingret V, Schmitt V, Héroguez V. New Insights into the Formulation and Polymerization of Pickering Emulsions Stabilized by Natural Organic Particles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00225] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hanaé Dupont
- Centre de Recherche Paul Pascal, CNRS, UMR 5031, Univ. Bordeaux, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
- Laboratoire de Chimie des Polymères Organiques, CNRS, Bordeaux INP, UMR 5629, Bordeaux, Univ. Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| | - Valentin Maingret
- Centre de Recherche Paul Pascal, CNRS, UMR 5031, Univ. Bordeaux, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
- Laboratoire de Chimie des Polymères Organiques, CNRS, Bordeaux INP, UMR 5629, Bordeaux, Univ. Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| | - Véronique Schmitt
- Centre de Recherche Paul Pascal, CNRS, UMR 5031, Univ. Bordeaux, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
| | - Valérie Héroguez
- Laboratoire de Chimie des Polymères Organiques, CNRS, Bordeaux INP, UMR 5629, Bordeaux, Univ. Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| |
Collapse
|
12
|
Huan S, Zhu Y, Xu W, McClements DJ, Bai L, Rojas OJ. Pickering Emulsions via Interfacial Nanoparticle Complexation of Oppositely Charged Nanopolysaccharides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12581-12593. [PMID: 33656841 DOI: 10.1021/acsami.0c22560] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We consider the variables relevant to adsorption of renewable nanoparticles and stabilization of multiphase systems, including the particle's hydrophilicity, electrostatic charge, axial aspect, and entanglement. Exploiting the complexation of two oppositely charged nanopolysaccharides, cellulose nanofibrils (CNFs) and nanochitin (NCh), we prepared CNF/NCh aqueous suspensions and identified the conditions for charge balance (turbidity and electrophoretic mobility titration). By adjusting the composition of CNF/NCh complexes, below and above net neutrality conditions, we produced sunflower oil-in-water Pickering emulsions with adjustable droplet diameters and stability against creaming and oiling-off. The adsorption of CNF/NCh complexes at the oil/water interface occurred with simultaneous partitioning (accumulation) of the CNF on the surface of the droplets in net negative or positive systems (below and above stochiometric charge balance relative to NCh). We further show that the morphology of the droplets and size distribution were preserved during storage for at least 6 months under ambient conditions. This long-term stability was held with a remarkable tolerance to changes in pH (e.g., 3-11) and ionic strength (e.g., 100-500 mM). The mechanism explaining these observations relates to the adsorption of the CNF in the complexes, counteracting the charge losses resulting from the deprotonation of NCh or charge screening. Overall, CNF/NCh complexes and the respective interfacial nanoparticle exchange greatly extend the conditions, favoring highly stable, green Pickering emulsions that offer potential in applications relevant to foodstuff, pharmaceutical, and cosmetic formulations.
Collapse
Affiliation(s)
- Siqi Huan
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, P. R. China
- Bioproducts Institute, Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ya Zhu
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Long Bai
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, P. R. China
- Bioproducts Institute, Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Orlando J Rojas
- Bioproducts Institute, Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| |
Collapse
|
13
|
Chu Y, Sun Y, Wu W, Xiao H. Dispersion Properties of Nanocellulose: A Review. Carbohydr Polym 2020; 250:116892. [DOI: 10.1016/j.carbpol.2020.116892] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/28/2022]
|
14
|
Lombardo S, Villares A. Engineered Multilayer Microcapsules Based on Polysaccharides Nanomaterials. Molecules 2020; 25:E4420. [PMID: 32993007 PMCID: PMC7582779 DOI: 10.3390/molecules25194420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
The preparation of microcapsules composed by natural materials have received great attention, as they represent promising systems for the fabrication of micro-containers for controlled loading and release of active compounds, and for other applications. Using polysaccharides as the main materials is receiving increasing interest, as they constitute the main components of the plant cell wall, which represent an ideal platform to mimic for creating biocompatible systems with specific responsive properties. Several researchers have recently described methods for the preparation of microcapsules with various sizes and properties using cell wall polysaccharide nanomaterials. Researchers have focused mostly in using cellulose nanomaterials as structural components in a bio-mimetic approach, as cellulose constitutes the main structural component of the plant cell wall. In this review, we describe the microcapsules systems presented in the literature, focusing on the works where polysaccharide nanomaterials were used as the main structural components. We present the methods and the principles behind the preparation of these systems, and the interactions involved in stabilizing the structures. We show the specific and stimuli-responsive properties of the reported microcapsules, and we describe how these characteristics can be exploited for specific applications.
Collapse
|
15
|
Griveau L, Delorme J, Engström J, Dugas PY, Carlmark A, Malmström E, D’Agosto F, Lansalot M. Synergetic Effect of Water-Soluble PEG-Based Macromonomers and Cellulose Nanocrystals for the Stabilization of PMMA Latexes by Surfactant-Free Emulsion Polymerization. Biomacromolecules 2020; 21:4479-4491. [DOI: 10.1021/acs.biomac.0c00439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lucie Griveau
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - James Delorme
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Joakim Engström
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Pierre-Yves Dugas
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Anna Carlmark
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Eva Malmström
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Franck D’Agosto
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Muriel Lansalot
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| |
Collapse
|
16
|
Akhlaghi SP, da Silveira Balestrin LB, Brinatti C, Pirolt F, Loh W, Glatter O. Preparation and Characterization of Stabilizer-Free Phytantriol-Based Water-in-Oil Internally Liquid Crystalline Emulsions. J Pharm Sci 2020; 109:2024-2032. [DOI: 10.1016/j.xphs.2020.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/19/2020] [Accepted: 02/26/2020] [Indexed: 11/25/2022]
|
17
|
Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, Hussin MH. Nanocellulose: From Fundamentals to Advanced Applications. Front Chem 2020; 8:392. [PMID: 32435633 PMCID: PMC7218176 DOI: 10.3389/fchem.2020.00392] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed.
Collapse
Affiliation(s)
- Djalal Trache
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Ahmed Fouzi Tarchoun
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Mehdi Derradji
- UER Procédés Energétiques, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
| | - Tuan Sherwyn Hamidon
- Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Nanang Masruchin
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jakarta, Indonesia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - M. Hazwan Hussin
- Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
18
|
Limousin E, Rafaniello I, Schäfer T, Ballard N, Asua JM. Linking Film Structure and Mechanical Properties in Nanocomposite Films Formed from Dispersions of Cellulose Nanocrystals and Acrylic Latexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2052-2062. [PMID: 32031814 DOI: 10.1021/acs.langmuir.9b03861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cellulose nanocrystals (CNCs) are unique, lightweight materials that possess high elastic modulus and tensile strength, making them of great interest in the formation of nanocomposite materials. However, efficient design of the composite material is essential in translating the mechanical properties of the individual CNCs into the nanocomposite film. In this work, we demonstrate the formation of structured CNC/acrylic dispersions by physical blending of the anionic CNCs with charged acrylic latex particles. By blending with large cationic latex particles, the CNCs adsorbed onto the acrylic latex surface while blending with small latex particles led to the inverse structure. Films were cast from these dispersions and the physical properties were compared with the aim of understanding the influence of the initial structure of the hybrid dispersion on the structure of the final film. A significant difference in the mechanical properties was observed based on the position of the CNCs in the initial dispersion. Adsorption of latex particles onto the CNC surface led to a random distribution of nonconnected CNCs, which contributed little to improving the Young's modulus, while adsorption of CNC onto the latex led to a honeycomb CNC network and a large increase in the Young's modulus. This work underlines the importance of particle structure on the structure and mechanical properties of nanostructured films.
Collapse
Affiliation(s)
- Elodie Limousin
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, Donostia-San Sebastián 20018, Spain
| | - Iliane Rafaniello
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, Donostia-San Sebastián 20018, Spain
| | - Thomas Schäfer
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, Donostia-San Sebastián 20018, Spain
- Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Nicholas Ballard
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, Donostia-San Sebastián 20018, Spain
- Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - José M Asua
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, Donostia-San Sebastián 20018, Spain
| |
Collapse
|
19
|
Glasing J, Jessop PG, Champagne P, Hamad WY, Cunningham MF. Microsuspension Polymerization of Styrene Using Cellulose Nanocrystals as Pickering Emulsifiers: On the Evolution of Latex Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:796-809. [PMID: 31873028 DOI: 10.1021/acs.langmuir.9b03583] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a mechanistic study of the microsuspension polymerization of styrene stabilized by cellulose nanocrystals (CNCs) in its native form as well as graft-modified with copolymers of styrene and N-3-(dimethylamino)propyl methacrylamide (DMAPMAm) or N,N-(diethylamino)ethyl methacrylate (DEAEMA). Native CNCs and graft-modified CNCs were shown to form stable styrene emulsions with an average droplet diameter of 18-20 and 5-9 μm, respectively. Initiators of widely varying water solubilities [2,2'-azobisisobutyronitrile (AIBN), 2-2'-azobis(2,4-dimethylvaleronitrile) (Vazo-52), and lauroyl peroxide (LPO)] were employed for the polymerizations. The type of initiator and the type of CNC were shown to directly affect the microsuspension polymerization kinetics, particle size, and molecular weight distribution. Using AIBN and Vazo-52, submicron latex particles were observed in the final latex in addition to the desired 3-20 μm CNC-armored microsuspension particles. The resulting latex and microsuspension polystyrene particles were studied for their CNC coverage and surface charge. We found that the presence of CNCs in the aqueous phase did not lead to Pickering emulsion polymerization by heterogeneous nucleation.
Collapse
Affiliation(s)
- Joe Glasing
- Department of Chemical Engineering , Queen's University , 19 Division Street , Kingston , Ontario K7L 3N6 , Canada
| | - Philip G Jessop
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario K7L 3N6 , Canada
| | - Pascale Champagne
- Department of Chemical Engineering , Queen's University , 19 Division Street , Kingston , Ontario K7L 3N6 , Canada
- Department of Civil Engineering , Queen's University , 58 University Avenue , Kingston , Ontario K7L 3N6 , Canada
| | - Wadood Y Hamad
- Transformation and Interfaces Group-Bioproducts ICE FPInnovations , 2665 East Mall , Vancouver , British Columbia V6T 1Z4 , Canada
| | - Michael F Cunningham
- Department of Chemical Engineering , Queen's University , 19 Division Street , Kingston , Ontario K7L 3N6 , Canada
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario K7L 3N6 , Canada
| |
Collapse
|
20
|
Kaku Y, Fujisawa S, Saito T, Isogai A. Synthesis of Chitin Nanofiber-Coated Polymer Microparticles via Pickering Emulsion. Biomacromolecules 2020; 21:1886-1891. [DOI: 10.1021/acs.biomac.9b01757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yuto Kaku
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuji Fujisawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tsuguyuki Saito
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akira Isogai
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
21
|
Cazotti JC, Smeltzer SE, Smeets NMB, Dubé MA, Cunningham MF. Starch nanoparticles modified with styrene oxide and their use as Pickering stabilizers. Polym Chem 2020. [DOI: 10.1039/d0py00036a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Starch nanoparticles (SNP) were modified with styrene oxide (STO) and successfully used as Pickering stabilizers in miniemulsion and emulsion polymerization.
Collapse
Affiliation(s)
- Jaime C. Cazotti
- Department of Chemical Engineering
- Queen's University
- Kingston
- Canada
| | | | | | - Marc A. Dubé
- Department of Chemical and Biological Engineering
- Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | | |
Collapse
|
22
|
In-situ modified cellulose nanocrystals as water droplet stabilizer in polystyrene beads targeted for water expanded foam. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Mi X, Wang X, Xu C, Zhang Y, Tan X, Gao J, Liu Y. Alginate microspheres prepared by ionic crosslinking of pickering alginate emulsions. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1083-1096. [DOI: 10.1080/09205063.2019.1622185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xue Mi
- Department of Biomaterial, School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xingrui Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Chen Xu
- Beijing 302 Hospital, Beijing, China
| | - Yuying Zhang
- Department of Biomaterial, School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaoyue Tan
- Department of Biomaterial, School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Jianping Gao
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Yu Liu
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| |
Collapse
|
24
|
Bai L, Huan S, Xiang W, Liu L, Yang Y, Nugroho RWN, Fan Y, Rojas OJ. Self-Assembled Networks of Short and Long Chitin Nanoparticles for Oil/Water Interfacial Superstabilization. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2019; 7:6497-6511. [PMID: 30956906 PMCID: PMC6448262 DOI: 10.1021/acssuschemeng.8b04023] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/31/2019] [Indexed: 05/08/2023]
Abstract
Highly charged (zeta potential ζ = +105 mV, acetate counterions) chitin nanoparticles (NCh) of three different average aspect ratios (∼5, 25, and >60) were obtained by low-energy deconstruction of partially deacetylated chitin. The nanoparticles were effective in reducing the interfacial tension and stabilized the oil/water interface via network formation (interfacial dilatational rheology data) becoming effective in stabilizing Pickering systems, depending on NCh size, composition, and formulation variables. The improved interfacial wettability and electrosteric repulsion facilitated control over the nanoparticle's surface coverage on the oil droplets, their aspect ratio and stability against coalescence during long-term storage. Emulsion superstabilization (oil fractions below 0.5) occurred by the microstructuring and thickening effect of NCh that formed networks at concentrations as low as 0.0005 wt %. The ultrasound energy used during emulsion preparation simultaneously reduced the longer nanoparticles, producing very stable, fine oil droplets (diameter ∼1 μm). Our findings indicate that NCh surpasses any reported biobased nanoparticle, including nanocelluloses, for its ability to stabilize interfaces at ultralow concentrations and represent a step-forward in efforts to fully replace surfactants in multiphase systems.
Collapse
Affiliation(s)
- Long Bai
- Bio-Based
Colloids and Materials, Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie1, Espoo 02150, Finland
| | - Siqi Huan
- Bio-Based
Colloids and Materials, Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie1, Espoo 02150, Finland
| | - Wenchao Xiang
- Bio-Based
Colloids and Materials, Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie1, Espoo 02150, Finland
| | - Liang Liu
- Bio-Based
Colloids and Materials, Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie1, Espoo 02150, Finland
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yang Yang
- Research
Programs Unit, Molecular Neurology, University
of Helsinki, Fabianinkatu
33, Helsinki 00014, Finland
| | - Robertus Wahyu N. Nugroho
- Bio-Based
Colloids and Materials, Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie1, Espoo 02150, Finland
| | - Yimin Fan
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Orlando J. Rojas
- Bio-Based
Colloids and Materials, Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie1, Espoo 02150, Finland
| |
Collapse
|
25
|
Limousin E, Ballard N, Asua JM. Synthesis of cellulose nanocrystal armored latex particles for mechanically strong nanocomposite films. Polym Chem 2019. [DOI: 10.1039/c8py01785a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mechanically strong films are generated from cellulose nanocrystal armored latex particles synthesized by emulsion polymerization.
Collapse
Affiliation(s)
- Elodie Limousin
- POLYMAT and Departamento de Química Aplicada
- Facultad de Ciencias Químicas
- University of the Basque Country UPV/EHU
- Donostia-San Sebastián 20018
- Spain
| | - Nicholas Ballard
- POLYMAT and Departamento de Química Aplicada
- Facultad de Ciencias Químicas
- University of the Basque Country UPV/EHU
- Donostia-San Sebastián 20018
- Spain
| | - José M. Asua
- POLYMAT and Departamento de Química Aplicada
- Facultad de Ciencias Químicas
- University of the Basque Country UPV/EHU
- Donostia-San Sebastián 20018
- Spain
| |
Collapse
|
26
|
Jiménez Saelices C, Save M, Capron I. Synthesis of latex stabilized by unmodified cellulose nanocrystals: the effect of monomers on particle size. Polym Chem 2019. [DOI: 10.1039/c8py01575a] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellulose nanocrystals (CNCs) are sustainable rod-shaped nanoparticles able to adsorb at oil–water interfaces to produce highly stable Pickering emulsions with enhanced mechanical properties.
Collapse
Affiliation(s)
| | - Maud Save
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| | - Isabelle Capron
- UR 1268 Biopolymères Interactions Assemblages
- INRA
- 44316 Nantes
- France
| |
Collapse
|
27
|
Werner A, Schmitt V, Sèbe G, Héroguez V. Convenient Synthesis of Hybrid Polymer Materials by AGET-ATRP Polymerization of Pickering Emulsions Stabilized by Cellulose Nanocrystals Grafted with Reactive Moieties. Biomacromolecules 2018; 20:490-501. [PMID: 30500209 DOI: 10.1021/acs.biomac.8b01482] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report a novel method to prepare capsules, beads, or open-cell materials from Pickering emulsions of monomers, stabilized by cellulose nanocrystals (CNCs) grafted with reactive isobutyrate bromide moieties (CNC-Br). CNC-Br particles with different hydrophilic/hydrophobic balance at their surface were prepared and subsequently used to stabilize direct (O/W), inverted (W/O), or double emulsions of styrene or n-BuA. The different emulsions obtained were subsequently polymerized, by initiating an AGET-ATRP polymerization from the brominated particles surrounding the stabilized droplets. The different hybrid polymer materials obtained were subsequently characterized, and the impact of the CNCs functionalization and polymerization conditions was particularly discussed.
Collapse
Affiliation(s)
- Arthur Werner
- Laboratoire de Chimie des Polymères Organiques CNRS UMR5629, IPB-ENSCBP, Université de Bordeaux , 16 avenue Pey-Berland , F-33600 Pessac , France
| | - Véronique Schmitt
- Centre de Recherche Paul Pascal UMR 5031 CNRS Université de Bordeaux , 115 Avenue du Dr Albert Schweitzer , 33600 Pessac , France
| | - Gilles Sèbe
- Laboratoire de Chimie des Polymères Organiques CNRS UMR5629, IPB-ENSCBP, Université de Bordeaux , 16 avenue Pey-Berland , F-33600 Pessac , France
| | - Valérie Héroguez
- Laboratoire de Chimie des Polymères Organiques CNRS UMR5629, IPB-ENSCBP, Université de Bordeaux , 16 avenue Pey-Berland , F-33600 Pessac , France
| |
Collapse
|
28
|
Lu P, Guo M, Yang Y, Wu M. Nanocellulose Stabilized Pickering Emulsion Templating for Thermosetting AESO Nanocomposite Foams. Polymers (Basel) 2018; 10:E1111. [PMID: 30961036 PMCID: PMC6403711 DOI: 10.3390/polym10101111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 01/15/2023] Open
Abstract
Emulsion templating has emerged as an effective approach to prepare polymer-based foams. This study reports a thermosetting nanocomposite foam prepared by nanocellulose stabilized Pickering emulsion templating. The Pickering emulsion used as templates for the polymeric foams production was obtained by mechanically mixing cellulose nanocrystals (CNCs) water suspensions with the selected oil mixtures comprised of acrylated epoxidized soybean oil (AESO), 3-aminopropyltriethoxysilane (APTS), and benzoyl peroxide (BPO). The effects of the oil to water weight ratio (1:1 to 1:3) and the concentration of CNCs (1.0⁻3.0 wt %) on the stability of the emulsion were studied. Emulsions were characterized according to the emulsion stability index, droplet size, and droplet distribution. The emulsion prepared under the condition of oil to water ratio 1:1 and concentration of CNCs at 2.0 wt % showed good stability during the two-week storage period. Nanocomposite foams were formed by heating the Pickering emulsion at 90 °C for 60 min. Scanning electron microscopy (SEM) images show that the foam has a microporous structure with a non-uniform cell size that varied from 0.3 to 380 μm. The CNCs stabilized Pickering emulsion provides a versatile approach to prepare innovative functional bio-based materials.
Collapse
Affiliation(s)
- Peng Lu
- Institute of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning 530004, China.
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology, Jinan 250353, China.
| | - Mengya Guo
- Institute of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning 530004, China.
| | - Yang Yang
- Institute of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning 530004, China.
| | - Min Wu
- Institute of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning 530004, China.
| |
Collapse
|
29
|
Luo Q, Wang Y, Yoo E, Wei P, Pentzer E. Ionic Liquid-Containing Pickering Emulsions Stabilized by Graphene Oxide-Based Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10114-10122. [PMID: 30060669 DOI: 10.1021/acs.langmuir.8b02011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Emulsions stabilized by particles (i.e., Pickering emulsions) are complementary to those stabilized by small molecules or polymers and most commonly consist of oil droplets dispersed in a continuous water phase, with particles assembled at the fluid-fluid interface. New particle surfactants and different fluid-fluid interfaces are critical for developing next-generation systems for a number of advanced applications. Herein we report the preparation of IL-containing emulsions stabilized by graphene oxide (GO)-based nanoparticles using the IL [Bmim][PF6]: GO nanosheets stabilize IL-in-water emulsions, and alkylated GO nanosheets (C18-GO) stabilize IL-in-oil emulsions. The impact of particle concentration, fluid-fluid ratio, and addition of acid or base on emulsion formation and stability is studied, with distinct effects for the water and oil systems observed. We then illustrate the broad applicability of GO-based particle surfactants by preparing emulsions with different ILs and preparing inverted emulsions (water-in-IL and oil-in-IL emulsions). The latter systems were accessed by tuning the polarity of GO nanosheets by functionalization with a perfluorinated alkyl chain such that they were dispersible in IL. This work provides insight into the preparation of different IL-containing emulsions and lays a foundation for the architecture of dissimilar materials into composite systems.
Collapse
Affiliation(s)
- Qinmo Luo
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Yifei Wang
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Esther Yoo
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Peiran Wei
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Emily Pentzer
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| |
Collapse
|
30
|
Werner A, Sèbe G, Héroguez V. A new strategy to elaborate polymer composites via Pickering emulsion polymerization of a wide range of monomers. Polym Chem 2018. [DOI: 10.1039/c8py01022f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report a novel strategy to prepare polymer composites reinforced with cellulose nanocrystals (CNCs) via Pickering emulsion polymerization.
Collapse
Affiliation(s)
- Arthur Werner
- Laboratoire de Chimie Organique des Polymères. CNRS UMR5629
- IPB-ENSCBP
- Université de Bordeaux
- F-33600 Pessac
- France
| | - Gilles Sèbe
- Laboratoire de Chimie Organique des Polymères. CNRS UMR5629
- IPB-ENSCBP
- Université de Bordeaux
- F-33600 Pessac
- France
| | - Valérie Héroguez
- Laboratoire de Chimie Organique des Polymères. CNRS UMR5629
- IPB-ENSCBP
- Université de Bordeaux
- F-33600 Pessac
- France
| |
Collapse
|
31
|
Bai L, Jiang X, Liu B, Wang W, Chen H, Xue Z, Niu Y, Yang H, Wei D. RAFT-mediated Pickering emulsion polymerization with cellulose nanocrystals grafted with random copolymer as stabilizer. RSC Adv 2018; 8:28660-28667. [PMID: 35548399 PMCID: PMC9084400 DOI: 10.1039/c8ra03816c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022] Open
Abstract
The synthesis of a RAFT-mediated Pickering emulsion was firstly achieved by using cellulose nanocrystals (CNCs) grafted with a random copolymer as the stabilizer. Firstly, poly(acrylonitrile-r-butyl acrylate) (poly(AN-r-nBA)) was synthesized by Cu(0)-mediated CRP, which was further modified via a click chemistry strategy to obtain poly(ethylene tetrazole-r-butyl acrylate) (poly(VT-r-nBA)). Then, poly(VT-r-nBA) was grafted onto the CNCs through a Mitsunobu reaction to obtain poly(VT-r-nBA)-g-CNCs. Stabilized by poly(VT-r-nBA)-g-CNCs, an O/W RAFT-mediated Pickering emulsion was formed for the preparation of well-controlled poly(methyl methacrylate) (PMMA) particles with water-soluble potassium persulfate (KPS) as an initiator and oil-soluble 4-cyanopentanoic acid dithiobenzoate (CPADB) as a chain transfer agent. Rheological analysis suggested that the prepared Pickering emulsion possessed good stability under the influences of changes in strain, time, frequency and temperature. Furthermore, the recycling and further utilization of the poly(VT-r-nBA)-g-CNCs could be simply realized through centrifugal separation. A RAFT-mediated Pickering emulsion with cellulose nanocrystals grafted with a random copolymer was used for the preparation of poly(methyl methacrylate) particles..![]()
Collapse
Affiliation(s)
- Liangjiu Bai
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| | - Xinyan Jiang
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| | - Beifang Liu
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| | - Wenxiang Wang
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| | - Hou Chen
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| | - Zhongxin Xue
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| | - Yuzhong Niu
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| | - Huawei Yang
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| | - Donglei Wei
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| |
Collapse
|
32
|
Glasing J, Jessop PG, Champagne P, Cunningham MF. Graft-modified cellulose nanocrystals as CO2-switchable Pickering emulsifiers. Polym Chem 2018. [DOI: 10.1039/c8py00417j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cellulose nanocrystals (CNC) grafted with <25 wt% PDEAEMA or PDMAPMAm were used as CO2-switchable Pickering emulsifiers for the reversible emulsification/demulsification of oil and water.
Collapse
Affiliation(s)
- J. Glasing
- Department of Chemical Engineering
- 19 Division Street
- Queen's University
- Kingston
- Canada
| | - P. G. Jessop
- Department of Chemistry
- 90 Bader Lane
- Queen's University
- Kingston
- Canada
| | - P. Champagne
- Department of Chemical Engineering
- 19 Division Street
- Queen's University
- Kingston
- Canada
| | - M. F. Cunningham
- Department of Chemical Engineering
- 19 Division Street
- Queen's University
- Kingston
- Canada
| |
Collapse
|
33
|
Yuan W, Wang C, Lei S, Chen J, Lei S, Li Z. Ultraviolet light-, temperature- and pH-responsive fluorescent sensors based on cellulose nanocrystals. Polym Chem 2018. [DOI: 10.1039/c8py00613j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intelligent CNC-g-P(AzoC6MA-co-DMAEMA) fluorescent nanosensors present ultraviolet light-, temperature- and pH-responsive properties.
Collapse
Affiliation(s)
- Weizhong Yuan
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Chunyao Wang
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Shize Lei
- Central South University
- Changsha 410083
- P. R. China
| | - Jiangdi Chen
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Shaorong Lei
- Department of Plastic Surgery
- Xiangya Hospital
- Central South University
- Changsha 410008
- P. R. China
| | - Zhihong Li
- Division of General Surgery
- Shanghai Pudong New District Zhoupu Hospital
- Shanghai 201200
- P. R. China
| |
Collapse
|
34
|
Rodier BJ, de Leon A, Hemmingsen C, Pentzer E. Polymerizations in oil-in-oil emulsions using 2D nanoparticle surfactants. Polym Chem 2018. [DOI: 10.1039/c7py01819c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Oil-in-oil emulsions are especially attractive for compartmentalized reactions with water-sensitive monomers which cannot be used with traditional oil/water emulsions.
Collapse
Affiliation(s)
- Bradley J. Rodier
- Department of Chemistry
- Case Western Reserve University
- Cleveland
- USA 44106
| | - Al de Leon
- Department of Chemistry
- Case Western Reserve University
- Cleveland
- USA 44106
| | | | - Emily Pentzer
- Department of Chemistry
- Case Western Reserve University
- Cleveland
- USA 44106
| |
Collapse
|