1
|
Choudhury N, Cho S, Baek J, Hong J, Kim BS. Bacterial-Infection-Triggered Release of Antibacterial Aldehyde from Triblock Copolyether Hydrogels. Biomacromolecules 2024; 25:5212-5221. [PMID: 38996363 DOI: 10.1021/acs.biomac.4c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Bacterial infections pose a significant threat to public health worldwide. Hydrogel-based biomaterials have proven to be particularly useful in addressing persistent bacterial infections due to their stimuli-responsive degradability, high biocompatibility, ability to release antibacterial agents on demand, and long-lasting antibacterial activity. Herein, we fabricated ABA-type triblock copolyether hydrogels, wherein, hexanal, a bioactive aldehyde with antibacterial activity, was affixed to the hydrophobic micellar core via acetal linkage. The hydrogel exhibited degradation under acidic environment via the hydrolysis of acetal linkages, leading to the concomitant release of hexanal to exhibit highly potent bactericidal activity against both Escherichia coli and Staphylococcus aureus. Furthermore, a dual-mode release of the model therapeutic agent Nile Red from the hydrophobic micellar core of the hydrogel in conjunction with hexanal was demonstrated using this system. We anticipate that this study will provide a new platform for the development of hydrogels with tailorable release profiles for biologically active compounds that are activated by the acidification triggered by bacterial infection.
Collapse
Affiliation(s)
- Neha Choudhury
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Seongeun Cho
- Department of Chemical & Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinsu Baek
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Baek J, Song N, Yoo B, Lee D, Kim BS. Precisely Programmable Degradation and Drug Release Profiles in Triblock Copolyether Hydrogels with Cleavable Acetal Pendants. J Am Chem Soc 2024; 146:13836-13845. [PMID: 38717976 DOI: 10.1021/jacs.3c14838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hydrogels hold significant promise as drug delivery systems due to their distinct advantage of sustained localized drug release. However, the challenge of regulating the initial burst release while achieving precise control over degradation and drug-release kinetics persists. Herein, we present an ABA-type triblock copolymer-based hydrogel system with precisely programmable degradation and release kinetics. The resulting hydrogels were designed with a hydrophilic poly(ethylene oxide) midblock and a hydrophobic end-block composed of polyethers with varying ratios of ethoxyethyl glycidyl ether and tetrahydropyranyl glycidyl ether acetal pendant possessing different hydrolysis kinetics. This unique side-chain strategy enabled us to achieve a broad spectrum of precise degradation and drug-release profiles under mildly acidic conditions while maintaining the cross-linking density and viscoelastic modulus, which is unlike the conventional polyester-based backbone degradation system. Furthermore, programmable degradation of the hydrogels and release of active therapeutic agent paclitaxel loaded therein are demonstrated in an in vivo mouse model by suppressing tumor recurrence following surgical resection. Tuning of the fraction of two acetal pendants in the end-block provided delicate tailoring of hydrogel degradation and the drug release capability to achieve the desired therapeutic efficacy. This study not only affords a facile means to design hydrogels with precisely programmable degradation and release profiles but also highlights the critical importance of aligning the drug release profile with the target disease.
Collapse
Affiliation(s)
- Jinsu Baek
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Nanhee Song
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byungwoo Yoo
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Dongwon Lee
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Kang H, Kim SE, Park YI, Kim JC, Jeong JE, Jung H, Lee H, Hwang SY, Cheong IW, Lee SH, Seo E. Polyether-based waterborne synergists: effect of polymer topologies on pigment dispersion. RSC Adv 2023; 13:31092-31100. [PMID: 37881755 PMCID: PMC10594153 DOI: 10.1039/d3ra06427a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Control of polymer topologies is essential to determine their unique physical properties and potential applications. The polymer topologies can have a critical effect on pigment dispersion owing to their unique architectures; however, studies using polymer topologies on pigment dispersion in aqueous systems are scarce. Thus, this study proposes various topologies of polyether-based waterborne synergists, such as linear, hyperbranched, and branched cyclic structures. Specifically, we applied branched types of polyglycidols (PGs) as a synergist to provide polymer topology-dependent dispersibility for the surface-modification of Red 170 particles through adsorption and steric hindrance. The topology-controlled PG synergists (PGSs) were successfully prepared by post-polymerization modification with phthalimide and benzoyl groups. Particularly, the branched types of PGSs, branched cyclic PGS (bc-PGS), and hyperbranched PGS (hb-PGS) exhibited improved dispersibility through adsorption on top of the pigment, interaction between dispersant (BYK 190) and pigment, and steric effect. Surprisingly, hb-PGS conferred the Red 170 pigment particles with superior storage stability than that of bc-PGS despite their similar structural features. This study suggests the widespread potential application of PGSs as waterborne synergists for various dispersion applications.
Collapse
Affiliation(s)
- Hansol Kang
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology Ulsan 44412 Republic of Korea
- Department of Applied Chemistry, Kyungpook National University (KNU) Daegu 41566 Republic of Korea
| | - Si Eun Kim
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology Ulsan 44412 Republic of Korea
| | - Young Il Park
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology Ulsan 44412 Republic of Korea
| | - Jin Chul Kim
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology Ulsan 44412 Republic of Korea
| | - Ji-Eun Jeong
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology Ulsan 44412 Republic of Korea
| | - Hyocheol Jung
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology Ulsan 44412 Republic of Korea
| | - Hyosun Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University 80 Daehakro, Buk-gu Daegu 41566 Republic of Korea
| | - Sung Yeon Hwang
- Department of Plant & Environmental New Resources and Graduate School of Biotechnology, Kyung Hee University Gyeonggi-do 17104 Republic of Korea
| | - In Woo Cheong
- Department of Applied Chemistry, Kyungpook National University (KNU) Daegu 41566 Republic of Korea
| | - Sang-Ho Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology Ulsan 44412 Republic of Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST) Daejeon 34113 Republic of Korea
| | - Eunyong Seo
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology Ulsan 44412 Republic of Korea
- Department of Chemical Engineering, Ulsan College Ulsan 44610 Republic of Korea
| |
Collapse
|
4
|
Park J, Yu Y, Lee JW, Kim BS. Anionic Ring-Opening Polymerization of a Functional Epoxide Monomer with an Oxazoline Protecting Group for the Synthesis of Polyethers with Carboxylic Acid Pendants. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jihye Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Yeji Yu
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Joo Won Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Liu S, Liu L, Zhou Y, Chen Y, Zhao J. Selective ring-opening polymerization of glycidyl ester: a versatile synthetic platform for glycerol-based (co)polyethers. Polym Chem 2022. [DOI: 10.1039/d2py00551d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linear polyglycerol is highly valued for its excellent hydrophilicity and biocompatibility as well as its multihydroxy nature. We report here a convenient route for controlled synthesis of polyglycerol through ring-opening...
Collapse
|
6
|
Kim SE, Lee YR, Kim M, Seo E, Paik HJ, Kim JC, Jeong JE, Park YI, Kim BS, Lee SH. Highly Tunable Metal-Free Ring Opening Polymerization of Glycidol into Various Controlled Topologies Catalyzed by Frustrated Lewis Pairs. Polym Chem 2022. [DOI: 10.1039/d1py01442k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlling the topology of a polymer is essential in determining its physical properties and processing. Even after numerous studies, obtaining a diverse array of topologies, particularly within the framework of...
Collapse
|
7
|
Baek J, Kim S, Son I, Choi SH, Kim BS. Hydrolysis-Driven Viscoelastic Transition in Triblock Copolyether Hydrogels with Acetal Pendants. ACS Macro Lett 2021; 10:1080-1087. [PMID: 35549123 DOI: 10.1021/acsmacrolett.1c00413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While the hydrolytic cleavage of ester groups is widely exploited in degradable hydrogels, the scission in the midst of chain backbones can bring dramatic changes in the mechanical properties of the hydrogels. However, the predictive design of the mechanical profile of the hydrogels is a complex task, mainly due to the randomness of the location of chain scission. To overcome this challenge, we herein present degradable ABA triblock poly(ethylene oxide)-based hydrogels containing an A-block bearing acetal pendant, which provides systematically tunable mechano-temporal properties of the hydrogels. In particular, hydrophobic endocyclic tetrahydropyranyl or exocyclic 1-(cyclohexyloxy)ethyl acetal pendants are gradually cleaved by acidic hydrolysis, leading to the gel-to-sol transition at room temperature. Most importantly, a series of dynamic mechanical analyses coupled with ex situ NMR spectroscopy revealed that the hydrolysis rate can be orthogonally and precisely tuned by changing the chemical structure and hydrophobicity of acetal pendants. This study provides a platform for the development of versatile degradable hydrogels in a highly controllable manner.
Collapse
Affiliation(s)
- Jinsu Baek
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Seyoung Kim
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Iloh Son
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Baek J, Kim M, Park Y, Kim BS. Acetal-Based Functional Epoxide Monomers: Polymerizations and Applications. Macromol Biosci 2021; 21:e2100251. [PMID: 34369084 DOI: 10.1002/mabi.202100251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/24/2021] [Indexed: 11/08/2022]
Abstract
Protecting group chemistry is essential for various organic transformation and polymerization processes. In particular, conventional anionic ring-opening polymerization (AROP) often requires proper protecting group chemistry because it is typically incompatible with most functional groups due to the highly basic and nucleophilic conditions. In this context, many functional epoxide monomers with proper protecting groups are developed, including the acetal group as a representative example. Since the early introduction of ethoxyethyl glycidyl ether, there is significant development of acetal-based monomers in the polyethers. These monomers are now utilized not only as protecting groups for hydroxyl groups under AROP conditions but also as pH-responsive moieties for biomedical applications, further expanding their utility in the use of functionalized polyethers. Recent progress in this field is outlined from their synthesis, polymerization, and biomedical applications.
Collapse
Affiliation(s)
- Jinsu Baek
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minseong Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea.,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Youngsin Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
9
|
Choi JW, Choi SH, Won JI. Self-Assembly Behavior of Elastin-like Polypeptide Diblock Copolymers Containing a Charged Moiety. Biomacromolecules 2021; 22:2604-2613. [PMID: 34038105 DOI: 10.1021/acs.biomac.1c00322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Elastin-like polypeptides (ELPs) are stimulus-responsive protein-based biopolymers, and some ELP block copolymers can assemble into spherical nanoparticles with thermosensitivity. In this study, two different ELP diblock copolymers, each composed of a hydrophobic and a charged moiety, were synthesized, and the dependence of their physical properties on pH, temperature, and salt concentration was investigated. A series of analyses revealed that hydrophobic core micelles could be generated in response to a change in their surroundings and that micelles did not self-aggregate, a phenomenon due to the repulsive forces between like-charged molecules on the surface. We also demonstrated that self-assembly behavior was closely dependent on the character of the charged amino acid and the specific anion in solution.
Collapse
Affiliation(s)
- Jeong-Wan Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Jong-In Won
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
10
|
Son I, Lee Y, Baek J, Park M, Han D, Min SK, Lee D, Kim BS. pH-Responsive Amphiphilic Polyether Micelles with Superior Stability for Smart Drug Delivery. Biomacromolecules 2021; 22:2043-2056. [PMID: 33835793 DOI: 10.1021/acs.biomac.1c00163] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite widespread interest in the amphiphilic polymeric micelles for drug delivery systems, it is highly desirable to achieve high loading capacity and high efficiency to reduce the side effects of therapeutic agents while maximizing their efficacy. Here, we present a novel hydrophobic epoxide monomer, cyclohexyloxy ethyl glycidyl ether (CHGE), containing an acetal group as a pH-responsive cleavable linkage. A series of its homopolymers, poly(cyclohexyloxy ethyl glycidyl ether)s (PCHGEs), and block copolymers, poly(ethylene glycol)-block-poly(cyclohexyloxy ethyl glycidyl ether)s (mPEG-b-PCHGE), were synthesized via anionic ring-opening polymerization in a controlled manner. Subsequently, the self-assembled polymeric micelles of mPEG-b-PCHGE demonstrated high loading capacity, excellent stability in biological media, tunable release efficiency, and high cell viability. Importantly, quantum mechanical calculations performed by considering prolonged hydrolysis of the acetal group in CHGE indicated that the CHGE monomer had higher hydrophobicity than three other functional epoxide monomer analogues developed. Furthermore, the preferential cellular uptake and in vivo therapeutic efficacy confirmed the enhanced stability and the pH-responsive degradation of the amphiphilic block copolymer micelles. This study provides a new platform for the development of versatile smart polymeric drug delivery systems with high loading efficiency and tailorable release profiles.
Collapse
Affiliation(s)
- Iloh Son
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Yujin Lee
- Department of PolymerNano Science and Technology, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Jinsu Baek
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Miran Park
- Department of PolymerNano Science and Technology, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Daeho Han
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dongwon Lee
- Department of PolymerNano Science and Technology, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Jung H, Gang SE, Kim JM, Heo TY, Lee S, Shin E, Kim BS, Choi SH. Regulating Dynamics of Polyether-Based Triblock Copolymer Hydrogels by End-Block Hydrophobicity. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01939] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hyunjoon Jung
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Seong-Eun Gang
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Jung-Min Kim
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Tae-Young Heo
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Sangho Lee
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Eeseul Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
12
|
Han JG, Hwang E, Kim Y, Park S, Kim K, Roh DH, Gu M, Lee SH, Kwon TH, Kim Y, Choi NS, Kim BS. Dual-Functional Electrolyte Additives toward Long-Cycling Lithium-Ion Batteries: Ecofriendly Designed Carbonate Derivatives. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24479-24487. [PMID: 32368903 DOI: 10.1021/acsami.0c04372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Long-term stability of the solid electrolyte interphase (SEI) and cathode-electrolyte interface (CEI) layers formed on anodes and cathodes is imperative to mitigate the interfacial degradation of electrodes and enhance the cycle life of lithium-ion batteries (LIBs). However, the SEI on the anode and CEI on the cathode are vulnerable to the reactive species of PF5 and HF produced by the decomposition and hydrolysis of the conventional LiPF6 electrolyte in a battery inevitably containing a trace amount of water. Here, we report a new class of cyclic carbonate-based electrolyte additives to preserve the integrity of SEI and CEI in LIBs. This new class of additives is designed and synthesized by an ecofriendly approach that involves fixing CO2 with functional epoxides bearing various reactive side chains. It was found that the cyclic carbonates of 3-(1-ethoxyethoxy)-1,2-propylene carbonate and 3-trimethoxysilylpropyloxy-1,2-propylene carbonate, possessing high capability for the stabilization of Lewis-acidic PF5, exhibit a capacity retention of 79.0% after 1000 cycles, which is superior to that of the pristine electrolyte of 54.7%. Moreover, TMSPC has HF-scavenging capability, which, along with PF5 stabilization, results in enhanced rate capability of commercial LiNi0.6Mn0.2Co0.2O2 (NCM622)/graphite full cells, posing a significant potential for high-energy-density LIBs with long cycle stability.
Collapse
Affiliation(s)
- Jung-Gu Han
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunbyul Hwang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
| | - Yoseph Kim
- Department of Chemistry and BK21+ Program Research Team, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sewon Park
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Koeun Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Deok-Ho Roh
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minsu Gu
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Ho Lee
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Youngjo Kim
- Department of Chemistry and BK21+ Program Research Team, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Nam-Soon Choi
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Lee J, Han S, Kim M, Kim BS. Anionic Polymerization of Azidoalkyl Glycidyl Ethers and Post-Polymerization Modification. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joonhee Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sohee Han
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Minseong Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
14
|
Hwang E, Kim K, Lee CG, Kwon TH, Lee SH, Min SK, Kim BS. Tailorable Degradation of pH-Responsive All-Polyether Micelles: Unveiling the Role of Monomer Structure and Hydrophilic–Hydrophobic Balance. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00823] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eunbyul Hwang
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
| | - Kicheol Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chae Gyu Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang-Ho Lee
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Illy N, Corcé V, Zimbron J, Molinié V, Labourel M, Tresset G, Degrouard J, Salmain M, Guégan P. pH‐Sensitive Poly(ethylene glycol)/Poly(ethoxyethyl glycidyl ether) Block Copolymers: Synthesis, Characterization, Encapsulation, and Delivery of a Hydrophobic Drug. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nicolas Illy
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire IPCMEquipe Chimie des Polymères 4 Place Jussieu F‐75005 Paris France
| | - Vincent Corcé
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie MoléculaireIPCM 4 Place Jussieu F‐75005 Paris France
| | - Jérémy Zimbron
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie MoléculaireIPCM 4 Place Jussieu F‐75005 Paris France
| | - Vincent Molinié
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire IPCMEquipe Chimie des Polymères 4 Place Jussieu F‐75005 Paris France
| | - Mélanie Labourel
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire IPCMEquipe Chimie des Polymères 4 Place Jussieu F‐75005 Paris France
| | - Guillaume Tresset
- Laboratoire de Physique des Solides CNRS, Univ. Paris‐Sud, Université Paris‐Saclay 91405 Orsay Cedex France
| | - Jéril Degrouard
- Laboratoire de Physique des Solides CNRS, Univ. Paris‐Sud, Université Paris‐Saclay 91405 Orsay Cedex France
| | - Michèle Salmain
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie MoléculaireIPCM 4 Place Jussieu F‐75005 Paris France
| | - Philippe Guégan
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire IPCMEquipe Chimie des Polymères 4 Place Jussieu F‐75005 Paris France
| |
Collapse
|
16
|
Blankenburg J, Frey H. Aminal Protection of Epoxide Monomer Permits the Introduction of Multiple Secondary Amine Moieties at Poly(ethylene glycol). Macromol Rapid Commun 2019; 40:e1900057. [DOI: 10.1002/marc.201900057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jan Blankenburg
- Institute of Organic ChemistryJohannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in Mainz (MAINZ) Staudingerweg 9 55128 Mainz Germany
| | - Holger Frey
- Institute of Organic ChemistryJohannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
17
|
Song J, Hwang E, Lee Y, Palanikumar L, Choi SH, Ryu JH, Kim BS. Tailorable degradation of pH-responsive all polyether micelles via copolymerisation with varying acetal groups. Polym Chem 2019. [DOI: 10.1039/c8py01577e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A facile approach with random copolymers composed of two epoxide monomers bearing different acetal groups realizes the tunable kinetics of micelle degradation.
Collapse
Affiliation(s)
- Jaeeun Song
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Eunbyul Hwang
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Yungyeong Lee
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - L. Palanikumar
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering
- Hongik University
- Seoul 04066
- Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| |
Collapse
|
18
|
Wang Y, Wu Z, Ma Z, Tu X, Zhao S, Wang B, Ma L, Wei H. Promotion of micelle stability via a cyclic hydrophilic moiety. Polym Chem 2018. [DOI: 10.1039/c8py00299a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cyclic hydrophilic moiety promotes stability of polymeric micelles significantly.
Collapse
Affiliation(s)
- Yunfei Wang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Zhizhen Wu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Zongwei Ma
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Xiaoyan Tu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Sijie Zhao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Baoyan Wang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Liwei Ma
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| |
Collapse
|