1
|
Wang C, Zou H, Liu N, Wu ZQ. Recent Advances in Polyallenes: Preparation, Self-Assembly, and Stimuli-Responsiveness. Chem Asian J 2021; 16:3864-3872. [PMID: 34618408 DOI: 10.1002/asia.202101051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/06/2021] [Indexed: 11/06/2022]
Abstract
Polyallenes, as a typical type of reactive polymers, are of great significance and have aroused widespread interest because they contain double bonds that can be post-modified into other functionalities to afford varieties of functional materials. This Minireview firstly highlights the recent advances in the preparation of polyallenes, including preparation of helical polyallenes through directly polymerization of chiral allene monomers or helix-sense-selective polymerization (HSSP) of achiral allene monomers, synthesis of 1,2-regulated polyallenes and 2,3-regulated polyallenes via selective polymerization of allene monomers, polymerization of allene monomers catalyzed by Ni(II)-terminated poly(3-hexylthiophene) (P3HT), and so on. Then, latest progress on the self-assembly and stimuli-responses of polyallene-based diblock, ABA and ABC triblock copolymers is summarized. We hope this Minireview will inspire more interest in developing polyallenes and encourage further advances in functional materials.
Collapse
Affiliation(s)
- Chao Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, 230009, Anhui Province, P. R. China
| | - Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, 230009, Anhui Province, P. R. China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, 230009, Anhui Province, P. R. China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, 230009, Anhui Province, P. R. China
| |
Collapse
|
2
|
Abdollahi A, Dashti A. Photoluminescent Nanoinks with Multilevel Security for Quick Authentication of Encoded Optical Tags by Sunlight: Effective Physicochemical Parameters on Responsivity, Printability, and Brightness. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44878-44892. [PMID: 34506114 DOI: 10.1021/acsami.1c12404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Investigation of developed photoactive security inks and anticounterfeiting technologies in recent years indicates significant challenges for future of this research area, such as increase of security, fast responsivity, and facile authentication. Here, amine-functionalized latex nanoparticles were synthesized by emulsion copolymerization of methyl methacrylate (MMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). Size of the latex nanoparticles was increased as a function of poly(dimethylaminoethyl acrylate) (PDMAEMA) contents, and also a decrease of particle size was obtained in response to an increase of temperature from 25 to 70 °C, above the lower critical solution temperature (LCST) of PDMAEMA. Surface physical modification of the functional latex nanoparticle with spiropyran photoswitches led to the development of anticounterfeiting nanoinks that have multilevel security and photochromic/fluorescence properties with a higher intensity and also brightness. The photoluminescent nanoinks were made of spiropyran latex nanoparticles and used for printing of the encoded optical security tags on cellulosic papers and banknotes. The results displayed that an increase of the particle size above 100 nm and an increase of the PDMAEMA contents led to a remarkable decrease of printability, fluorescent emission, brightness, intensity of photochromism, and also resolution of the printed security tags. As a significant advantage of the developed security inks, the printed security tags could be authenticated easily and fast upon sunlight irradiation by means of photochromism. The responsivity of encoded tags from the invisible to visible state is immediate upon sunlight irradiation for some seconds, whose intensity of coloration is appropriate and detectable clearly by naked eyes. The security anticounterfeiting inks based on spiropyran with multilevel security have been reported for the first time for applying in printing of encoded security tags on cellulosic papers, banknotes, and other documents, where the printed marks are detectable on sunlight exposure.
Collapse
Affiliation(s)
- Amin Abdollahi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Research Laboratory of Polymer Testing (RPT Lab.), Research Institute of Oil & Gas, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Ali Dashti
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Research Laboratory of Polymer Testing (RPT Lab.), Research Institute of Oil & Gas, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| |
Collapse
|
3
|
Wu C, Zheng J, Hu J. Novel antifouling polysulfone matrix membrane modified with zwitterionic polymer. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Coumes F, Le Fer G, Malfait A, Hoogenboom R, Fournier D, Woisel P. Supramolecular control over pH- and temperature-responsive dialkoxynaphthalene-functionalized poly(2-(dimethylamino)ethyl methacrylate) in water. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Kang SM, Xu XH, Xu L, Zhou L, Liu N, Wu ZQ. Highly 2,3-selective and fast living polymerization of alkyl-, alkoxy- and phenylallenes using nickel(ii) catalysts. Polym Chem 2021. [DOI: 10.1039/d1py00482d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel Ni(ii) catalyst was developed to initiate the polymerization of various allene monomers efficiently in a fast and living/controlled manner, and the thermodynamic and crystallization properties of the polymers were investigated.
Collapse
Affiliation(s)
- Shu-Ming Kang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| |
Collapse
|
6
|
Yan K, Zhang S, Zhang K, Miao Y, Qiu Y, Zhang P, Jia X, Zhao X. Enzyme-responsive polymeric micelles with fluorescence fabricated through aggregation-induced copolymer self-assembly for anticancer drug delivery. Polym Chem 2020. [DOI: 10.1039/d0py01328e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The TPE moiety with AIE is employed as functional hydrophobic chain to induce copolymer self-assembly and form polymeric micelle that can show enzyme-responsive drug delivery.
Collapse
Affiliation(s)
- Ke Yan
- Green Catalysis Center
- and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shujing Zhang
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Kun Zhang
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yalei Miao
- Green Catalysis Center
- and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yudian Qiu
- Green Catalysis Center
- and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Panke Zhang
- Green Catalysis Center
- and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xu Jia
- School of Materials and Chemical Engineering
- Zhongyuan University of Technology
- Zhengzhou 450007
- China
| | - Xubo Zhao
- Green Catalysis Center
- and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
7
|
Evolution in the morphological behaviour of a series of fluorine-containing ABC miktoarm star terpolymers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Zhang Y, Guan T, Han G, Guo T, Zhang W. Star Block Copolymer Nanoassemblies: Block Sequence is All-Important. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02427] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tianyun Guan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guang Han
- State Key Laboratory
of Special Functional Waterproof Materials, Beijing Oriental Yuhong
Waterproof Technology Co., Ltd, Beijing 100123, China
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Zhang Y, Cao M, Han G, Guo T, Ying T, Zhang W. Topology Affecting Block Copolymer Nanoassemblies: Linear Block Copolymers versus Star Block Copolymers under PISA Conditions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01121] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd., Beijing 100123, China
| | | | - Tengyuan Ying
- Institute of Semiconductor
Technology of Tianjin, Tianjin, China
| | | |
Collapse
|
10
|
Fan X, Yang J, Loh XJ, Li Z. Polymeric Janus Nanoparticles: Recent Advances in Synthetic Strategies, Materials Properties, and Applications. Macromol Rapid Commun 2018; 40:e1800203. [PMID: 29900609 DOI: 10.1002/marc.201800203] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/17/2018] [Indexed: 12/13/2022]
Abstract
Polymeric Janus nanoparticles with two sides of incompatible chemistry have received increasing attention due to their tunable asymmetric structure and unique material characteristics. Recently, with the rapid progress in controlled polymerization combined with novel fabrication techniques, a large array of functional polymeric Janus particles are diversified with sophisticated architecture and applications. In this review, the most recently developed strategies for controlled synthesis of polymeric Janus nanoparticles with well-defined size and complex superstructures are summarized. In addition, the pros and cons of each approach in mediating the anisotropic shapes of polymeric Janus particles as well as their asymmetric spatial distribution of chemical compositions and functionalities are discussed and compared. Finally, these newly developed structural nanoparticles with specific shapes and surface functions orientated applications in different domains are also discussed, followed by the perspectives and challenges faced in the further advancement of polymeric Janus nanoparticles as high performance materials.
Collapse
Affiliation(s)
- Xiaoshan Fan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jing Yang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| |
Collapse
|
11
|
Li W, Fan X, Wang X, Shang X, Wang Q, Lin J, Hu Z, Li Z. Stereocomplexed micelle formation through enantiomeric PLA-based Y-shaped copolymer for targeted drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:688-695. [PMID: 30033303 DOI: 10.1016/j.msec.2018.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/11/2018] [Accepted: 06/08/2018] [Indexed: 12/29/2022]
Abstract
In this study, a novel stereocomplexed micelle system was prepared from the self-assembly of enantiomeric PLA-based Y-shaped copolymers, i.e. folic acid-adamantane/β-cyclodextrin-b-[poly(D-lactide)]2 (FA-AD/CD-b-(PDLA)2) and poly(2-dimethylaminoethyl methacrylate)-b-[poly(L-lactide)]2 (PDMAEMA-b-(PLLA)2) in aqueous solution. The newly designed Y-shaped copolymer FA-AD/CD-b-(PDLA)2 was prepared by a combination of "click" reaction and host guest interaction between FA-AD and CD-b-(PDLA)2. In addition, enantiomeric Y-shaped PDMAEMA-b-(PLLA)2 copolymer was synthesized through ring-opening polymerization (ROP) of L-lactide using three-head initiator with bromo and -OH at distal ends, followed by atom transfer radical polymerization (ATRP) of DMAEMA to obtain the desired macromolecular architecture. The resultant copolymers and their intermediates were characterized by 1H nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC) techniques. Due to the strong stereocomplexation interaction, FA-AD/CD-b-(PDLA)2 and PDMAEMA-b-(PLLA)2 mixture could self-assemble into stable mixed micelles in aqueous solution. Further, the stereocomplexed micelles exhibited excellent biocompatibility as revealed in the cytotoxicity assay. Together with the intrinsic biodegradability of PLA, it is envisioned that the stereocomplexed micelles developed in this study can be used as a promising nanocarrier for targeting drug delivery.
Collapse
Affiliation(s)
- Wenqiang Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China
| | - Xiaoshan Fan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaokun Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaohong Shang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qi Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China
| | - Juntang Lin
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China
| | - Zhiguo Hu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| |
Collapse
|