1
|
Kim T, Lee T, Yoon YR, Heo WS, Chae S, Kim JW, Kim BK, Kim SY, Lee J, Lee JH. Rational Design of Naphthol Groups Functionalized Bipolar Polymer Cathodes for High Performance Alkali-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400333. [PMID: 38528427 DOI: 10.1002/smll.202400333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Indexed: 03/27/2024]
Abstract
Redox-active organic compounds gather significant attention for their potential application as electrodes in alkali ion batteries, owing to the structural versatility, environmental friendliness, and cost-effectiveness. However, their practical applications of such compounds are impeded by insufficient active sites with limited capacity, dissolution in electrolytes, and sluggish kinetics. To address these issues, a naphthol group-containing triarylamine polymer, namely poly[6,6'-(phenylazanediyl)bis(naphthol)] (poly(DNap-OH)) is rationally designed and synthesized, via oxidative coupling polymerization. It is capable of endowing favorable steric structures that facilitate fast ion diffusion, excellent chemical stability in organic electrolytes, and additional redox-active sites that enable a bipolar redox reaction. By exploiting these advantages, poly(DNap-OH) cathodes demonstrate remarkable cycling stability in both lithium-ion batteries (LIBs) and potassium-ion batteries (PIBs), showcasing enhanced specific capacity and redox reaction kinetics in comparison to the conventional poly(4-methyltriphenylamine) cathodes. Overall, this work offers insights into molecular design strategies for the development of high-performance organic cathodes in alkali-ion batteries.
Collapse
Affiliation(s)
- Taehyoung Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Taewoong Lee
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Young Rok Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Woo Sub Heo
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Seongwook Chae
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jee Woo Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Byung-Kwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang Youl Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jinhee Lee
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Jin Hong Lee
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
2
|
Gascó C, Rodríguez-Santiago L, Sodupe M, Sebastián RM, Guirado G. Electroinduced crosslinking of triphenylamine-based polybenzoxazines. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Kassahun GS, Farias ED, Benizri S, Mortier C, Gaubert A, Salinas G, Garrigue P, Kuhn A, Zigah D, Barthélémy P. Electropolymerizable Thiophene-Oligonucleotides for Electrode Functionalization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26350-26358. [PMID: 35649248 DOI: 10.1021/acsami.2c02993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inserting complex biomolecules such as oligonucleotides during the synthesis of polymers remains an important challenge in the development of functionalized materials. In order to engineer such a biofunctionalized interface, a single-step method for the covalent immobilization of oligonucleotides (ONs) based on novel electropolymerizable lipid thiophene-oligonucleotide (L-ThON) conjugates was employed. Here, we report a new thiophene phosphoramidite building block for the synthesis of modified L-ThONs. The biofunctionalized material was obtained by direct electropolymerization of L-ThONs in the presence of 2,2'-bithiophene (BTh) to obtain a copolymer film on indium tin oxide electrodes. In situ electroconductance measurements and microstructural studies showed that the L-ThON was incorporated in the BTh copolymer backbone. Furthermore, the covalently immobilized L-ThON sequence showed selectivity in subsequent hybridization processes with a complementary target, demonstrating that L-ThONs can directly be used for manufacturing materials via an electropolymerization strategy. These results indicate that L-ThONs are promising candidates for the development of stable ON-based bioelectrochemical platforms.
Collapse
Affiliation(s)
- Getnet S Kassahun
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
| | - Eliana D Farias
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
| | - Sebastien Benizri
- ARNA Laboratory, University of Bordeaux, UMR CNRS 5320, INSERM U121, 33076 Bordeaux, France
| | - Claudio Mortier
- ARNA Laboratory, University of Bordeaux, UMR CNRS 5320, INSERM U121, 33076 Bordeaux, France
| | - Alexandra Gaubert
- ARNA Laboratory, University of Bordeaux, UMR CNRS 5320, INSERM U121, 33076 Bordeaux, France
| | - Gerardo Salinas
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
| | - Patrick Garrigue
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
| | - Alexander Kuhn
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
| | - Dodzi Zigah
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
- Université de Poitiers, IC2MP UMR-CNRS 7285, 86073 Poitiers Cedex 9, France
| | - Philippe Barthélémy
- ARNA Laboratory, University of Bordeaux, UMR CNRS 5320, INSERM U121, 33076 Bordeaux, France
| |
Collapse
|
4
|
Kuhlmann JE, Liu SSY, Dirnberger K, Zharnikov M, Ludwigs S. Electrochemical Characterization of Redox Probes Confined in 3D Conducting Polymer Networks. Chemistry 2021; 27:17255-17263. [PMID: 34820924 PMCID: PMC9298994 DOI: 10.1002/chem.202103257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 11/13/2022]
Abstract
In this manuscript we present a versatile platform for introducing functional redox species into tailor‐made 3D redox polymer networks. Electrochemical characterization based on cyclic voltammetry is applied to verify the immobilization of the redox species within the conducting networks. Ultimately this strategy shall be extended to (photo)electrocatalytic applications which will profit from the conducting polymer matrix. Soluble precursor copolymers are synthesized via radical copolymerization of vinyltriphenylamine (VTPA) with chloromethylstyrene (CMS) in different ratios, whereas CMS is subsequently converted into azidomethylstyrene (AMS) to yield poly(VTPA‐co‐AMS) copolymers. Spin‐coating of poly(VTPA‐co‐AMS) on gold electrodes yields thin films which are converted into stable polymer network structures by electrochemical crosslinking of the polymer chains via their pendant triphenylamine groups to yield N,N,N′,N′‐tetraphenylbenzidine (TPB) crosslinking points. Finally, the resulting redox‐active, TPB‐crosslinked films are functionalized with ethynylferrocene (EFc) as a representative redox probe using a click reaction. Main experimental tools are polarization modulation infrared reflection absorption spectroscopy and scan rate dependent cyclic voltammetry. Especially the latter proves the successful conversion and the immobilization of redox probes in the polymer matrix. The results are compared with the reference system of azide‐terminated self‐assembled monolayers on gold substrates, allowing to distinguish between free and immobilized EFc species.
Collapse
Affiliation(s)
- Jochen E Kuhlmann
- IPOC - Functional Polymers, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Sherri S Y Liu
- IPOC - Functional Polymers, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Klaus Dirnberger
- IPOC - Functional Polymers, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Michael Zharnikov
- Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Sabine Ludwigs
- IPOC - Functional Polymers, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
5
|
Mao L, Zhou M, Shi X, Yang HB. Triphenylamine (TPA) radical cations and related macrocycles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Liu SSY, Ludwigs S. Electrochemical Manipulation of Aligned Block Copolymer Templates. Macromol Rapid Commun 2019; 41:e1900485. [PMID: 31774602 DOI: 10.1002/marc.201900485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/30/2019] [Indexed: 11/06/2022]
Abstract
Block copolymers have a wide range of functions in advanced electrochemistry because of their ability to self-assemble into ordered nanometer-sized structures, resulting in their extensive usage as nanoporous templates that can be electrochemically manipulated. These highly ordered nanoporous templates are used as working electrodes for electrodeposition and electropolymerization to build nanoelectrode arrays and can serve as models to study the diffusion pathway of redox-active units with regard to chemical modification of pores. The block copolymer system allows different morphologies to be utilized, but the most exploited structures are standing cylinders of the minority block that are etched to expose highly aligned porous nanoelectrode array templates. This review starts with introducing alumina and track-etched membranes as pioneer porous templates transitioning to the production of block copolymer films as succeeding templates, with a particular focus on both poly(styrene)-block-poly(methylmethacrylate) (PS-b-PMMA) and poly(styrene)-block-poly(lactide) (PS-b-PLA). The aim is to give fundamental insights of electrochemistry where functionality extends beyond to applications in the nanoscience field of biosensors and plastic electronics.
Collapse
Affiliation(s)
- Sherri S Y Liu
- IPOC-Functional Polymers, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Sabine Ludwigs
- IPOC-Functional Polymers, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
7
|
Malacrida C, Habibi AH, Gámez‐Valenzuela S, Lenko I, Marqués PS, Labrunie A, Grolleau J, López Navarrete JT, Ruiz Delgado MC, Cabanetos C, Blanchard P, Ludwigs S. Impact of the Replacement of a Triphenylamine by a Diphenylmethylamine Unit on the Electrochemical Behavior of Pentaerythritol‐Based Push‐Pull Tetramers. ChemElectroChem 2019. [DOI: 10.1002/celc.201900565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Claudia Malacrida
- IPOC-Functional Polymers, Institute of Polymer ChemistryUniversity of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Amir Hossein Habibi
- MOLTECH-Anjou, UMR 6200UNIV Angers, CNRS, 2 bd Lavoisier 49045 ANGERS Cedex France
| | | | - Illia Lenko
- MOLTECH-Anjou, UMR 6200UNIV Angers, CNRS, 2 bd Lavoisier 49045 ANGERS Cedex France
| | - Pablo Simón Marqués
- MOLTECH-Anjou, UMR 6200UNIV Angers, CNRS, 2 bd Lavoisier 49045 ANGERS Cedex France
| | - Antoine Labrunie
- MOLTECH-Anjou, UMR 6200UNIV Angers, CNRS, 2 bd Lavoisier 49045 ANGERS Cedex France
| | - Jérémie Grolleau
- MOLTECH-Anjou, UMR 6200UNIV Angers, CNRS, 2 bd Lavoisier 49045 ANGERS Cedex France
| | | | | | - Clément Cabanetos
- MOLTECH-Anjou, UMR 6200UNIV Angers, CNRS, 2 bd Lavoisier 49045 ANGERS Cedex France
| | - Philippe Blanchard
- MOLTECH-Anjou, UMR 6200UNIV Angers, CNRS, 2 bd Lavoisier 49045 ANGERS Cedex France
| | - Sabine Ludwigs
- IPOC-Functional Polymers, Institute of Polymer ChemistryUniversity of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
8
|
A novel route to synthesis polythiophene with great yield and high electrical conductivity without post doping process. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Salinas G, Frontana‐Uribe BA. Analysis of Conjugated Polymers Conductivity by in situ Electrochemical‐Conductance Method. ChemElectroChem 2019. [DOI: 10.1002/celc.201801488] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux, ISM, UMR 5255Bordeaux INP Site ENSCBP F 33607 Pessac France
| | - Bernardo A. Frontana‐Uribe
- Centro Conjunto de Investigación en Química SustentableUAEM-UNAM Km 14.5 Carretera Toluca-Atlacomulco 50200 Toluca México
- Instituto de Química UNAMCircuito Exterior Ciudad Universitaria 04510, CDMX México
| |
Collapse
|
10
|
Blanchard P, Malacrida C, Cabanetos C, Roncali J, Ludwigs S. Triphenylamine and some of its derivatives as versatile building blocks for organic electronic applications. POLYM INT 2018. [DOI: 10.1002/pi.5695] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Philippe Blanchard
- Group Linear Conjugated Systems, MOLTECH‐Anjou, CNRS UMR 6200University of Angers Angers France
| | - Claudia Malacrida
- IPOC – Functional Polymers, Institute of Polymer Chemistry, University of Stuttgart Stuttgart Germany
| | - Clément Cabanetos
- Group Linear Conjugated Systems, MOLTECH‐Anjou, CNRS UMR 6200University of Angers Angers France
| | - Jean Roncali
- Group Linear Conjugated Systems, MOLTECH‐Anjou, CNRS UMR 6200University of Angers Angers France
| | - Sabine Ludwigs
- IPOC – Functional Polymers, Institute of Polymer Chemistry, University of Stuttgart Stuttgart Germany
| |
Collapse
|