1
|
De Bon F, Vaz Simões A, Serra AC, Coelho JFJ. Alternating and Pulsed Current Electrolysis for Atom Transfer Radical Polymerization. Chempluschem 2025; 90:e202400661. [PMID: 39620913 DOI: 10.1002/cplu.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Indexed: 12/12/2024]
Abstract
This concept focuses on the application of alternating current (AC) and pulsed electrolysis in Atom Transfer Radical Polymerization (ATRP) for polymer synthesis. AC electrolysis, which oscillates between reduction and oxidation, can be tuned to increase selectivity for a specific reaction pathway, minimize side reactions, and improve product selectivity and reagent conversion. Pulsed electrolysis can also be used to sustain electrochemical reactions in ATRP. The challenges and limitations associated with AC electrolysis are discussed along with an outlook on future developments in polymer synthesis and related applications. A concise overview of recent developments in electro-organic synthesis using AC electrolysis will be provided.
Collapse
Affiliation(s)
- Francesco De Bon
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Alexandre Vaz Simões
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Armenio C Serra
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Jorge F J Coelho
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199, Coimbra, Portugal
| |
Collapse
|
2
|
De Bon F, Fantin M, Pereira VA, Lourenço Bernardino TJ, Serra AC, Matyjaszewski K, Coelho JFJ. Electrochemically Mediated Atom Transfer Radical Polymerization Driven by Alternating Current. Angew Chem Int Ed Engl 2024; 63:e202406484. [PMID: 38647172 DOI: 10.1002/anie.202406484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Alternating current (AC) and pulsed electrolysis are gaining traction in electro(organic) synthesis due to their advantageous characteristics. We employed AC electrolysis in electrochemically mediated Atom Transfer Radical Polymerization (eATRP) to facilitate the regeneration of the activator CuI complex on Cu0 electrodes. Additionally, Cu0 served as a slow supplemental activator and reducing agent (SARA ATRP), enabling the activation of alkyl halides and the regeneration of the CuI activator through a comproportionation reaction. We harnessed the distinct properties of Cu0 dual regeneration, both chemical and electrochemical, by employing sinusoidal, triangular, and square-wave AC electrolysis alongside some of the most active ATRP catalysts available. Compared to linear waveform (DC electrolysis) or SARA ATRP (without electrolysis), pulsed and AC electrolysis facilitated slightly faster and more controlled polymerizations of acrylates. The same AC electrolysis conditions could successfully polymerize eleven different monomers across different mediums, from water to bulk. Moreover, it proved effective across a spectrum of catalyst activity, from low-activity Cu/2,2-bipyridine to highly active Cu complexes with substituted tripodal amine ligands. Chain extension experiments confirmed the high chain-end fidelity of the produced polymers, yielding functional and high molecular-weight block copolymers. SEM analysis indicated the robustness of the Cu0 electrodes, sustaining at least 15 consecutive polymerizations.
Collapse
Affiliation(s)
- Francesco De Bon
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Marco Fantin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131, Padova, Italy
| | - Vanessa A Pereira
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Teresa J Lourenço Bernardino
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Armenio C Serra
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, 15213, Pittsburgh, PA, USA
| | - Jorge F J Coelho
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199, Coimbra, Portugal
| |
Collapse
|
3
|
Novello E, Scalzo G, D’Agata G, Raucci MG, Ambrosio L, Soriente A, Tomasello B, Restuccia C, Parafati L, Consoli GML, Ferreri L, Rescifina A, Zagni C, Zampino DC. Synthesis, Characterisation, and In Vitro Evaluation of Biocompatibility, Antibacterial and Antitumor Activity of Imidazolium Ionic Liquids. Pharmaceutics 2024; 16:642. [PMID: 38794304 PMCID: PMC11125126 DOI: 10.3390/pharmaceutics16050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
In recent decades, ionic liquids (ILs) have garnered research interest for their noteworthy properties, such as thermal stability, low or no flammability, and negligible vapour pressure. Moreover, their tunability offers limitless opportunities to design ILs with properties suitable for applications in many industrial fields. This study aims to synthetise two series of methylimidazolium ILs bearing long alkyl chain in their cations (C9, C10, C12, C14, C16, C18, C20) and with tetrafluoroborate (BF4) and the 1,3-dimethyl-5-sulfoisophthalate (DMSIP) as counter ions. The ILs were characterised using 1H-NMR and MALDI-TOF, and their thermal behaviour was investigated through DSC and TGA. Additionally, the antimicrobial, anticancer, and cytotoxic activities of the ILs were analysed. Moreover, the most promising ILs were incorporated at different concentrations (0.5, 1, 5 wt%) into polyvinyl chloride (PVC) by solvent casting to obtain antimicrobial blend films. The thermal properties and stability of the resulting PVC/IL films, along with their hydrophobicity/hydrophilicity, IL surface distribution, and release, were studied using DSC and TGA, contact angle (CA), SEM, and UV-vis spectrometry, respectively. Furthermore, the antimicrobial and cytotoxic properties of blends were analysed. The in vitro results demonstrated that the antimicrobial and antitumor activities of pure ILs against t Listeria monocytogenes, Escherichia coli, Pseudomonas fluorescens strains, and the breast cancer cell line (MCF7), respectively, were mainly dependent on their structure. These activities were higher in the series containing the BF4 anion and increased with the increase in the methylimidazolium cation alkyl chain length. However, the elongation of the alkyl chain beyond C16 induced a decrease in antimicrobial activity, indicating a cut-off effect. A similar trend was also observed in terms of in vitro biocompatibility. The loading of both the series of ILs into the PVC matrix did not affect the thermal stability of PVC blend films. However, their Tonset decreased with increased IL concentration and alkyl chain length. Similarly, both the series of PVC/IL films became more hydrophilic with increasing IL concentration and alkyl chain. The loading of ILs at 5% concentration led to considerable IL accumulation on the blend film surfaces (as observed in SEM images) and, subsequently, their higher release. The biocompatibility assessment with healthy human dermal fibroblast (HDF) cells and the investigation of antitumoral properties unveiled promising pharmacological characteristics. These findings provide strong support for the potential utilisation of ILs in biomedical applications, especially in the context of cancer therapy and as antibacterial agents to address the challenge of antibiotic resistance. Furthermore, the unique properties of the PVC/IL films make them versatile materials for advancing healthcare technologies, from drug delivery to tissue engineering and antimicrobial coatings to diagnostic devices.
Collapse
Affiliation(s)
- Elisabetta Novello
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy; (E.N.); (G.S.); (G.D.); (D.C.Z.)
| | - Giuseppina Scalzo
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy; (E.N.); (G.S.); (G.D.); (D.C.Z.)
| | - Giovanni D’Agata
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy; (E.N.); (G.S.); (G.D.); (D.C.Z.)
| | - Maria G. Raucci
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Napoli, Viale J.F. Kennedy n.54, Pad.20, 80125 Napoli, Italy; (L.A.); (A.S.)
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Napoli, Viale J.F. Kennedy n.54, Pad.20, 80125 Napoli, Italy; (L.A.); (A.S.)
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Napoli, Viale J.F. Kennedy n.54, Pad.20, 80125 Napoli, Italy; (L.A.); (A.S.)
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.R.)
| | - Cristina Restuccia
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (C.R.); (L.P.)
| | - Lucia Parafati
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (C.R.); (L.P.)
| | - Grazia M. L. Consoli
- Institute of Biomolecular Chemistry (ICB)-CNR, via Paolo Gaifami 18, 95126 Catania, Italy; (G.M.L.C.); (L.F.)
| | - Loredana Ferreri
- Institute of Biomolecular Chemistry (ICB)-CNR, via Paolo Gaifami 18, 95126 Catania, Italy; (G.M.L.C.); (L.F.)
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.R.)
| | - Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.R.)
| | - Daniela C. Zampino
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy; (E.N.); (G.S.); (G.D.); (D.C.Z.)
| |
Collapse
|
4
|
Gazzola G, Antonello A, Isse AA, Fantin M. Simple Iron Halides Enable Electrochemically Mediated ATRP in Nonpolar Media. ACS Macro Lett 2023; 12:1602-1607. [PMID: 37955645 PMCID: PMC10734308 DOI: 10.1021/acsmacrolett.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
An electrochemically controlled atom transfer radical polymerization (eATRP) was successfully carried out with a minimal amount (ppm-level) of FeBr3 catalyst in a nonpolar solvent, specifically anisole. Traditionally, nonpolar media have been advantageous for Fe-based ATRP, but their low conductivity has hindered any electrochemical application. This study introduces the application of electrocatalytic methods in a highly nonpolar polymerization medium. Precise control over the polymerization was obtained by employing anhydrous anisole with only 400 ppm of FeBr3 and applying a negative overpotential of 0.3 V. Additionally, employing an undivided cell setup with two simple iron wire electrodes resulted in a significant 15-fold reduction in electrical resistance compared to traditional divided cell setups. This enabled the production of polymers with a dispersity of ≤1.2. Lastly, an examination of kinetic and thermodynamic aspects indicated that the ppm-level catalysis was facilitated by the high ATRP equilibrium constant of Fe catalysts in nonpolar environments.
Collapse
Affiliation(s)
| | | | - Abdirisak A. Isse
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco Fantin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
5
|
Wang Y, Lorandi F, Fantin M, Matyjaszewski K. Atom transfer radical polymerization in dispersed media with low-ppm catalyst loading. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
6
|
Flejszar M, Chmielarz P, Oszajca M. Red is the new green: Dry wine‐based miniemulsion as eco‐friendly reaction medium for sustainable atom transfer radical polymerization. J Appl Polym Sci 2022. [DOI: 10.1002/app.53367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Monika Flejszar
- Department of Physical Chemistry, Faculty of Chemistry Rzeszow University of Technology Rzeszów Poland
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry Rzeszow University of Technology Rzeszów Poland
| | - Marcin Oszajca
- Faculty of Chemistry Jagiellonian University Kraków 30‐387 Poland
| |
Collapse
|
7
|
Electrochemical Investigation of Iron-Catalyzed Atom Transfer Radical Polymerization. Molecules 2022; 27:molecules27196312. [PMID: 36234849 PMCID: PMC9570559 DOI: 10.3390/molecules27196312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Use of iron-based catalysts in atom transfer radical polymerization (ATRP) is very interesting because of the abundance of the metal and its biocompatibility. Although the mechanism of action is not well understood yet, iron halide salts are usually used as catalysts, often in the presence of nitrogen or phosphorous ligands (L). In this study, electrochemically mediated ATRP (eATRP) of methyl methacrylate (MMA) catalyzed by FeCl3, both in the absence and presence of additional ligands, was investigated in dimethylformamide. The electrochemical behavior of FeCl3 and FeCl3/L was deeply investigated showing the speciation of Fe(III) and Fe(II) and the role played by added ligands. It is shown that amine ligands form stable iron complexes, whereas phosphines act as reducing agents. eATRP of MMA catalyzed by FeCl3 was investigated in different conditions. In particular, the effects of temperature, catalyst concentration, catalyst-to-initiator ratio, halide ion excess and added ligands were investigated. In general, polymerization was moderately fast but difficult to control. Surprisingly, the best results were obtained with FeCl3 without any other ligand. Electrogenerated Fe(II) effectively activates the dormant chains but deactivation of the propagating radicals by Fe(III) species is less efficient, resulting in dispersity > 1.5, unless a high concentration of FeCl3 is used.
Collapse
|
8
|
De Bon F, Lorandi F, Coelho JFJ, Serra AC, Matyjaszewski K, Isse AA. Dual electrochemical and chemical control in atom transfer radical polymerization with copper electrodes. Chem Sci 2022; 13:6008-6018. [PMID: 35685801 PMCID: PMC9132085 DOI: 10.1039/d2sc01982e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 01/02/2023] Open
Abstract
In Atom Transfer Radical Polymerization (ATRP), Cu0 acts as a supplemental activator and reducing agent (SARA ATRP) by activating alkyl halides and (re)generating the CuI activator through a comproportionation reaction, respectively. Cu0 is also an unexplored, exciting metal that can act as a cathode in electrochemically mediated ATRP (eATRP). Contrary to conventional inert electrodes, a Cu cathode can trigger a dual catalyst regeneration, simultaneously driven by electrochemistry and comproportionation, if a free ligand is present in solution. The dual regeneration explored herein allowed for introducing the concept of pulsed galvanostatic electrolysis (PGE) in eATRP. During a PGE, the process alternates between a period of constant current electrolysis and a period with no applied current in which polymerization continues via SARA ATRP. The introduction of no electrolysis periods without compromising the overall polymerization rate and control is very attractive, if large current densities are needed. Moreover, it permits a drastic charge saving, which is of unique value for a future scale-up, as electrochemistry coupled to SARA ATRP saves energy, and shortens the equipment usage. The use of a Cu cathode in eATRP allows exploiting the synergistic effect between electrochemical and chemical stimuli to halt or accelerate polymerizations, reduce energy consumption and achieve control in challenging systems.![]()
Collapse
Affiliation(s)
- Francesco De Bon
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima, Pólo II 3030-790 Coimbra Portugal
| | - Francesca Lorandi
- Department of Chemical Sciences, University of Padova Via Marzolo 1 I-35131 Padova Italy .,Department of Chemistry, Carnegie Mellon University 4400 Fifth Ave 15213 Pittsburgh PA USA
| | - Jorge F J Coelho
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima, Pólo II 3030-790 Coimbra Portugal
| | - Armenio C Serra
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima, Pólo II 3030-790 Coimbra Portugal
| | | | - Abdirisak A Isse
- Department of Chemical Sciences, University of Padova Via Marzolo 1 I-35131 Padova Italy
| |
Collapse
|
9
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Mohammed M, Jones B, Wilson P. Current-controlled ‘plug-and-play’ electrochemical atom transfer radical polymerization of acrylamides in water. Polym Chem 2022. [DOI: 10.1039/d2py00412g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aqueous electrochemical atom transfer radical polymerisation (eATRP) can be challenging due to deleterious side reactions leading to the loss of the ω-chain end, increased rates of activation (k¬act) leading to...
Collapse
|
11
|
Abstract
Electrochemically mediated atom transfer radical polymerization (eATRP) of styrene was studied in detail by using CuBr2/TPMA (TPMA = tris(2-pyridylmethyl)amine) as a catalyst. Redox properties of various Cu(II) species were investigated in CH3CN, dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) both in the absence and presence of 50% (v/v) styrene. This investigation together with preliminary eATRP experiments at 80 °C indicated DMF as the best solvent. The effects of catalyst, monomer, and initiator concentrations were also examined. The livingness of the polymerization was studied by chain extension and electrochemical temporal control of polymerization.
Collapse
|
12
|
Pavan P, Lorandi F, De Bon F, Gennaro A, Isse AA. Enhancement of the Rate of Atom Transfer Radical Polymerization in Organic Solvents by Addition of Water: An Electrochemical Study. ChemElectroChem 2021. [DOI: 10.1002/celc.202100430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Paola Pavan
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
| | - Francesco De Bon
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
- Present address: Centre for Mechanical Engineering Materials and Processes (CEMMPRE) Department of Chemical Engineering University of Coimbra Rua Silvio Lima, Polo II 3030-790 Coimbra Portugal
| | - Armando Gennaro
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Abdirisak A. Isse
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
13
|
Isse AA, Gennaro A. Electrochemistry for Atom Transfer Radical Polymerization. CHEM REC 2021; 21:2203-2222. [PMID: 33750023 DOI: 10.1002/tcr.202100028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/31/2022]
Abstract
Atom Transfer Radical Polymerization (ATRP) is the most powerful and most employed technology of Controlled Radical Polymerization (CRP) to produce polymers with well-defined architecture, that is, composition, topology, and functionality. Several hundreds of papers are published every year on ATRP processes, mainly based on empiric experimental procedures. Electrochemistry powerfully entered in the field of ATRP about 10 years ago, providing important contributions both to the further development of the process and to a better understanding of its mechanism. Five main issues took advantage of electrochemistry and/or its synergism with ATRP: i) understanding the mechanism of ATRP activation; ii) determination of thermodynamic parameters; iii) determination of activation and deactivation rate constants; iv) the SARA ATRP vs SET-LRP dispute: the role of Cu0 ; v) electrochemically-mediated ATRP.
Collapse
Affiliation(s)
- Abdirisak Ahmed Isse
- Department of Chemical Sciences-University of Padova, Via Marzolo, 1-35131, Padova, Italy
| | - Armando Gennaro
- Department of Chemical Sciences-University of Padova, Via Marzolo, 1-35131, Padova, Italy
| |
Collapse
|
14
|
Zampino D, Mancuso M, Zaccone R, Ferreri T, Borzacchiello A, Zeppetelli S, Dattilo S, Ussia M, Ferreri L, Carbone DC, Recca G, Puglisi C. Thermo-mechanical, antimicrobial and biocompatible properties of PVC blends based on imidazolium ionic liquids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111920. [PMID: 33641913 DOI: 10.1016/j.msec.2021.111920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
The aim of this study was the development of antimicrobial polyvinylchloride (PVC) blends loaded with 0.1-10% (w/w) of the ILs 1-hexadecyl-3-methylimidazolium 1,3-dimethyl 5-sulfoisophthalate (HdmimDMSIP) and 1-octyloximethyl-3-methylimidazolium hexafluorophosphate (OOMmimPF6). The synthetized ILs were characterized by 1HNMR, MALDI-TOF, DSC and TGA. PVC/ILs films were obtained by solvent casting.Thermal and mechanical properties (tensile stress TS and elongation at break EB), morphology by SEM, surface wettability, antimicrobial activity, cytotoxicity and ILs release in sterile water from PVC/ILs film blends were determined. Results demonstrated that the presence of both ILs in PVC formulation slightly affected thermal and mechanical properties of blends. The loading of both ILs into PVC matrix made PVC/ILs films hydrophilic, especially at the highest concentration of HdmimDMSIP. The PVC/ILs blends displayed antibacterial activity up to ILs lowest concentrations (0.1-0.5%). The inhibition of Escherichia coli growth was lower than that showed toward Staphylococcus epidermidis. The addition of 10% ILs concentration resulted excessive as demonstrated by accumulation of ILs on film surfaces (SEM) and ILs high release from PVC/ILs blends during the first day of water immersion. Biocompatibility studies highlighted that the addition of low amounts of both ILs into PVC matrix is not cytotoxic for mouse fibroblast cells (L929), supporting their potential use for biomedical porposes.
Collapse
Affiliation(s)
- Daniela Zampino
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Section of Catania, Via Paolo Gaifami 18, 95126 Catania, Italy.
| | - Monique Mancuso
- Institute for Biological Resources and Marine Biotechnology (IRBIM)-CNR, Section of Messina, Spianata San Raineri 86, 98122 Messina, Italy
| | - Renata Zaccone
- Institute of Polar Science (IPS)-CNR, Section of Messina, Spianata San Raineri 86, 98122 Messina, Italy
| | - Tiziana Ferreri
- Institute of Biomolecular Chemistry (ICB)-CNR, Section of Catania, via Paolo Gaifami 18, 95126 Catania, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Viale Kennedy 54, Pad.20, 80125 Napoli, Italy
| | - Stefania Zeppetelli
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Viale Kennedy 54, Pad.20, 80125 Napoli, Italy
| | - Sandro Dattilo
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Section of Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Martina Ussia
- Institute for Microelectronics and Microsystems (IMM)-CNR, Via Santa Sofia 64, 95123 Catania, Italy
| | - Loredana Ferreri
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Section of Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Domenico C Carbone
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Section of Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Giuseppe Recca
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Section of Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Concetto Puglisi
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Section of Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
15
|
Hu W, Xu L. Investigation of eATRP for a Carboxylic‐Acid‐Functionalized Ionic Liquid Monomer. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Weiling Hu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing 400715 P. R. China
| | - Lan Xu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
16
|
Molle E, Frech S, Grüger T, Theato P. Electrochemically-initiated polymerization of reactive monomers via 4-fluorobenzenediazonium salts. Polym Chem 2021. [DOI: 10.1039/d1py00536g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the electrochemically-initiated polymerization of reactive monomers using a fluorine-labelled aromatic diazonium salt in an undivided cell setup with subsequent post-polymerization modifications of the intact reactive moieties.
Collapse
Affiliation(s)
- Edgar Molle
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institute for Biological Interfaces III (IBG-3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Frech
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institute for Biological Interfaces III (IBG-3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Tilman Grüger
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
| | - Patrick Theato
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institute for Biological Interfaces III (IBG-3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
17
|
De Bon F, Abreu CMR, Serra AC, Gennaro A, Coelho JFJ, Isse AA. Catalytic Halogen Exchange in Supplementary Activator and Reducing Agent Atom Transfer Radical Polymerization for the Synthesis of Block Copolymers. Macromol Rapid Commun 2020; 42:e2000532. [PMID: 33289265 DOI: 10.1002/marc.202000532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/24/2020] [Indexed: 11/08/2022]
Abstract
Synthesis of block copolymers (BCPs) by catalytic halogen exchange (cHE) is reported, using supplemental activator and reducing agent Atom Transfer Radical Polymerization (SARA ATRP). The cHE mechanism is based on the use of a small amount of a copper catalyst in the presence of a suitable excess of halide ions, for the synthesis of block copolymers from macroinitiators with monomers of mismatching reactivity. cHE overcomes the problem of inefficient initiation in block copolymerizations in which the second monomer provides dormant species that are more reactive than the initiator. Model macroinitiators with low dispersity are prepared and extended to afford well-defined block copolymers of various compositions. Combined cHE/SARA ATRP is therefore a simple and potent polymerization tool for the copolymerization of a wide range of monomers allowing the production of tailored block copolymers.
Collapse
Affiliation(s)
- Francesco De Bon
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, Coimbra, 3030-790, Portugal
| | - Carlos M R Abreu
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, Coimbra, 3030-790, Portugal
| | - Arménio C Serra
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, Coimbra, 3030-790, Portugal
| | - Armando Gennaro
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy
| | - Jorge F J Coelho
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, Coimbra, 3030-790, Portugal
| | - Abdirisak A Isse
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy
| |
Collapse
|
18
|
Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. Advances in Polymerizations Modulated by External Stimuli. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alicia M. Doerr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Sean R. Gitter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuejin Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J. Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
19
|
Zaborniak I, Macior A, Chmielarz P. Stimuli-Responsive Rifampicin-Based Macromolecules. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3843. [PMID: 32878162 PMCID: PMC7503961 DOI: 10.3390/ma13173843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/08/2023]
Abstract
This paper presents the modification of the antibiotic rifampicin by an anionic polyelectrolyte using a simplified electrochemically mediated atom transfer radical polymerization (seATRP) technique to receive stimuli-responsive polymer materials. Initially, a supramolecular ATRP initiator was prepared by an esterification reaction of rifampicin hydroxyl groups with α-bromoisobutyryl bromide (BriBBr). The structure of the initiator was successfully proved by nuclear magnetic resonance (1H and 13C NMR), Fourier-transform infrared (FT-IR) and ultraviolet-visible (UV-vis) spectroscopy. The prepared rifampicin-based macroinitiator was electrochemically investigated among various ATRP catalytic complexes, by a series of cyclic voltammetry (CV) measurements, determining the rate constants of electrochemical catalytic (EC') process. Macromolecules with rifampicin core and hydrophobic poly (n-butyl acrylate) (PnBA) and poly(tert-butyl acrylate) (PtBA) side chains were synthesized in a controlled manner, receiving polymers with narrow molecular weight distribution (Mw/Mn = 1.29 and 1.58, respectively). "Smart" polymer materials sensitive to pH changes were provided by transformation of tBA into acrylic acid (AA) moieties in a facile route by acidic hydrolysis. The pH-dependent behavior of prepared macromolecules was investigated by dynamic light scattering (DLS) determining a hydrodynamic radius of polymers upon pH changes, followed by a control release of quercetin as a model active substance upon pH changes.
Collapse
Affiliation(s)
- Izabela Zaborniak
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Angelika Macior
- School of Engineering and Technical Sciences, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland;
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| |
Collapse
|
20
|
Wang Y, Matyjaszewski K. Catalytic Halogen Exchange in Miniemulsion ARGET ATRP: A Pathway to Well-Controlled Block Copolymers. Macromol Rapid Commun 2020; 41:e2000264. [PMID: 32529731 DOI: 10.1002/marc.202000264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/28/2020] [Indexed: 11/10/2022]
Abstract
Halogen exchange in atom transfer radical polymerization (ATRP) is an efficient way to chain-extend from a less active macroinitiator (MI) to a more active monomer. This has been previously achieved by using CuCl/L in the equimolar amount to Pn -Br MI in the chain extension step. However, this approach cannot be effectively applied in systems based on regeneration of activators (ARGET ATRP), since they operate with ppm amounts of catalysts. Herein, a catalytic halogen exchange procedure is reported using a catalytic amount of Cu in miniemulsion ARGET ATRP to chain-extend from a less active poly(n-butyl acrylate) (PBA) MI to a more active methyl methacrylate (MMA) monomer. Influence of different reagents on the initiation efficiency and dispersity is studied. Addition of 0.1 m NaCl or tetraethylammonium chloride to ATRP of MMA initiated by methyl 2-bromopropionate leads to high initiation efficiency and polymers with low dispersity. The optimized conditions are then employed in chain extension of PBA MI with MMA to prepare diblock and triblock copolymers.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
21
|
Affiliation(s)
- Guillermo Ahumada
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeonkyeong Ryu
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
22
|
De Bon F, Marenzi S, Isse AA, Durante C, Gennaro A. Electrochemically Mediated Aqueous Atom Transfer Radical Polymerization of
N
,
N
‐Dimethylacrylamide. ChemElectroChem 2020. [DOI: 10.1002/celc.202000131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Francesco De Bon
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
- Present address: Department of Chemical Engineering University of Coimbra Rua Silvio Lima, Polo II 3030-790 Coimbra Portugal
| | - Sofia Marenzi
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Abdirisak A. Isse
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Christian Durante
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Armando Gennaro
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
23
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
24
|
De Bon F, Ribeiro DCM, Abreu CMR, Rebelo RAC, Isse AA, Serra AC, Gennaro A, Matyjaszewski K, Coelho JFJ. Under pressure: electrochemically-mediated atom transfer radical polymerization of vinyl chloride. Polym Chem 2020. [DOI: 10.1039/d0py00995d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrochemically mediated ATRP (eATRP) of vinyl chloride (VC), a less activated monomer, was successfully achieved. It is the first report on eATRP of a gaseous monomer under pressure.
Collapse
Affiliation(s)
- Francesco De Bon
- University of Coimbra
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- Rua Sílvio Lima-Polo II
| | - Diana C. M. Ribeiro
- University of Coimbra
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- Rua Sílvio Lima-Polo II
| | - Carlos M. R. Abreu
- University of Coimbra
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- Rua Sílvio Lima-Polo II
| | - Rafael A. C. Rebelo
- University of Coimbra
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- Rua Sílvio Lima-Polo II
| | - Abdirisak A. Isse
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Arménio C. Serra
- University of Coimbra
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- Rua Sílvio Lima-Polo II
| | - Armando Gennaro
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | | | - Jorge F. J. Coelho
- University of Coimbra
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- Rua Sílvio Lima-Polo II
| |
Collapse
|
25
|
Reyhani A, Mazaheri O, Alivand MS, Mumford KA, Qiao G. Temporal control of RAFT polymerization via magnetic catalysis. Polym Chem 2020. [DOI: 10.1039/d0py00220h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Magnetic core–shell structured Fe3O4@Fe(ii)–MOF nanoparticles have enabled the temporal control of RAFT polymerization via an “on–off” process.
Collapse
Affiliation(s)
- Amin Reyhani
- Department of Chemical Engineering
- The University of Melbourne
- Parkville, Melbourne
- Australia
| | - Omid Mazaheri
- Department of Chemical Engineering
- The University of Melbourne
- Parkville, Melbourne
- Australia
- School of Agriculture and Food
| | - Masood S. Alivand
- Department of Chemical Engineering
- The University of Melbourne
- Parkville, Melbourne
- Australia
| | - Kathryn A. Mumford
- Department of Chemical Engineering
- The University of Melbourne
- Parkville, Melbourne
- Australia
| | - Greg Qiao
- Department of Chemical Engineering
- The University of Melbourne
- Parkville, Melbourne
- Australia
| |
Collapse
|
26
|
De R, Jung M, Lee H. Designing Microparticle-Impregnated Polyelectrolyte Composite: The Combination of ATRP, Fast Azidation, and Click Reaction Using a Single-Catalyst, Single-Pot Strategy. Int J Mol Sci 2019; 20:E5582. [PMID: 31717319 PMCID: PMC6888670 DOI: 10.3390/ijms20225582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022] Open
Abstract
Polystyrene microparticles were covalently impregnated into the networks of functional polyelectrolyte chains designed via a tandem run of three reactions: (i) synthesis of water-soluble polyelectrolyte, (ii) fast azidation and (iii) a 'click' reaction, using the single-catalyst, single-pot strategy at room temperature in mild aqueous media. The model polyelectrolyte sodium polystyrenesulfonate (NaPSS) was synthesized via the well-controlled atom transfer radical polymerization (ATRP) whose halogen living-end was transformed to azide and subsequently coupled with an alkyne carboxylic acid through a 'click' reaction using the same ATRP catalyst, throughout. Halogen to azide transformation was fast and followed the radical pathway, which was explained through a plausible mechanism. Finally, the success of microparticle impregnation into the NaPSS network was evaluated through Kaiser assay and imaging. This versatile synthetic procedure, having a reduced number of discrete reaction steps and eliminated intermediate work-ups, has established a fast and simple pathway to design functional polymers required to fabricate stable polymer-particle composites where the particles are impregnated covalently and controllably.
Collapse
Affiliation(s)
| | | | - Hohjai Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (R.D.); (M.J.)
| |
Collapse
|
27
|
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213 United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213 United States
| |
Collapse
|
28
|
Michieletto A, Lorandi F, De Bon F, Isse AA, Gennaro A. Biocompatible polymers via aqueous electrochemically mediated atom transfer radical polymerization. JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1002/pola.29462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University, 4400 Fifth Avenue Pittsburgh Pennsylvania 15213
| | - Francesco De Bon
- Department of Chemical SciencesUniversity of Padova via Marzolo 1, 35131 Padova Italy
| | - Abdirisak Ahmed Isse
- Department of Chemical SciencesUniversity of Padova via Marzolo 1, 35131 Padova Italy
| | - Armando Gennaro
- Department of Chemical SciencesUniversity of Padova via Marzolo 1, 35131 Padova Italy
| |
Collapse
|
29
|
Redox two-component initiated free radical and cationic polymerizations: Concepts, reactions and applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Sun Y, Lathwal S, Wang Y, Fu L, Olszewski M, Fantin M, Enciso AE, Szczepaniak G, Das S, Matyjaszewski K. Preparation of Well-Defined Polymers and DNA-Polymer Bioconjugates via Small-Volume eATRP in the Presence of Air. ACS Macro Lett 2019; 8:603-609. [PMID: 35619358 DOI: 10.1021/acsmacrolett.9b00159] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An aqueous electrochemically mediated atom transfer radical polymerization (eATRP) was performed in a small volume solution (75 μL) deposited on a screen-printed electrode (SPE). The reaction was open to air, thanks to the use of glucose oxidase (GOx) as an oxygen scavenger. Well-defined poly(2-(methylsulfinyl)ethyl acrylate) (PMSEA), poly(oligo(ethylene oxide) methyl ether methacrylate) (POEOMA), and corresponding DNA-polymer biohybrids were synthesized by the small-volume eATRP at room temperature. The reactions were simplified and polymerization rates increased by the application of the enzyme deoxygenating system and the compact electrochemical setup. Importantly, the volume of polymerization mixture was lowered to microliters, which not only decreases the cost for each reaction, but can also be potentially implemented in combinatorial chemistry and electrode-array configurations for high-throughput systems.
Collapse
Affiliation(s)
- Yue Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sushil Lathwal
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yi Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Liye Fu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan E. Enciso
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Subha Das
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
31
|
Towards scale-up of electrochemically-mediated atom transfer radical polymerization: Use of a stainless-steel reactor as both cathode and reaction vessel. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
De Bon F, Isse AA, Gennaro A. Electrochemically Mediated Atom Transfer Radical Polymerization of Methyl Methacrylate: The Importance of Catalytic Halogen Exchange. ChemElectroChem 2019. [DOI: 10.1002/celc.201900192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francesco De Bon
- Department of Chemical SciencesUniversity of Padova Via Marzolo 1 35131 Padova Italy
| | - Abdirisak A. Isse
- Department of Chemical SciencesUniversity of Padova Via Marzolo 1 35131 Padova Italy
| | - Armando Gennaro
- Department of Chemical SciencesUniversity of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
33
|
Lorandi F, Fantin M, Shanmugam S, Wang Y, Isse AA, Gennaro A, Matyjaszewski K. Toward Electrochemically Mediated Reversible Addition–Fragmentation Chain-Transfer (eRAFT) Polymerization: Can Propagating Radicals Be Efficiently Electrogenerated from RAFT Agents? Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00112] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sivaprakash Shanmugam
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yi Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Abdirisak A. Isse
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova 35131, Italy
| | - Armando Gennaro
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova 35131, Italy
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
34
|
Niu X, Li D, Chen Y, Ran F. Modification of a polyethersulfone membrane with a block copolymer brush of poly(2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate) and a branched polypeptide chain of Arg–Glu–Asp–Val. RSC Adv 2019; 9:25274-25284. [PMID: 35530106 PMCID: PMC9069878 DOI: 10.1039/c9ra04234b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/21/2019] [Indexed: 12/30/2022] Open
Abstract
Polyethersulfone (PES) has good thermal stability, superior pH, chlorine tolerance, and excellent chemical resistance; however, the hydrophilicity and biocompatibility of PES need to be improved for its real applications. In this study, we report a surface modification method for the preparation of a functional PES membrane with hydrophilic polymer chains (MPC and GMA) via surface-initiated electrochemically-mediated atom-transfer radical polymerization (SI-eATRP) technology, and the Arg–Glu–Asp–Val polypeptide groups (REDV) were immobilized onto the modified membrane by a ring-opening reaction. XPS and SEM were used to analyze the chemical composition and morphology of the modified membrane surfaces, confirming that the hydrophilic polymer chains MPC and GMA and the polypeptide group REDV were successfully grafted onto the PES membrane surface. The static water contact angle decreased from 89° to 50–65°, and the hydrophilic property of the modified membrane was enhanced. The water flux increased from 4.29 L m−2 h−1 for the pristine PES membrane to 25 L m−2 h−1 for the modified membrane with PGMA chains grafted on it and REDV functional groups immobilized on it; note that the antifouling tests showed that all the modified membranes had the higher flux recovery ratio values (FRR) of above 80% than the pristine PES membrane (about 60%), and the APTT for the modified membrane increased from 46 s to 93 s, indicating that these modified membranes could be applied in the separation and blood purification fields. A block copolymer involving chains of poly(2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate) and Arg–Glu–Asp–Val was designed and used for modification of polymer membrane for applications in separation and blood purification field.![]()
Collapse
Affiliation(s)
- Xiaoqin Niu
- College of Petrochemical Technology
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Dan Li
- School of Material Science and Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Yuhong Chen
- College of Petrochemical Technology
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
- School of Material Science and Engineering
| |
Collapse
|
35
|
Pereira VA, Mendonça PV, Coelho JFJ, Serra AC. Liquid salts as eco-friendly solvents for atom transfer radical polymerization: a review. Polym Chem 2019. [DOI: 10.1039/c9py00865a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Liquid salts, comprising ionic liquids and eutectic mixtures, are organic compounds/mixtures characterized by a low melting point that have been emerging as a very promising eco-friendly solvent for atom transfer radical polymerization.
Collapse
Affiliation(s)
- Vanessa A. Pereira
- CEMMPRE
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Patrícia V. Mendonça
- CEMMPRE
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Jorge F. J. Coelho
- CEMMPRE
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Arménio C. Serra
- CEMMPRE
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| |
Collapse
|
36
|
Santos MRE, Ferreira SM, Mendonça PV, De Bon F, Serra AC, Coelho JFJ. Guanidine as inexpensive dual function ligand and reducing agent for ATRP of methacrylates. Polym Chem 2019. [DOI: 10.1039/c9py00925f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N,N,N′,N′-Tetramethyl guanidine, an inexpensive and commercially available organic base, is used for the first time as ligand without any chemical modification for the supplemental activator and reducing agent atom transfer radical polymerization.
Collapse
Affiliation(s)
- Madson R. E. Santos
- CEMMPRE
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- University of Coimbra
| | - Sílvia M. Ferreira
- CEMMPRE
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- University of Coimbra
| | - Patrícia V. Mendonça
- CEMMPRE
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- University of Coimbra
| | - Francesco De Bon
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Armenio C. Serra
- CEMMPRE
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- University of Coimbra
| | - Jorge F. J. Coelho
- CEMMPRE
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- University of Coimbra
| |
Collapse
|
37
|
Ribelli TG, Lorandi F, Fantin M, Matyjaszewski K. Atom Transfer Radical Polymerization: Billion Times More Active Catalysts and New Initiation Systems. Macromol Rapid Commun 2018; 40:e1800616. [DOI: 10.1002/marc.201800616] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas G. Ribelli
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Marco Fantin
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
38
|
Electrochemically mediated atom transfer radical polymerization of acrylonitrile and poly(acrylonitrile-b-butyl acrylate) copolymer as a precursor for N-doped mesoporous carbons. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.209] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Yeow J, Chapman R, Gormley AJ, Boyer C. Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chem Soc Rev 2018; 47:4357-4387. [PMID: 29718038 PMCID: PMC9857479 DOI: 10.1039/c7cs00587c] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The requirement for deoxygenation in controlled/living radical polymerisation (CLRP) places significant limitations on its widespread implementation by necessitating the use of large reaction volumes, sealed reaction vessels as well as requiring access to specialised equipment such as a glove box and/or inert gas source. As a result, in recent years there has been intense interest in developing strategies for overcoming the effects of oxygen inhibition in CLRP and therefore remove the necessity for deoxygenation. In this review, we highlight several strategies for achieving oxygen tolerant CLRP including: "polymerising through" oxygen, enzyme mediated deoxygenation and the continuous regeneration of a redox-active catalyst. In order to provide further clarity to the field, we also establish some basic parameters for evaluating the degree of "oxygen tolerance" that can be achieved using a given oxygen scrubbing strategy. Finally, we propose some applications that could most benefit from the implementation of oxygen tolerant CLRP and provide a perspective on the future direction of this field.
Collapse
Affiliation(s)
- Jonathan Yeow
- Centre for Advanced Macromolecular Design (CAMD), UNSW Australia, Sydney, NSW 2052, Australia.
| | | | | | | |
Collapse
|
40
|
Pan X, Fantin M, Yuan F, Matyjaszewski K. Externally controlled atom transfer radical polymerization. Chem Soc Rev 2018; 47:5457-5490. [DOI: 10.1039/c8cs00259b] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ATRP can be externally controlled by electrical current, light, mechanical forces and various chemical reducing agents. The mechanistic aspects and preparation of polymers with complex functional architectures and their applications are critically reviewed.
Collapse
Affiliation(s)
- Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Marco Fantin
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Fang Yuan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | | |
Collapse
|