1
|
Zhang Y, Guo H, Fu C, Fang Z, Xiong B, Li W, Zhu BLL. Chitosan nanoreactor modified with PNIPAAm as efficient catalyst for preparation of chiral boron compounds in aqueous phase. Int J Biol Macromol 2025; 311:143865. [PMID: 40334904 DOI: 10.1016/j.ijbiomac.2025.143865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/11/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
This work constructed chitosan-based core-shell catalytic nanoreactor (CS/NI/SA@Cu(II)) by free radical polymerization of biomass chitosan and temperature sensitive materials. The CS/NI/SA@Cu(II) were characterized by FT-IR, TG, XPS, SEM, TEM, and EDS to prove the formation of the nanoreactor, and the Cu content was obtained by ICP analysis. The TEM indicated that CS/NI/SA-2 presented a hollow core-shell structure with a size of about 100 nm, and the contact angle of CS/NI/SA-2 was 67°. The core-shell nanoreactors were successfully applied to the 1,4-chiral borylation reaction of α,β-unsaturated compounds, and α,β,γ,δ-unsaturated compounds, as well as the 1,6-chiral borylation reaction of methylene benzoquinone compounds in the aqueous phase. All template substrates can obtain up to 90 % yields with 90 % ee values in core-shell nanoreactors and chiral ligand in 12 h. The possible mechanism of catalytic reaction was revealed by calculation and deuteration experiment. Besides, the CS/NI/SA@Cu(II) could be easily recycled and effectively reused. Besides, the CS/NI/SA@Cu(II) could be easily recycled and effectively reused for 6 times. Remarkably, this approach provides the first report of biomass chitosan for an efficient strategy to gain chiral organic boron compounds in high yields and enantioselectivities.
Collapse
Affiliation(s)
- Yaoyao Zhang
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Haifeng Guo
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Chengpeng Fu
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Zhongpu Fang
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Bo Xiong
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Weishuang Li
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Bojie Li Lei Zhu
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China.
| |
Collapse
|
2
|
Cai J, Cen K, Wei J, Lin H, Zhang H. Assembly of Fluoranthenes via Cobalt-Catalyzed [2 + 2 + 2] Cycloaddition of 1,6-Diynes with Alkynes. J Org Chem 2025; 90:3001-3010. [PMID: 39946178 DOI: 10.1021/acs.joc.4c02853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A series of polyaryl-substituted fluoranthenes is built in good to excellent yields via Earth-abundant metal-catalyzed [2 + 2+ 2] cycloaddition of 1,6-diynes with alkynes is developed. This method runs smoothly using a cheap catalytic system (CoI2/dppe/Zn) as the catalyst. Generally, this strategy exhibits low cost, high efficiency, good atom economy, and good functional group tolerance. Additionally, both terminal alkynes, especially heteroaryl-substituted acetylenes, and internal alkyne, tolerate smoothly in this work. Furthermore, the photophysical properties of the selected fluoranthenes is also investigated.
Collapse
Affiliation(s)
- Jinhui Cai
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Kaili Cen
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jiahao Wei
- School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Hongyi Lin
- School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Haixia Zhang
- School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
3
|
Kim Y, Jang WJ. Recent advances in electrochemical copper catalysis for modern organic synthesis. Beilstein J Org Chem 2025; 21:155-178. [PMID: 39834892 PMCID: PMC11744695 DOI: 10.3762/bjoc.21.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
In recent decades, organic electrosynthesis has emerged as a practical, sustainable, and efficient approach that facilitates valuable transformations in synthetic chemistry. Combining electrochemistry with transition-metal catalysis is a promising and rapidly growing methodology for effectively forming challenging C-C and C-heteroatom bonds in complex molecules in a sustainable manner. In this review, we summarize the recent advances in the combination of electrochemistry and copper catalysis for various organic transformations.
Collapse
Affiliation(s)
- Yemin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Won Jun Jang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
4
|
Kevlishvili I, St Michel RG, Garrison AG, Toney JW, Adamji H, Jia H, Román-Leshkov Y, Kulik HJ. Leveraging natural language processing to curate the tmCAT, tmPHOTO, tmBIO, and tmSCO datasets of functional transition metal complexes. Faraday Discuss 2025; 256:275-303. [PMID: 39301698 DOI: 10.1039/d4fd00087k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The breadth of transition metal chemical space covered by databases such as the Cambridge Structural Database and the derived computational database tmQM is not conducive to application-specific modeling and the development of structure-property relationships. Here, we employ both supervised and unsupervised natural language processing (NLP) techniques to link experimentally synthesized compounds in the tmQM database to their respective applications. Leveraging NLP models, we curate four distinct datasets: tmCAT for catalysis, tmPHOTO for photophysical activity, tmBIO for biological relevance, and tmSCO for magnetism. Analyzing the chemical substructures within each dataset reveals common chemical motifs in each of the designated applications. We then use these common chemical structures to augment our initial datasets for each application, yielding a total of 21 631 compounds in tmCAT, 4599 in tmPHOTO, 2782 in tmBIO, and 983 in tmSCO. These datasets are expected to accelerate the more targeted computational screening and development of refined structure-property relationships with machine learning.
Collapse
Affiliation(s)
- Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Roland G St Michel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron G Garrison
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Jacob W Toney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Haojun Jia
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Ma JH, Jin CL, Couve-Bonnaire S, Bouillon JP, Xu LW. Rhodium-Catalyzed Enantioselective Hydrosilylation of 1,1-Disubstituted Enamides. Org Lett 2024; 26:10684-10689. [PMID: 39648479 DOI: 10.1021/acs.orglett.4c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Catalytic hydrosilylation of 1,1-disubstituted enamides is one of the most challenging and synthetically useful processes in organosilicon chemistry and asymmetric catalysis. Herein, we report a rhodium-catalyzed enantioselective hydrosilylation of α-arylenamides with substituted hydrosilanes with the aid of chiral P-ligand, including newly developed spirophosphite ligands, giving various chiral β-silylated amides in excellent yields with good to excellent enantioselectivities (98:2 er after recrystallization). In addition, chiral β-silylated amines can be obtained by further functionalization of the hydrosilylation product.
Collapse
Affiliation(s)
- Jun-Han Ma
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Chen-Li Jin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Samuel Couve-Bonnaire
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | | | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
6
|
Wang Z, Shen C, Dong K. Palladium-Catalyzed Enantioselective Migratory Hydroamidocarbonylation of Amide-Linked Alkenes to Access Chiral α-Alkyl Succinimides. Angew Chem Int Ed Engl 2024; 63:e202410967. [PMID: 39007709 DOI: 10.1002/anie.202410967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
A Pd-catalyzed asymmetric isomerization-hydroamidocarbonylation of amide-containing alkenes was developed, affording a variety of chiral α-alkyl succinimides in moderate to good yields with high enantioselectivities. The key to success was introducing bulky 1-adamentyl P-substitution and 2,3,5,6-tetramethoxyphenyl group into the rigid P-chirogenic bisphosphine ligand to create stronger steric hinderance and deeper catalytic pocket. By this approach, regio- or stereo-convergent synthesis of enantiomeric succinimides from the mixture of olefin isomers was achieved.
Collapse
Affiliation(s)
- Zhen Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chaoren Shen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Kaiwu Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
7
|
Wan X, Huang H, Deng Y, Yuan Y, Deng GJ. Chemoselective Hydroheteroarylation of Alkenes via Photoredox-Neutral Proton- and BF 3-Mediated Electron Transfer. Org Lett 2024; 26:7707-7712. [PMID: 39196813 DOI: 10.1021/acs.orglett.4c02825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Herein, we have developed a complementary entry to enable hydroheteroarylation of alkenes involving basically photoredox dearomatizative heterocyclic carbon radical formation through acid-coupled electron transfer followed by Giese addition. While protonic solvent and thiophenol additive enabled two molecular hydroheteroarylations of alkenes, the nonproton environment with BF3 altered the chemoselectivity over cascade hydroheteroarylation of alkenes by radical addition of heteroaromatics with two molecular alkenes. This chemoselectivity can be mechanistically attributed to the dynamically favored hydrogen atom transfer via the cyclic transition state.
Collapse
Affiliation(s)
- Xiaoyuan Wan
- College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Huawen Huang
- College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yujie Deng
- College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yuezhou Yuan
- College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Guo-Jun Deng
- College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
8
|
Qiu S, Guo H, Xu P. Photocatalyzed Selective Hydrocarbonation of Alkenes with Hantzsch Esters toward 4-Alkyl-Hantzsch Esters. Org Lett 2024; 26:6730-6735. [PMID: 39078309 DOI: 10.1021/acs.orglett.4c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Here, we describe a mild photoredox-neutral reaction system that enables the selective hydrocarbonation of alkenes with Hantzsch esters, affording structurally diverse 4-alkyl-Hantzsch esters. This straightforward protocol can be performed under an air atmosphere without the need for any transition metals. The synthetic potential of this method is well exemplified by the late-stage structural modification of a series of pharmaceutically relevant complex molecules.
Collapse
Affiliation(s)
- Shiqin Qiu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Huaixuan Guo
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Peng Xu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
9
|
Yin X, Wang X, Song L, Zhang J, Wang X. Recent Progress in Synthesis of Alkyl Fluorinated Compounds with Multiple Contiguous Stereogenic Centers. Molecules 2024; 29:3677. [PMID: 39125080 PMCID: PMC11314154 DOI: 10.3390/molecules29153677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Organic fluorides are widely used in pharmaceuticals, agrochemicals, material sciences, and other fields due to the special physical and chemical properties of fluorine atoms. The synthesis of alkyl fluorinated compounds bearing multiple contiguous stereogenic centers is the most challenging research area in synthetic chemistry and has received extensive attention from chemists. This review summarized the important research progress in the field over the past decade, including asymmetric electrophilic fluorination and the asymmetric elaboration of fluorinated substrates (such as allylic alkylation reactions, hydrofunctionalization reactions, Mannich addition reactions, Michael addition reactions, aldol addition reactions, and miscellaneous reactions), with an emphasis on synthetic methodologies, substrate scopes, and reaction mechanisms.
Collapse
Affiliation(s)
- Xuemei Yin
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China; (L.S.)
| | - Xihong Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Song
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China; (L.S.)
| | - Junxiong Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China; (L.S.)
| | - Xiaoling Wang
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China; (L.S.)
| |
Collapse
|
10
|
Bao Y, Zheng C, Xiong K, Hu C, Lu P, Wang Y, Lu Z. Enantioconvergent Hydroboration of E/ Z-Mixed Trisubstituted Alkenes. J Am Chem Soc 2024. [PMID: 38994866 DOI: 10.1021/jacs.4c06585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The lack of mode for chirality recognition makes it particularly challenging to carry out asymmetric transformations on E/Z-mixed minimally functionalized trisubstituted alkenes. Here, we report a catalytic enantioconvergent hydroboration of minimally functionalized trisubstituted E/Z-mixed alkenes to construct chiral organoboronic esters with excellent enantioselectivity using chiral radical cobalt catalyst. This C(sp3)-H borylation protocol showed good functional group tolerance and products could be converted to valuable compounds via C-B derivatizations. The mechanistic studies, which included control experiments, nonlinear effect experiments, deuterated labeling experiments, and X-ray diffraction, demonstrated that the favorable compatibility between the thermodynamically unfavorable isomerization and hydroboration was the key factor in achieving convergent transformation.
Collapse
Affiliation(s)
- Yinwei Bao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenggong Zheng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Kangyu Xiong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenke Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Peng Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuwen Wang
- Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
11
|
Gou FH, Ren F, Wu Y, Wang P. Catalytic Kinetic Resolution of Monohydrosilanes via Rhodium-Catalyzed Enantioselective Intramolecular Hydrosilylation. Angew Chem Int Ed Engl 2024; 63:e202404732. [PMID: 38605561 DOI: 10.1002/anie.202404732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
The catalytic access of silicon-stereogenic organosilanes remains a big challenge, and largely depends on the desymmetrization of the symmetric precursors with two identical substitutes attached to silicon atom. Here we report the construction of silicon-stereogenic organosilanes via catalytic kinetic resolution of racemic monohydrosilanes with good to excellent selectivity factors. Both Si-stereogenic dihydrobenzosiloles and Si-stereogenic monohydrosilanes could be efficiently accessed in one single operation via Rh-catalyzed enantioselective intramolecular hydrosilylation, employing (R,R)-Et-DuPhos as the optimal ligand. This catalytic protocol features mild conditions, a low catalyst loading (0.1 mol % [Rh(cod)Cl]2), high stereoinduction (S factor up to 152), and excellent scalability. Moreover, further derivatizations led to the efficient synthesis of uncommon middle-size (7- and 8-membered) Si-stereogenic silacycles. Preliminary mechanistic study indicates this reaction might undergo a modified Chalk-Harrod mechanism.
Collapse
Affiliation(s)
- Fei-Hu Gou
- College of Chemistry and Material Science, Shanghai Normal University, Shanghai, 200234, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Fei Ren
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Peng Wang
- College of Chemistry and Material Science, Shanghai Normal University, Shanghai, 200234, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
12
|
Zhao L, Liu F, Zhuang Y, Shen M, Xue J, Wang X, Zhang Y, Rong ZQ. CoH-catalyzed asymmetric remote hydroalkylation of heterocyclic alkenes: a rapid approach to chiral five-membered S- and O-heterocycles. Chem Sci 2024; 15:8888-8895. [PMID: 38873055 PMCID: PMC11168172 DOI: 10.1039/d4sc01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Saturated heterocycles, which incorporate S and O heteroatoms, serve as fundamental frameworks in a diverse array of natural products, bioactive compounds, and pharmaceuticals. Herein, we describe a unique cobalt-catalyzed approach integrated with a desymmetrization strategy, facilitating precise and enantioselective remote hydroalkylation of unactivated heterocyclic alkenes. This method delivers hydroalkylation products with high yields and excellent stereoselectivity, representing good efficiency in constructing alkyl chiral centers at remote C3-positions within five-membered S/O-heterocycles. Notably, the broad scope and good functional group tolerance of this asymmetric C(sp3)-C(sp3) coupling enhance its applicability.
Collapse
Affiliation(s)
- Lingzi Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yan Zhuang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Mengyang Shen
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Jing Xue
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yuting Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
13
|
Zeng XW, Lin JN, Shu W. Hydrogen Source Tuned Regiodivergent Asymmetric Hydroalkylations of 2-Substituted 1,3-Dienes with Aldehydes by Cobalt-Catalysis. Angew Chem Int Ed Engl 2024; 63:e202403073. [PMID: 38567830 DOI: 10.1002/anie.202403073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Indexed: 05/03/2024]
Abstract
Catalytic methods allowing for the reliable prediction and control of diverse regioselectivity along with the control of enantioselectivity to access different regio- and enantiomers by switching the least reaction parameters are one of the most attractive ways in organic synthesis, which provide access to diverse enantioenriched architectures from identical starting materials. Herein, a Co-catalyzed regiodivergent and enantioselective reductive hydroalkylation of 1,3-dienes with aldehydes has been achieved, furnishing different enantioenriched homoallylic alcohol architectures in good levels of enantioselectivity. The reaction features the switch of regioselectivity tuned by the selection of proton source. The use of an acid as proton source provided asymmetric 1,2-hydroalkylation products under reductive conditions, yet asymmetric 4,3-hydroalkylation products were obtained with silane as hydride source. This catalytic protocol allows for the access of homoallylic alcohols with two continuous saturated carbon centers in good levels of regio-, diastereo-, and enantioselectivity.
Collapse
Affiliation(s)
- Xian-Wang Zeng
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Jia-Ni Lin
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
14
|
Kumar N, Gupta P. DFT Struggles to Predict the Energy Landscape for Iron Pyridine Diimine-Catalyzed [2 + 2] Cycloaddition of Alkenes: Insights into the Problem and Alternative Solutions. J Phys Chem A 2024; 128:4114-4127. [PMID: 38659086 DOI: 10.1021/acs.jpca.3c08325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In recent years, noninnocent pyridine diimine (PDI) complexes featuring first-row transition metals have emerged as prominent catalysts, demonstrating efficacy in a diverse range of vital organometallic transformations. However, the inherent complexity of the fundamental reactivity paradigm in these systems arises from the presence of a noninnocent ligand and the multispin feasibility of 3d metals. While density functional theory (DFT) has been widely used to unravel mechanistic insights, its limitations as a single-reference method can potentially misrepresent spin-state energetics, compromising our understanding of these intricate systems. In this study, we employ extensive high-level ab initio state averaged-complete active space self-consistent field/N-electron valence state perturbation theory (SA-CASSCF/NEVPT2) calculations in combination with DFT to investigate an iron-PDI-catalyzed [2 + 2] cycloaddition reaction of alkenes. The transformation proceeds through two major steps: oxidative cyclization and reductive elimination. Contrary to the predictions of DFT calculations, which suggest two-state reactivity in the reaction and identify reductive elimination as the turnover-limiting step, SA-CASSCF/NEVPT2-corrected results unequivocally establish a single-state reactivity scenario with oxidative cyclization as the turnover-limiting step. SA-CASSCF/NEVPT2-based insights into electronic ground states and electron distribution elucidate the intriguing interactions between the PDI ligand and the iron center, revealing the highly multiconfigurational nature of these species and providing a precise depiction of metal-ligand cooperativity throughout the transformation. A comparative assessment of several widely recognized DFT functionals against SA-CASSCF/NEVPT2-corrected data indicates that single-point energy calculations using the modern density functional MN15 on TPSSh geometries offer the most reliable density functional methodology, in scenarios where SA-CASSCF/NEVPT2 computational cost is a consideration.
Collapse
Affiliation(s)
- Nikunj Kumar
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Puneet Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
- Center for Sustainable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
15
|
Song Y, Fu C, Zheng J, Ma S. Copper-catalyzed remote double functionalization of allenynes. Chem Sci 2024; 15:7789-7794. [PMID: 38784739 PMCID: PMC11110152 DOI: 10.1039/d4sc00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Addition reactions of molecules with conjugated or non-conjugated multiple unsaturated C-C bonds are very attractive yet challenging due to the versatile issues of chemo-, regio-, and stereo-selectivities. Especially for the readily available conjugated allenyne compounds, the reactivities have not been explored. The first example of copper-catalyzed 2,5-hydrofunctionalization and 2,5-difunctionalization of allenynes, which provides a facile access to versatile conjugated vinylic allenes with a C-B or C-Si bond, has been developed. This mild protocol has a broad substrate scope tolerating many synthetically useful functional groups. Due to the highly functionalized nature of the products, they have been demonstrated as platform molecules for the efficient syntheses of monocyclic products including poly-substituted benzenes, bicyclic compounds, and highly functionalized allene molecules.
Collapse
Affiliation(s)
- Yulong Song
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Jian Zheng
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| |
Collapse
|
16
|
Saunders TM, Shepard SB, Hale DJ, Robertson KN, Turculet L. Highly Selective Nickel-Catalyzed Isomerization-Hydroboration of Alkenes Affords Terminal Functionalization at Remote C-H Position. Chemistry 2023; 29:e202301946. [PMID: 37466914 DOI: 10.1002/chem.202301946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
We report herein the synthesis and characterization of nickel complexes supported by tridentate and bidentate phosphino(silyl) ancillary ligands, along with the successful application of these complexes as precatalysts for the hydroboration of terminal and internal alkenes using pinacolborane (HBPin). These reactions proceeded with low nickel loadings of 2.5-5 mol % in the absence of co-solvent, and in some cases at room temperature. Isomerization to afford exclusively the terminal hydroboration product was obtained across a range of internal alkenes, including tri- and tetra-substituted examples. This reactivity is unprecedented for nickel and offers a powerful means of achieving functionalization at a C-H position remote from the C=C double bond. Nickel-catalyzed deuteroboration experiments using DBPin support a mechanism involving 1,2-insertion of the alkene and subsequent chain-walking, which results in isotopic scrambling.
Collapse
Affiliation(s)
- Tyler M Saunders
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Sydney B Shepard
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Dylan J Hale
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Katherine N Robertson
- Department of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Laura Turculet
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
17
|
Yue Y, Ma T, Qi H, Zhao Y, Shi X, Tang Y, Pu M, Lei M. The theoretical design of manganese catalysts with a Si-N-Si-C-Si-C six-membered ring core-based bowl-shaped quadridentate ligand for the hydrogenation of CO/CN bonds. Phys Chem Chem Phys 2023; 25:27829-27835. [PMID: 37814900 DOI: 10.1039/d3cp03217e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Herein, a new series of bowl-shaped quadridentate ligands with a Si-N-Si-C-Si-C six-membered ring core and their manganese catalysts were designed using the density functional theory (DFT) method for the hydrogenation of unsaturated CX (XN, O) bonds. The frameworks of these ligands named by LYG (LYG = P(R1)2CH2Si(CH2)(CH3)NSi(CH3)(CH2Si(CH3)CH2P(R3)2)CH2P(R2)2) have a Si-N-Si-C-Si-C six-membered ring core at the bottom of the bowl structure and each Si atom links with one phosphorus arm (-CH2PR2). The Mn catalyst Mn(CO)-LYG was constructed to catalyze the hydrogenation of CO/CN bonds. The calculated results indicate that due to the bowl-shaped structure of LYG quadridentate ligands, these Mn catalysts could be advantageous not only in the tuneup of catalytic activity and stereoselectivity by modifying three phosphorus arms but also in the homogeneous catalyst immobilization by linking with the Si-N-Si-C-Si-C six-membered ring core using different supports. This work might provide theoretical insights to design new framework transition-metal catalysts for the hydrogenation of CX bonds.
Collapse
Affiliation(s)
- Yunfan Yue
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tian Ma
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Hexiang Qi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yaqi Zhao
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiaofan Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yanhui Tang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
18
|
Wang AF, Tian JM, Zhao XJ, Li ZH, Zhang Y, Lu K, Wang H, Zhang SY, Tu YQ, Ding TM, Xie YY. Asymmetric Intramolecular Hydroalkylation of Internal Olefin with Cycloalkanone to Directly Access Polycyclic Systems. Angew Chem Int Ed Engl 2023; 62:e202308858. [PMID: 37462217 DOI: 10.1002/anie.202308858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
An asymmetric intramolecular hydroalkylation of unactivated internal olefins with tethered cyclic ketones was realized by the cooperative catalysis of a newly designed chiral amine (SPD-NH2 ) and PdII complex, providing straightforward access to either bridged or fused bicyclic systems containing three stereogenic centers with excellent enantioselectivity (up to 99 % ee) and diastereoselectivity (up to >20 : 1 dr). Notably, the bicyclic products could be conveniently transformed into a diverse range of key structures frequently found in bioactive terpenes, such as Δ6 -protoilludene, cracroson D, and vulgarisins. The steric hindrance between the Ar group of the SPD-NH2 catalyst and the branched chain of the substrate, hydrogen-bonding interactions between the N-H of the enamine motif and the C=O of the directing group MQ, and the counterion of the PdII complex were identified as key factors for excellent stereoinduction in this dual catalytic process by density functional theory calculations.
Collapse
Affiliation(s)
- Ai-Fang Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jin-Miao Tian
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiao-Jing Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zi-Hao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hong Wang
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yu-Yang Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
19
|
Hussein AA, Ariffin A. Remote Steric and Electronic Effects of N-Heterocyclic Carbene Ligands on Alkene Reactivity and Regioselectivity toward Hydrocupration Reactions: The Role of Expanded-Ring N-Heterocyclic Carbenes. J Org Chem 2023; 88:13009-13021. [PMID: 37649423 DOI: 10.1021/acs.joc.3c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The remote groups in N-heterocyclic carbene (NHC) ligands have a significant influence on metal-catalyzed reactions. We examine how remote bulkiness, electronic groups, and expanded-ring NHCs (ER-NHCs) influence alkene reactivity and regioselectivity toward hydrocupration using density functional theory calculations. The impact of remote steric bulkiness on the Cu-H insertion rate is analyzed, revealing a strong correlation between the steric substituent constant and rate ratio, where a bulky group increases the rate due to reduced steric effects in the transition state (TS). The steric properties of the examined catalysts (with a remote group R2 = CPh3, CHPh2, CH2Ph, CH3, and H) and their corresponding TSs are found to be modulated greatly by the remote steric substitution group and the ring size of the NHC ligand. Enhanced bulkiness enhances the nucleophilic Cu-H moiety. The remote electronic groups have a smaller impact on insertion barrier compared to that of steric hindrance. Furthermore, ER-NHC exploration indicates that NHCs with over five-membered rings have a significantly negative influence on the reaction rate. Finally, with a highly bulky group (R2 = CPh3), anti-Markovnikov insertion preference is attributed to high interaction energy and improved steric properties. Overall, our findings here provide valuable insights for the development of a more effective catalyst in metal-catalyzed reactions.
Collapse
Affiliation(s)
- Aqeel A Hussein
- Department of Medical Laboratory Science, College of Science, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region 46001, Iraq
- Department of Biology, College of Science, Al-Qasim Green University, Al-Qassim, Babylon 51013, Iraq
| | - Azhar Ariffin
- Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
20
|
Daniels BS, Hou X, Corio SA, Weissman LM, Dong VM, Hirschi JS, Nie S. Copper-Phosphido Catalysis: Enantioselective Addition of Phosphines to Cyclopropenes. Angew Chem Int Ed Engl 2023; 62:e202306511. [PMID: 37332088 PMCID: PMC11365472 DOI: 10.1002/anie.202306511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
We describe a copper catalyst that promotes the addition of phosphines to cyclopropenes at ambient temperature. A range of cyclopropylphosphines bearing different steric and electronic properties can now be accessed in high yields and enantioselectivities. Enrichment of phosphorus stereocenters is also demonstrated via a Dynamic Kinetic Asymmetric Transformation (DyKAT) process. A combined experimental and theoretical mechanistic study supports an elementary step featuring insertion of a CuI -phosphido into a carbon-carbon double bond. Density functional theory calculations reveal migratory insertion as the rate- and stereo-determining step, followed by a syn-protodemetalation.
Collapse
Affiliation(s)
- Brian S Daniels
- Department of Chemistry, University of California, Irvine, 92697, Irvine, CA, USA
| | - Xintong Hou
- Department of Chemistry, University of California, Irvine, 92697, Irvine, CA, USA
| | - Stephanie A Corio
- Department of Chemistry, Binghamton University, 13902, Binghamton, NY, USA
| | - Lindsey M Weissman
- Department of Chemistry, Binghamton University, 13902, Binghamton, NY, USA
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, 92697, Irvine, CA, USA
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, 13902, Binghamton, NY, USA
| | - Shaozhen Nie
- Department of Medicinal Chemistry, GSK, 1250 S. Collegeville Rd, 19426, Collegeville, PA, USA
| |
Collapse
|
21
|
Maiti M, Jana SK, Maji B. Asymmetric alkene-alkene reductive cross-coupling reaction via visible-light photoredox/cobalt dual catalysis. Chem Commun (Camb) 2023. [PMID: 37475618 DOI: 10.1039/d3cc02792a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The first example of asymmetric alkene-alkene reductive coupling is demonstrated via visible-light-fueled photoredox/cobalt dual catalysis. The desymmetrization reaction provided products (>20 examples) with up to five chiral centers in single-step operation in up to 95% yields with very high relative (>99 : 1 dr) and absolute stereochemistry (up to 98 : 2 er) control. The preliminary mechanistic investigations suggested that the critical mechanistic steps involved light-mediated controlled low-valent cobalt complex generation, oxidative ene-ene cyclization, and protonation.
Collapse
Affiliation(s)
- Mamata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Sayan K Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
22
|
Pounder A, Neufeld E, Myler P, Tam W. Transition-metal-catalyzed domino reactions of strained bicyclic alkenes. Beilstein J Org Chem 2023; 19:487-540. [PMID: 37153643 PMCID: PMC10155623 DOI: 10.3762/bjoc.19.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
This review presents a comprehensive overview of transition-metal-catalyzed domino reactions of strained bicyclic alkenes, including both homo- and heterobicyclic alkenes. These compounds are important synthons in organic synthesis, providing an important platform for the construction of biologically/medicinally significant compounds which bear multiple stereocenters. The review has been divided according to the metal used in the reaction. An overview of the substrate scope, reaction conditions, and their potential applications in organic synthesis is discussed. A comprehensive outlook on the reactivity paradigms of homo- and heterobicyclic alkenes is discussed and should shed light on future directions for further development in this field.
Collapse
Affiliation(s)
- Austin Pounder
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Eric Neufeld
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Peter Myler
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - William Tam
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
23
|
Zhang Z, Chen Y, Gu X, Ho CY. (NHC)Ni(II)-Directed Insertions and Higher Substituted Olefin Synthesis from Simple Olefins. Acc Chem Res 2023; 56:1070-1086. [PMID: 37036948 DOI: 10.1021/acs.accounts.3c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
ConspectusWell-controlled olefin insertion is critical for achieving catalytic and productive bulk and fine-chemical synthesis. Developing efficient and selective methods for meeting diverse insertion demands is extremely noteworthy, as it supports numerous transformations. The challenges are related to improving catalyst performance and selectivity control and uniting previously unreactive substrate pairs to achieve higher molecular structural complexity and utility. Nickel catalysts have received persistent attention in higher substituted olefin synthesis and polymerization, and numerous new strategies have been established to fulfill the ever-changing demands. This Account focuses on the recent progress based on N-heterocyclic carbene (NHC) ligands and nickel catalysts in our laboratory in using simple terminal olefins as olefin donors or acceptors.It begins with a brief history of olefin codimerization and the major advances in hydrovinylation achieved by other research groups using ethylene as an olefin donor. It then describes problems related to the reductive elimination that can occur when both the hydrometalated alkene and NHC are on the catalyst. It emphasizes the impact of NHC catalyst generation methods on the competing reactivity. Next, it explains the principal challenges and great opportunities in using our method (with α-olefins as olefin donors and alkenyl sources) to replace intermolecular reductive hydroalkenylation reactions (which require rare and more expensive alkenyl halides and boronic acids as reactants, alongside a stoichiometric amount of metallic reagents). The Account then illustrates the potential uses of our method for solving challenging organic synthesis problems using tailor-made (NHC)Ni(II) catalysts to allow redox-neutral catalytic cycles based on high chemo- and regioselective cross-insertion controls. It shows that upon optimal steric and electronic cooperation between the NHC, olefin donor, and olefin acceptor, regiodivergent insertion and convergent synthesis can be achieved easily.In the course of our work, we uncovered several unique insights into regulating (anti-)Markovnikov hydronickelation, carbonickelation, hydrocarbonation, ring closure, 1,3-allyl shift, isomerization, and catalyst regeneration under green, neutral, and mild-temperature conditions. These insights are also outlined here, along with theoretical calculations that offer additional understandings of the insertion reactivity and selectivity differences observed between the NHC and the highly related phosphorus-based Ni(II) hydride-catalyzed cross-hydroalkenylation and cycloisomerization systems.Compared to traditional olefin and cyclic structure synthesis technology, such as olefin cross-metathesis, enyne cyclization, and cross-coupling reactions, the new catalyst systems often offer previously inaccessible product structural characteristics, substrate scope, and outcomes. In particular, the method is effective for the catalytic synthesis of unsymmetrical and functionalized 1,1-disubstituted olefins (a.k.a. gem-olefins), 1,4-dienes (a.k.a. skipped dienes), conjugated dienes, endo- and exocyclic olefins, fused and spiro rings, and aromatic products. These syntheses are variously achieved by cross-hydroalkenylation, insertion-induced rearrangement, cycloadditions, and other approaches inspired by our investigations and detailed in this Account. Cross-hydroalkenylation can be achieved with high enantioselectivity by application of carefully designed and structurally flexible C1 and C2 chiral NHC ligands, yielding a pool of chiral branched alkenes and 1,4-dienes directly from simple chemical feedstocks used in industry. This Account will draw further attention to green alkenylation and the related development of redox-neutral catalytic cycles.
Collapse
Affiliation(s)
- Zhifeng Zhang
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xiao Gu
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chun-Yu Ho
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
24
|
Hu L, Gao H, Hu Y, Wu YB, Lv X, Lu G. Origins of Regioselectivity in CuH-Catalyzed Hydrofunctionalization of Alkenes. J Org Chem 2023. [PMID: 36790843 DOI: 10.1021/acs.joc.2c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Factors controlling the regioselectivity in alkene hydrocupration were computationally investigated using energy decomposition analysis. The results demonstrate that the Markovnikov-selective hydrocupration with electronically activated mono-substituted olefins is mostly affected by the destabilizing Pauli repulsion, which is due to the electron delocalization effect. The anti-Markovnikov-selective hydrocupration with 1,1-dialkyl-substituted terminal olefins is dominated by the repulsive electrostatic interactions, which is because of the unequal π electron distribution caused by the induction effect of alkyl substituents.
Collapse
Affiliation(s)
- Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
25
|
Li Q, Wang Z, Dong VM, Yang XH. Enantioselective Hydroalkoxylation of 1,3-Dienes via Ni-Catalysis. J Am Chem Soc 2023; 145:3909-3914. [PMID: 36763788 PMCID: PMC9951252 DOI: 10.1021/jacs.2c12779] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Indexed: 02/12/2023]
Abstract
As an advance in hydrofunctionalization, we herein report that alcohols add to 1,3-dienes with high regio- and enantioselectivity. Using Ni-DuPhos, we access enantioenriched allylic ethers. Through the choice of solvent-free conditions, we control the reversibility of C-O bond formation. This work showcases a rare example of methanol as a reagent in asymmetric synthesis.
Collapse
Affiliation(s)
- Qi Li
- Advanced
Research Institute of Multidisciplinary Science, School of Chemistry
and Chemical Engineering, Key Laboratory of Medical Molecule Science
and Pharmaceutical Engineering, Ministry of Industry and Information
Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhen Wang
- Advanced
Research Institute of Multidisciplinary Science, School of Chemistry
and Chemical Engineering, Key Laboratory of Medical Molecule Science
and Pharmaceutical Engineering, Ministry of Industry and Information
Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Vy M. Dong
- Department
of Chemistry, University of California−Irvine, Irvine, California 92697, United States
| | - Xiao-Hui Yang
- Advanced
Research Institute of Multidisciplinary Science, School of Chemistry
and Chemical Engineering, Key Laboratory of Medical Molecule Science
and Pharmaceutical Engineering, Ministry of Industry and Information
Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
26
|
Lonardi G, Parolin R, Licini G, Orlandi M. Catalytic Asymmetric Conjugate Reduction. Angew Chem Int Ed Engl 2023; 62:e202216649. [PMID: 36757599 DOI: 10.1002/anie.202216649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/16/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
Enantioselective reduction reactions are privileged transformations for the construction of trisubstituted stereogenic centers. While these include established synthetic strategies, such as asymmetric hydrogenation, methods based on the enantioselective addition of hydridic reagents to electrophilic prochiral substrates have also gained importance. In this context, the asymmetric conjugate reduction (ACR) of α,β-unsaturated compounds has become a convenient approach for the synthesis of chiral compounds with trisubstituted stereocenters in α-, β-, or γ-position to electron-withdrawing functional groups. Because such activating groups are diverse and amenable of further derivatizations, ACRs provide a general and powerful synthetic entry towards a variety of valuable chiral building blocks. This Review provides a comprehensive collection of catalytic ACR methods involving transition-metal, organic, and enzymatic catalysis since its first versions dating back to the late 1970s.
Collapse
Affiliation(s)
- Giovanni Lonardi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Riccardo Parolin
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Giulia Licini
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Manuel Orlandi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| |
Collapse
|
27
|
Hu Y, Zou Y, Yang H, Ji H, Jin Y, Zhang Z, Liu Y, Zhang W. Precise Synthesis of Chiral Z-Allylamides by Cobalt-Catalyzed Asymmetric Sequential Hydrogenations. Angew Chem Int Ed Engl 2023; 62:e202217871. [PMID: 36753391 DOI: 10.1002/anie.202217871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Asymmetric sequential hydrogenations of conjugated enynes have been developed using a Ph-BPE-CoI catalyst for the precise synthesis of chiral Z-allylamides in high activity (up to 1000 substrate/catalyst (S/C)) and with excellent enantioselectivity (up to >99 % enantiomeric excess (ee)). Mechanism experiments and theoretical calculations support a cationic CoI /CoIII redox catalytic cycle. The catalytic activity difference between cobalt complexes of Ph-BPE and QuinoxP* was explained by the process decomposition of rate-determining step in the second hydrogenation.
Collapse
Affiliation(s)
- Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huiwen Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Haotian Ji
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yue Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
28
|
Wang Q, Qi Y, Gao X, Gong L, Wan R, Lei W, Wang Z, Mao J, Guan H, Li W, Walsh PJ. Recent trends and developments in the asymmetric synthesis of profens. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
29
|
Suzuki H, Kondo S, Yamada K, Matsuda T. Diastereo- and Enantioselective Reductive Mannich-type Reaction of α,β-Unsaturated Carboxylic Acids to Ketimines: A Direct Entry to Unprotected β 2,3,3 -Amino Acids. Chemistry 2023; 29:e202202575. [PMID: 36341524 PMCID: PMC10107894 DOI: 10.1002/chem.202202575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Stereoselective construction of unprotected β-amino acids is a significant challenge owing to the lack of methods for the catalytic generation of highly enantioenriched carboxylic acid enolates. In this study, a novel copper-catalyzed diastereo- and enantioselective reductive Mannich-type reaction of α,β-unsaturated carboxylic acids was developed, which provides a direct and scalable synthetic method for enantioenriched β2,3,3 -amino acids with vicinal stereogenic centers. The protocol features in situ generation of transiently protected carboxylic acids by a hydrosilane and their diastereo- and enantioselective reductive coupling with ketimines. The synthetic utility of this process was demonstrated by a gram-scale reaction and the transformation of β-amino acids.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagrazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sora Kondo
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagrazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Koichiro Yamada
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagrazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagrazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
30
|
Cheng Z, Li M, Zhang XY, Sun Y, Yu QL, Zhang XH, Lu Z. Cobalt-Catalyzed Regiodivergent Double Hydrosilylation of Arylacetylenes. Angew Chem Int Ed Engl 2023; 62:e202215029. [PMID: 36330602 DOI: 10.1002/anie.202215029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Double hydrosilylation of alkynes represents a straightforward method to synthesize bis(silane)s, yet it is challenging if α-substituted vinylsilanes act as the intermediates. Here, a cobalt-catalyzed regiodivergent double hydrosilylation of arylacetylenes is reported for the first time involving this challenge, accessing both vicinal and geminal bis(silane)s with exclusive regioselectivity. Various novel bis(silane)s containing Si-H bonds can be easily obtained. The gram-scale reactions could be performed smoothly. Preliminarily mechanistic studies demonstrated that the reactions were initiated by cobalt-catalyzed α-hydrosilylation of alkynes, followed by cobalt-catalyzed β-hydrosilylation of the α-vinylsilanes to deliver vicinal bis(silane)s, or hydride-catalyzed α-hydrosilylation to give geminal ones. Notably, these bis(silane)s can be used for the synthesis of high-refractive-index polymers (nd up to 1.83), demonstrating great potential utility in optical materials.
Collapse
Affiliation(s)
- Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Minghua Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yang Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Sun
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing-Lei Yu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing-Hong Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310058, China
| |
Collapse
|
31
|
Budagumpi S, Keri RS, Nagaraju D, Yhobu Z, Monica V, Geetha B, Kadu RD, Neole N. Progress in the catalytic applications of cobalt N–heterocyclic carbene complexes: Emphasis on their synthesis, structure and mechanism. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Li X, Pan X, Qi Z, Li X. Palladium-Catalyzed [3 + 2] Annulation of Aryl Halides with 7-Oxa- and 7-Azabenzonorbornadienes via C(sp 2 or sp 3)–H Activation. Org Lett 2022; 24:8964-8968. [DOI: 10.1021/acs.orglett.2c03422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Xiaojiao Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an, Shaanxi 710062, China
| | - Xianting Pan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an, Shaanxi 710062, China
| | - Zisong Qi
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an, Shaanxi 710062, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an, Shaanxi 710062, China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
33
|
Paveliev SA, Segida OO, Mulina OM, Krylov IB, Terent’ev AO. Decatungstate-Catalyzed Photochemical Synthesis of Enaminones from Vinyl Azides and Aldehydes. Org Lett 2022; 24:8942-8947. [DOI: 10.1021/acs.orglett.2c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Stanislav A. Paveliev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Oleg O. Segida
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Olga M. Mulina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Igor B. Krylov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Alexander O. Terent’ev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
34
|
Torres-Calis A, García JJ. Homogeneous Manganese-Catalyzed Hydrofunctionalizations of Alkenes and Alkynes: Catalytic and Mechanistic Tendencies. ACS OMEGA 2022; 7:37008-37038. [PMID: 36312376 PMCID: PMC9608411 DOI: 10.1021/acsomega.2c05109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In recent years, many manganese-based homogeneous catalytic precursors have been developed as powerful alternatives in organic synthesis. Among these, the hydrofunctionalizations of unsaturated C-C bonds correspond to outstanding ways to afford compounds with more versatile functional groups, which are commonly used as building blocks in the production of fine chemicals and feedstock for the industrial field. Herein, we present an account of the Mn-catalyzed homogeneous hydrofunctionalizations of alkenes and alkynes with the main objective of finding catalytic and mechanistic tendencies that could serve as a platform for the works to come.
Collapse
|
35
|
Liu CF, Wang ZC, Luo X, Lu J, Ko CHM, Shi SL, Koh MJ. Synthesis of tri- and tetrasubstituted stereocentres by nickel-catalysed enantioselective olefin cross-couplings. Nat Catal 2022. [DOI: 10.1038/s41929-022-00854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Zhang JX, Yang PF, Shu W. Access to dialkylated allylic stereogenic centers by Ni-catalysed enantioselective hydrovinylation of unactivated alkenes. Chem Sci 2022; 13:11405-11410. [PMID: 36320572 PMCID: PMC9533468 DOI: 10.1039/d2sc04350e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/12/2022] [Indexed: 07/22/2023] Open
Abstract
Tertiary dialkylated allylic stereogenic centers are widespread substructures in bioactive molecules and natural products. However, enantioselective access to dialkyl substituted allylic motifs remains a long-term challenge. Herein, a straightforward protocol to build allylic dialkylated stereogenic centers enabled by nickel-catalysed regio- and enantioselective hydrovinylation of isolated unactivated alkenes facilitated by a weakly coordinating group with vinyl bromides was developed, affording dialkylated allylic species in good yields with excellent enantioselectivities. The reaction distinguishes distinct alkenes and works for both terminal and internal aliphatic alkenes. The reaction proceeds under mild conditions and tolerates a wide range of functional groups.
Collapse
Affiliation(s)
- Jian-Xin Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Peng-Fei Yang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
37
|
Slocumb HS, Nie S, Dong VM, Yang XH. Enantioselective Selenol-ene Using Rh-Hydride Catalysis. J Am Chem Soc 2022; 144:18246-18250. [PMID: 36162123 DOI: 10.1021/jacs.2c08475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study showcases the first enantioselective hydroselenation of styrenes. Organoselenium building blocks are accessed with selectivity for the branched isomer. Through a Rh-hydride pathway, C-Se bonds can be forged with excellent regio- and enantiocontrol.
Collapse
Affiliation(s)
- Hannah S Slocumb
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Shaozhen Nie
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Xiao-Hui Yang
- Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
38
|
Sun X, Lin EZ, Li BJ. Iridium-Catalyzed Branch-Selective and Enantioselective Hydroalkenylation of α-Olefins through C-H Cleavage of Enamides. J Am Chem Soc 2022; 144:17351-17358. [PMID: 36121772 DOI: 10.1021/jacs.2c07477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Catalytic branch-selective hydrofunctionalization of feedstock α-olefins to form enantioenriched chiral compounds is a particularly attractive yet challenging transformation in asymmetric catalysis. Herein we report an iridium-catalyzed asymmetric hydroalkenylation of α-olefins through directed C-H cleavage of enamides. This atom-economical addition process is highly branch-selective and enantioselective, delivering trisubstituted alkenes with an allylic stereocenter. DFT calculations reveal the origin of regio- and enantioselectivity.
Collapse
Affiliation(s)
- Xin Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - En-Ze Lin
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
39
|
Lu P, Wang H, Mao Y, Hong X, Lu Z. Cobalt-Catalyzed Enantioconvergent Hydrogenation of Minimally Functionalized Isomeric Olefins. J Am Chem Soc 2022; 144:17359-17364. [DOI: 10.1021/jacs.2c08525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Peng Lu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hongliang Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yihui Mao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Zhan Lu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
40
|
Chang ASM, Kawamura KE, Henness HS, Salpino VM, Greene JC, Zakharov LN, Cook AK. (NHC)Ni(0)-Catalyzed Branched-Selective Alkene Hydrosilylation with Secondary and Tertiary Silanes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alison Sy-min Chang
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Kiana E. Kawamura
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Hayden S. Henness
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Victor M. Salpino
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Jack C. Greene
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Lev N. Zakharov
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Amanda K. Cook
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
41
|
Yang W, Chernyshov IY, Weber M, Pidko EA, Filonenko GA. Switching between Hydrogenation and Olefin Transposition Catalysis via Silencing NH Cooperativity in Mn(I) Pincer Complexes. ACS Catal 2022; 12:10818-10825. [PMID: 36082051 PMCID: PMC9442580 DOI: 10.1021/acscatal.2c02963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Indexed: 11/30/2022]
Abstract
![]()
While Mn-catalyzed (de)hydrogenation of carbonyl derivatives
has
been well established, the reactivity of Mn hydrides with olefins
remains very rare. Herein, we report a Mn(I) pincer complex that effectively
promotes site-controlled transposition of olefins. This reactivity
is shown to emerge once the N–H functionality within the Mn/NH
bifunctional complex is suppressed by alkylation. While detrimental
for carbonyl (de)hydrogenation, such masking of the cooperative N–H
functionality allows for the highly efficient conversion of a wide
range of allylarenes to higher-value 1-propenybenzenes in near-quantitative
yield with excellent stereoselectivities. The reactivity toward a
single positional isomerization was also retained for long-chain alkenes,
resulting in the highly regioselective formation of 2-alkenes, which
are less thermodynamically stable compared to other possible isomerization
products. The detailed mechanistic analysis of the reaction between
the activated Mn catalyst and olefins points to catalysis operating
via a metal–alkyl mechanism—one of the three conventional
transposition mechanisms previously unknown in Mn complexes.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ivan Yu. Chernyshov
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Manuela Weber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Evgeny A. Pidko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Georgy A. Filonenko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
42
|
Jin Y, Zou Y, Hu Y, Han Y, Zhang Z, Zhang W. Azole-Directed Cobalt-Catalyzed Asymmetric Hydrogenation of Alkenes. Chemistry 2022; 28:e202201517. [PMID: 35622378 DOI: 10.1002/chem.202201517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 12/11/2022]
Abstract
The azole-directed cobalt-catalyzed asymmetric hydrogenation of alkenes has been developed with high efficiency. With this approach, chiral pyrazole compounds were obtained in quantitative yields and excellent enantioselectivities (up to 99 % ee) under mild conditions, and the hydrogenation was conducted on a gram scale with up to 2000 TON. Several useful applications were demonstrated including the convenient introduction of β-chirality to a drug intermediate containing an azole ring.
Collapse
Affiliation(s)
- Yue Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yanhua Hu
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yunxi Han
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
43
|
Chen C, Wang H, Li T, Lu D, Li J, Zhang X, Hong X, Lu Z. Cobalt‐Catalyzed Asymmetric Sequential Hydroboration/Isomerization/Hydroboration of 2‐Aryl Vinylcyclopropanes. Angew Chem Int Ed Engl 2022; 61:e202205619. [DOI: 10.1002/anie.202205619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Chenhui Chen
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Hongliang Wang
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Tongtong Li
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Dongpo Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Jiajing Li
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Xie Zhang
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Xin Hong
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- Center of Chemistry for Frontier Technologies State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou 310027 China
- Beijing National Laboratory for Molecular Sciences Zhongguancun North First Street NO. 2 Beijing 100190 China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Zhan Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- College of Chemistry Zhengzhou University Zhengzhou 450001 China
- Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
| |
Collapse
|
44
|
Dong W, Ye Z, Zhao W. Enantioselective Cobalt-Catalyzed Hydroboration of Ketone-Derived Silyl Enol Ethers. Angew Chem Int Ed Engl 2022; 61:e202117413. [PMID: 35488385 DOI: 10.1002/anie.202117413] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 12/23/2022]
Abstract
Catalytic asymmetric hydroboration of alkenes is a powerful tool for the synthesis of natural products, agrochemicals, and pharmaceuticals via the versatile transformations of chiral alkyl boronic esters. However, the scope of available alkenes is limited to styrenes, activated alkenes, and compounds with directing groups. The catalytic enantioselective hydroboration of heteroatom-substituted alkenes is rarely explored and those catalyzed by earth-abundant metals are yet to be reported. Herein, we report a cobalt-catalyzed asymmetric hydroboration of ketone-derived silyl enol ethers and provide a convenient approach to access valuable enantiopure β-hydroxy boronic esters. This protocol features mild reaction conditions, a broad substrate scope, and excellent enantioselectivities (up to 99 % ee). This approach was applied in the successful synthesis of salmeterol and albuterol, demonstrating its potential to streamline complex molecule synthesis.
Collapse
Affiliation(s)
- Wenke Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zhiyang Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
45
|
Yu F, Tao R, Su Y, Liu G, Huang Z. Undirected, Asymmetric Alkyl Group Functionalizations through Alkane Dehydrogenation. Org Lett 2022; 24:4563-4568. [PMID: 35724678 DOI: 10.1021/acs.orglett.2c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Direct asymmetric alkyl group functionalizations can potentially convert abundant and inexpensive hydrocarbon feedstocks into value-added chiral fine chemicals. Here, we report a one-pot, dehydrogenation-based strategy for enantioselective formal benzylic C(sp3)-H bond borylation. Dehydrogenation of alkylarenes by a pincer-Ir complex produces aryl alkenes via a tandem dehydrogenation/alkene-isomerization catalysis. The subsequent Cu-catalyzed asymmetric alkene hydroboration affords benzylic boronate esters with excellent site- and enantioselectivity. The generality of this strategy has been further demonstrated by asymmetric alkyl group amination.
Collapse
Affiliation(s)
- Feng Yu
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China.,The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Renqing Tao
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yiting Su
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China.,The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guixia Liu
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China.,The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zheng Huang
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China.,The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
46
|
Li Q, Fang X, Pan R, Yao H, Lin A. Palladium-Catalyzed Asymmetric Sequential Hydroamination of 1,3-Enynes: Enantioselective Syntheses of Chiral Imidazolidinones. J Am Chem Soc 2022; 144:11364-11376. [PMID: 35687857 DOI: 10.1021/jacs.2c03620] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pd-catalyzed sequential hydroamination of readily available 1,3-enynes is reported. The redox-neutral process provides an efficient route to synthesize a broad scope of imidazolidinones, thiadiazolidines, and imidazolidines. Asymmetric sequential hydroamination generates a series of synthetically valuable, enantioenriched imidazolidinones. Mechanistic studies revealed that the transformation occurred via an intermolecular enyne hydroamination pathway to give an allene intermediate. Subsequent intramolecular hydroamination of the allene intermediate proceeded under the Curtin-Hammett principle to provide enantioenriched imidazolidinone products.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinxin Fang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Rui Pan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
47
|
Viereck P, Hierlmeier G, Tosatti P, Pabst TP, Puentener K, Chirik PJ. Molybdenum-Catalyzed Asymmetric Hydrogenation of Fused Arenes and Heteroarenes. J Am Chem Soc 2022; 144:11203-11214. [PMID: 35714999 DOI: 10.1021/jacs.2c02007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The synthesis of enantioenriched molybdenum precatalysts for the asymmetric hydrogenation of substituted quinolines and naphthalenes is described. Three classes of pincer ligands with chiral substituents were evaluated as supporting ligands in the molybdenum-catalyzed hydrogenation reactions, where oxazoline imino(pyridine) chelates were identified as optimal. A series of 2,6-disubstituted quinolines was hydrogenated to enantioenriched decahydroquinolines with high diastereo- and enantioselectivities. For quinoline derivatives, selective hydrogenation of both the carbocycle and heterocycle was observed depending on the ring substitution. Spectroscopic and mechanistic studies established molybdenum η6-arene complexes as the catalyst resting state and that partial hydrogenation arises from dissociation of the substrate from the coordination sphere of molybdenum prior to complete reduction. A stereochemical model is proposed based on the relative energies of the respective coordination of the prochiral faces of the arene determined by steric interactions between the substrate and the chiral ligand, rather than through precoordination by a heteroatom.
Collapse
Affiliation(s)
- Peter Viereck
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gabriele Hierlmeier
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paolo Tosatti
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kurt Puentener
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
48
|
Cobalt‐Catalyzed Asymmetric Sequential Hydroboration/Isomerization/Hydroboration of 2‐Aryl Vinylcyclopropanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Yang Q, Wang Z, Hor CHH, Xiao H, Bian Z, Wang J(J. Asymmetric synthesis of flavanols via Cu-catalyzed kinetic resolution of chromenes and their anti-inflammatory activity. SCIENCE ADVANCES 2022; 8:eabm9603. [PMID: 35658029 PMCID: PMC9166297 DOI: 10.1126/sciadv.abm9603] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Flavanols are privileged heterocyclic compounds in medicinal chemistry. It is notable to develop an efficient and straightforward protocol for accessing chiral flavanols with precise control of the stereocenters. Here, a highly efficient kinetic resolution of chromenes was reported via Cu-catalyzed asymmetric hydroboration. This previously unidentified approach features a one-step synthesis of chiral flavan-3-ols containing two vicinal stereogenic centers via a highly efficient kinetic resolution (s factor up to 1060, >99% ee for most products). In addition, the anti-inflammation effects of these diversified flavan-3-ols were studied by the in vitro experiments and RNA sequencing analysis. These flavan-3-ols showed inhibitory effects on the secretion of pro-inflammation cytokines including interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), as well as inhibiting the inflammation responses through down-regulating the gene transcriptions closely related to PI3K-Akt signaling pathway and TNF signaling pathway. The results suggested that these newly synthesized flavan-3-ols have the potential to be lead compounds for anti-inflammatory drugs.
Collapse
Affiliation(s)
- Qingjing Yang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zihao Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | | | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518066, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Corresponding author. (J.W.); (Z.B.)
| | - Jun (Joelle) Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Corresponding author. (J.W.); (Z.B.)
| |
Collapse
|
50
|
Azimi SB, Asnaashariisfahani M, Azizi B, Mohammadi E, Ghaffar Ebadi A, Vessally E. Hydro-trifluoromethyl(thiol)ation of alkenes: a review*. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2072687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Seyedeh Bahareh Azimi
- Assessment and Environment Risks Department, Research Center of Envirnment and Sustainable Development (RCESD), Tehran, Iran
| | | | - Bayan Azizi
- Medical Laboratory Sciences Department, College of Health Sciences, University of Human Development, Sulaymaniyah, Iraq
| | | | - Abdol Ghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University, Jouybar, Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|