1
|
D'Almeida AP, Gonçalves LRB, de Albuquerque TL, Fernandez-Lafuente R, da Silva IJ. Alcalase immobilization in iota-carrageenan-matrix hydrogel beads derived from the macroalga Solieria filiformis. Enzyme Microb Technol 2025; 188:110636. [PMID: 40147097 DOI: 10.1016/j.enzmictec.2025.110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
This study aims to immobilize Bacillus licheniformis (Alcalase) protease in iota-carrageenan (ιCAR) matrix hydrogels via adsorption. CAR was extracted from macroalgae Solieria filiformis and used to produce hydrogels using Al3 + as the gelling agent. Subsequently, enzyme immobilization was performed at 25ºC, for 120 min using particles of ∼2.0 mm diameter, varying the medium pH values (7.0, 8.0, and 9.0). The immobilization at pH 8.0 resulted in the biocatalyst with the highest immobilization yield (100 %), expressed activity (88.9 %), and mass activity (10.4 U/g) for 1.0 mg/g of enzyme loading. When using particles with different diameters (1.0, 2.0, and 3.0 mm), the best results were obtained using 1.0 mm particles. This permitted a 100 % immobilization yield, 95.8 % expressed activity, and high mass activity (11.2 U/g). The lyophilized biocatalyst presented varying macro-pore diameters, ranging from 21 to 126 µm. The immobilized biocatalyst was 11 times more stable than the soluble enzyme at 60ºC and pH 8.0 and presented > 80 % retained activity in the pH range 6.0-9.0.
Collapse
Affiliation(s)
- Alan Portal D'Almeida
- Department of Chemical Engineering, Federal University of Ceará, Pici Campus, Fortaleza, Brazil
| | | | | | | | - Ivanildo José da Silva
- Department of Chemical Engineering, Federal University of Ceará, Pici Campus, Fortaleza, Brazil.
| |
Collapse
|
2
|
Azhagapillai P, Gopalsamy K, Othman I, Alhatti NI, Haija MA, Ashraf SS. Immobilization of soybean peroxidase enzyme on hierarchical zeolite-ordered mesoporous carbon nanocomposite and its activity. RSC Adv 2025; 15:5781-5794. [PMID: 39980993 PMCID: PMC11840808 DOI: 10.1039/d4ra07503j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/16/2025] [Indexed: 02/22/2025] Open
Abstract
Immobilization of enzymes on inorganic supports such as silica and carbon materials is an effective approach for chemical surface modification. In this work, hierarchical zeolite (HZ-SAPO's) materials were fabricated by a modified method, and mesoporous carbon (CMK-3) was synthesized using the SBA-15 mesoporous silica as a template. A variety of biocatalysts was prepared using HZ-SAPO with CMK to furnish the nanocomposite biocatalyst. The functionalization of amine group with APTES was done which was further immobilized by Soybean Peroxidase (SBP) enzyme. The material was subjected to a comprehensive characterization process utilizing numerous systematic methods, including X-ray diffraction, N2 adsorption-desorption isotherms, Raman spectroscopy, scanning electron microscopy, high-resolution transmittance electron microscopy, and attenuated total reflectance Fourier transform infrared spectroscopy. The pH effect on the immobilized enzyme was examined and compared to that of SBP. Further, the assessment of repeated usability of immobilized SBP with successive cycles was carried out.
Collapse
Affiliation(s)
- Prabhu Azhagapillai
- Department of Chemistry, Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
- Department of Biological Sciences, Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
| | - Karthikeyan Gopalsamy
- Department of Chemistry and Biotechnology, Baikal School of BRICS, Irkutsk National Research Technical University 83, Lermontov Street 664074 Irkutsk Russian Federation
| | - Israa Othman
- Department of Chemistry, Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
| | - Nada I Alhatti
- Department of Biological Sciences, Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemistry, Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
| | - Syed Salman Ashraf
- Department of Biological Sciences, Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
- Center for Biotechnology (BTC), Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
| |
Collapse
|
3
|
Al-Sakkaf MK, Basfer I, Iddrisu M, Bahadi SA, Nasser MS, Abussaud B, Drmosh QA, Onaizi SA. An Up-to-Date Review on the Remediation of Dyes and Phenolic Compounds from Wastewaters Using Enzymes Immobilized on Emerging and Nanostructured Materials: Promises and Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2152. [PMID: 37570470 PMCID: PMC10420689 DOI: 10.3390/nano13152152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
Addressing the critical issue of water pollution, this review article emphasizes the need to remove hazardous dyes and phenolic compounds from wastewater. These pollutants pose severe risks due to their toxic, mutagenic, and carcinogenic properties. The study explores various techniques for the remediation of organic contaminants from wastewater, including an enzymatic approach. A significant challenge in enzymatic wastewater treatment is the loss of enzyme activity and difficulty in recovery post-treatment. To mitigate these issues, this review examines the strategy of immobilizing enzymes on newly developed nanostructured materials like graphene, carbon nanotubes (CNTs), and metal-organic frameworks (MOFs). These materials offer high surface areas, excellent porosity, and ample anchoring sites for effective enzyme immobilization. The review evaluates recent research on enzyme immobilization on these supports and their applications in biocatalytic nanoparticles. It also analyzes the impact of operational factors (e.g., time, pH, and temperature) on dye and phenolic compound removal from wastewater using these enzymes. Despite promising outcomes, this review acknowledges the challenges for large-scale implementation and offers recommendations for future research to tackle these obstacles. This review concludes by suggesting that enzyme immobilization on these emerging materials could present a sustainable, environmentally friendly solution to the escalating water pollution crisis.
Collapse
Affiliation(s)
- Mohammed K. Al-Sakkaf
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ibrahim Basfer
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mustapha Iddrisu
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Salem A. Bahadi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mustafa S. Nasser
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Basim Abussaud
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Qasem A. Drmosh
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sagheer A. Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
4
|
Harish BS, Thayumanavan T, Nambukrishnan V, Sakthishobana K. Heterogeneous biocatalytic system for effective decolorization of textile dye effluent. 3 Biotech 2023; 13:165. [PMID: 37162807 PMCID: PMC10163993 DOI: 10.1007/s13205-023-03586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 05/11/2023] Open
Abstract
The current physicochemical methods for decolorizing toxic synthetic dyes are not sustainable to halt the environmental damage as they are expensive and often produce concentrated sludge, which may lead to secondary disposal problems. Biocatalysis (microbes and/or their enzymes) is a cost-effective, versatile, energy-saving and clean alternative. The most common enzymes involved in dye degradation are laccases, azoreductases and peroxidases. Toxic dyes could be converted into less harmful byproducts through the combined action of many enzymes or the utilization of whole cells. The action of whole cells to treat dye effluents is either by biosorption or degradation (aerobic or anaerobic). Using immobilized cells or enzymes will offer advantages such as superior stability, persistence against harsh environmental conditions, reusability and longer half-lives. This review envisages the recent strategies of immobilization and bioreactor considerations with the immobilized system as the effective treatment of textile dye effluents. Packed bed reactors are the most popular heterogeneous biocatalytic reactors for dye decolorization due to their efficiency and cost-effectiveness.
Collapse
Affiliation(s)
- B. S. Harish
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, 641402 India
| | - Tha Thayumanavan
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, 641402 India
| | - Veerasekar Nambukrishnan
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, 641402 India
| | - K. Sakthishobana
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401 India
| |
Collapse
|
5
|
Bijoy G, Rajeev R, Benny L, Jose S, Varghese A. Enzyme immobilization on biomass-derived carbon materials as a sustainable approach towards environmental applications. CHEMOSPHERE 2022; 307:135759. [PMID: 35870606 DOI: 10.1016/j.chemosphere.2022.135759] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Enzymes with their environment-friendly nature and versatility have become highly important 'green tools' with a wide range of applications. Enzyme immobilization has further increased the utility and efficiency of these enzymes by improving their stability, reusability, and recyclability. Biomass-derived matrices when used for enzyme immobilization offer a sustainable solution to environmental pollution and fuel depletion at low costs. Biochar and other biomass-derived carbon materials obtained are suitable for the immobilization of enzymes through different immobilization strategies. Environmental pollution has become an utmost topic of research interest due to an ever-increasing trend being observed in anthropogenic activities. This has widely contributed to the release of various toxic effluents into the environment in their native or metabolized forms. Therefore, more focus is being directed toward the utilization of immobilized enzymes in the bioremediation of water and soil, biofuel production, and other environmental applications. In this review, up-to-date literature concerning the immobilization and potential uses of enzymes immobilized on biomass-derived carbon materials has been presented.
Collapse
Affiliation(s)
- Geethanjali Bijoy
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Rijo Rajeev
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Libina Benny
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Sandra Jose
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Anitha Varghese
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
6
|
Karapınar HS. Adsorption performance of activated carbon synthesis by ZnCl 2, KOH, H 3PO 4 with different activation temperatures from mixed fruit seeds. ENVIRONMENTAL TECHNOLOGY 2022; 43:1417-1435. [PMID: 34429039 DOI: 10.1080/09593330.2021.1968507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
In this study, new activated carbons (ACs) were synthesized from a mixture of lemon and orange seeds (LOS) for toxic metal removal from aqueous solutions. Adsorbents have been produced by chemical activation with different activation agents (with H3PO4, ZnCl2 and KOH) and activation temperature (600°C, 700°C, 800°C). The elemental analysis, FT-IR, XRD and SEM analyses were performed to determine the characterization of the ACs. A series of batch adsorption experiments were done to research the influence of various parameters such as pH, adsorbent dosage, contact time, temperature, the complexing agents on the toxic metal ions (Cu(II), Cr(III) and Ni(II)) removal capacity of ACs. Adsorption equilibration time was 60 min, the adsorption capacity was 118.02 mg/g for Ni(II) ions, 146.03 mg/g for Cr(III) ions and 150.45 mg/g for Cu(II) ions. The adsorption of toxic metal ions was observed as a maximum at pH = 5 on AC-ZnCl2 (600°C) produced under N2 atmosphere. The adsorption process was fitted with a Langmuir isotherm model and a pseudo-second-order kinetic equation, showing the metal ions adsorption on AC was monolayer coverage. Thermodynamic studies show that the adsorption is endothermic and spontaneous in nature. AC produced from the LOS mixture has not been encountered in the literature. A simple, easy-to-apply method has been developed for a new adsorbent prepared from a mixture of LOS with environmentally friendly, easy to produce, reusable, cost-effective, non-toxic and with good adsorption-desorption capacity. Therefore, this study will contribute to the world economy in terms of environmental and wastewater cleaning.
Collapse
Affiliation(s)
- Hacer Sibel Karapınar
- Scientific and Technological Research & Application Center, Karamanoğlu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
7
|
Pereira FM, Melo MN, Santos ÁKM, Oliveira KV, Diz FM, Ligabue RA, Morrone FB, Severino P, Fricks AT. Hyaluronic acid-coated chitosan nanoparticles as carrier for the enzyme/prodrug complex based on horseradish peroxidase/indole-3-acetic acid: Characterization and potential therapeutic for bladder cancer cells. Enzyme Microb Technol 2021; 150:109889. [PMID: 34489042 DOI: 10.1016/j.enzmictec.2021.109889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023]
Abstract
Hybrid nanoparticles composed of different biopolymers for delivery of enzyme/prodrug systems are of interest for cancer therapy. Hyaluronic acid-coated chitosan nanoparticles (CS/HA NP) were prepared to encapsulate individually an enzyme/pro-drug complex based on horseradish peroxidase (HRP) and indole-3-acetic acid (IAA). CS/HA NP showed size around 158 nm and increase to 170 and 200 nm after IAA and HRP encapsulation, respectively. Nanoparticles showed positive zeta potential values (between +20.36 mV and +24.40 mV) and higher encapsulation efficiencies for both nanoparticles (up to 90 %) were obtained. Electron microscopy indicated the formation of spherical particles with smooth surface characteristic. Physicochemical and thermal characterizations suggest the encapsulation of HRP and IAA. Kinetic parameters for encapsulated HRP were similar to those of the free enzyme. IAA-CS/HA NP showed a bimodal release profile of IAA with a high initial release (72 %) followed by a slow-release pattern. The combination of HRP-CS/HA NP and IAA- CS/HA NP reduced by 88 % the cell viability of human bladder carcinoma cell line (T24) in the concentrations 0.5 mM of pro-drug and 1.2 μg/mL of the enzyme after 24 h.
Collapse
Affiliation(s)
- Fernanda Menezes Pereira
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Micael Nunes Melo
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Átali Kayane Mendes Santos
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Karony Vieira Oliveira
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Fernando Mendonça Diz
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Rosane Angélica Ligabue
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Patrícia Severino
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Alini Tinoco Fricks
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil.
| |
Collapse
|
8
|
Lopes KL, de Oliveira HL, Serpa JAS, Torres JA, Nogueira FGE, de Freitas VAA, Borges KB, Silva MC. Nanomagnets based on activated carbon/magnetite nanocomposite for determination of endocrine disruptors in environmental water samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Preparation of a Hybrid Membrane from Whey Protein Fibrils and Activated Carbon to Remove Mercury and Chromium from Water. MEMBRANES 2020; 10:membranes10120386. [PMID: 33266234 PMCID: PMC7760280 DOI: 10.3390/membranes10120386] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/25/2020] [Indexed: 12/07/2022]
Abstract
Water contamination by mercury and chromium has a direct effect in human health. A promising technology to remove heavy metals by membrane filtration is the use of hybrid membranes produced with whey protein fibrils (WPF) and activated carbon (AC). In this study, the best conditions to produce WPF by heat treatment were determined to maximize the removal of mercury and chromium from water using a central composed design. The results indicated that the best conditions to prepare WPF were 74 °C, 7 h and 3.8% of whey protein with adsorption capacities of 25 and 18 mg/g and removal efficiencies of 81 and 57% for mercury and chromium, respectively. WPF and AC were used to prepare a hybrid membrane that was characterized using transmission electron microscopy, atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller surface area measurements. Batch filtration experiments were performed with the hybrid membrane for chromium and mercury removal at 25, 50 and 100 mg/L to determine its adsorption capacities. A high performance of the hybrid membrane was demonstrated removing efficiently mercury and chromium from water, thus supporting more than ten filtration cycles.
Collapse
|
10
|
Fernandes CD, Nascimento VRS, Meneses DB, Vilar DS, Torres NH, Leite MS, Vega Baudrit JR, Bilal M, Iqbal HMN, Bharagava RN, Egues SM, Romanholo Ferreira LF. Fungal biosynthesis of lignin-modifying enzymes from pulp wash and Luffa cylindrica for azo dye RB5 biodecolorization using modeling by response surface methodology and artificial neural network. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123094. [PMID: 32534401 DOI: 10.1016/j.jhazmat.2020.123094] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 02/05/2023]
Abstract
This study demonstrates the evaluation between the artificial neural network technique coupled to the genetic algorithm (ANN-GA) and the response surface methodology (RSM) for prediction of Reactive Black 5 (RB5) decolorization by crude enzyme from Pleurotus. sajor-caju. Fungal lignin-modifying enzymes (FLME) were synthesized using pulp wash (PW) as an inducing substrate, and L. cylindrica (L.C) for cell immobilization. When grown in PW, the fungus showed higher Lac activity (126.5 IU. mL-1), whereas when immobilized a higher MnP activity was achieved (22.79 IU. mL-1), but both methods were capable of decolorizing the dye in about 89.4 % and 75 %, respectively. This indicates applicability of PW as an alternative substrate for FLME induction and viability of immobilization for MnP synthesis. For RB5 decolorization, the action of the crude enzyme extract was considered as a function of pH, dye concentration, temperature, and reaction time. The models are well adjusted to predict the efficiency of biodecolorization, with no statistical difference between ANN-GA and RSM, which indicates potential for green enzymes prospecting application in bioprocess industry.
Collapse
Affiliation(s)
- Clara Dourado Fernandes
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil.
| | - Victor Ruan Silva Nascimento
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - Diego Batista Meneses
- National Nanotechnology Laboratory, National Center for High Technology, 10109, Pavas, San José, Costa Rica
| | - Débora S Vilar
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - Nádia Hortense Torres
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Institute of Technology and Research, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil.
| | - Manuela Souza Leite
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Institute of Technology and Research, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - José Roberto Vega Baudrit
- National Nanotechnology Laboratory, National Center for High Technology, 10109, Pavas, San José, Costa Rica; Laboratory of Polymer Science and Technology, School of Chemistry, Universidad Nacional, Campus Omar Dengo, 86-3000, Heredia, Costa Rica
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Microbiology (DM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Silvia Maria Egues
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Institute of Technology and Research, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Institute of Technology and Research, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil.
| |
Collapse
|
11
|
Melo MN, Pereira FM, Rocha MA, Ribeiro JG, Diz FM, Monteiro WF, Ligabue RA, Severino P, Fricks AT. Immobilization and characterization of horseradish peroxidase into chitosan and chitosan/PEG nanoparticles: A comparative study. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Abstract
Rhododendrol (RD) is a naturally occurring phenolic compound found in many plants. Tyrosinase (Ty) converts RD to RD-catechol and subsequently RD-quinone via two-step oxidation reactions, after which RD-melanin forms spontaneously from RD-quinone. RD is cytotoxic in melanocytes and lung cancer cells, but not in keratinocytes and fibroblasts. However, the function of RD metabolites has not been possible to investigate due to the lack of available high purity metabolites. In this study, an enzymatic strategy for RD-catechol production was devised using engineered cytochrome P450 102A1 (CYP102A1) and Ty, and the product was analyzed using high-performance liquid chromatography (HPLC), LC-MS, and NMR spectroscopy. Engineered CYP102A1 regioselectively produced RD-catechol via hydroxylation at the ortho position of RD. Although RD-quinone was subsequently formed by two step oxidation in Ty catalyzed reactions, L-ascorbic acid (LAA) inhibited RD-quinone formation and contributed to regioselective production of RD-catechol. When LAA was present, the productivity of RD-catechol by Ty was 5.3-fold higher than that by engineered CYP102A1. These results indicate that engineered CYP102A1 and Ty can be used as effective biocatalysts to produce hydroxylated products, and Ty is a more cost-effective biocatalyst for industrial applications than engineered CYP102A1.
Collapse
|
13
|
Tummino ML, Tolardo V, Malandrino M, Sadraei R, Magnacca G, Laurenti E. A Way to Close the Loop: Physicochemical and Adsorbing Properties of Soybean Hulls Recovered After Soybean Peroxidase Extraction. Front Chem 2020; 8:763. [PMID: 33005610 PMCID: PMC7479214 DOI: 10.3389/fchem.2020.00763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Soybean hulls are one of the by-products of soybean crushing and find application mainly in the animal feed sector. Nevertheless, soybean hulls have been already exploited as source of peroxidase (soybean peroxidase, SBP), an enzyme adopted in a wide range of applications such as bioremediation and wastewater treatment, biocatalysis, diagnostic tests, therapeutics and biosensors. In this work, the soybean hulls after the SBP extraction, destined to become a putrescible waste, were recovered and employed as adsorbents for water remediation due to their cellulose-based composition. They were studied from a physicochemical point of view using different characterization techniques and applied for the adsorption of five inorganic ions [Fe(III), Al(III), Cr(III), Ni(II), and Mn(II)] in different aqueous matrixes. The behavior of the exhausted soybean hulls was compared to pristine hulls, demonstrating better performances as pollutant adsorbents despite significant changes in their features, especially in terms of surface morphology, charge and composition. Overall, this work evidences that these kinds of double-recovered scraps are an effective and sustainable alternative for metal contaminants removal from water.
Collapse
Affiliation(s)
| | | | | | - Razieh Sadraei
- Department of Chemistry, Università di Torino, Turin, Italy
| | - Giuliana Magnacca
- Department of Chemistry, Università di Torino, Turin, Italy.,Centre for Nanostructured Interfaces and Surfaces (NIS) and INSTM Reference Centre, Turin, Italy
| | - Enzo Laurenti
- Department of Chemistry, Università di Torino, Turin, Italy
| |
Collapse
|
14
|
Bilal M, Wang Z, Cui J, Ferreira LFR, Bharagava RN, Iqbal HMN. Environmental impact of lignocellulosic wastes and their effective exploitation as smart carriers - A drive towards greener and eco-friendlier biocatalytic systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137903. [PMID: 32199388 DOI: 10.1016/j.scitotenv.2020.137903] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/05/2023]
Abstract
In recent years, lignocellulosic wastes have gathered much attention due to increasing economic, social, environmental apprehensions, global climate change and depleted fossil fuel reserves. The unsuitable management of lignocellulosic materials and related organic wastes poses serious environmental burden and causes pollution. On the other hand, lignocellulosic wastes hold significant economic potential and can be employed as promising catalytic supports because of impressing traits such as surface area, porous structure, and occurrence of many chemical moieties (i.e., carboxyl, amino, thiol, hydroxyl, and phosphate groups). In the current literature, scarce information is available on this important and highly valuable aspect of lignocellulosic wastes as smart carriers for immobilization. Thus, to fulfill this literature gap, herein, an effort has been made to signify the value generation aspects of lignocellulosic wastes. Literature assessment spotlighted that all these waste materials display high potential for immobilizing enzyme because of their low cost, bio-renewable, and sustainable nature. Enzyme immobilization has gained recognition as a highly useful technology to improve enzyme properties such as catalytic stability, performance, and repeatability. The application of carrier-supported biocatalysts has been a theme of considerable research, for the past three decades, in the bio-catalysis field. Nonetheless, the type of support matrix plays a key role in the immobilization process due to its influential impact on the physicochemical characteristics of the as-synthesized biocatalytic system. In the past, an array of various organic, inorganic, and composite materials has been used as carriers to formulate efficient and stable biocatalysts. This review is envisioned to provide recent progress and development on the use of different agricultural wastes (such as coconut fiber, sugarcane bagasse, corn and rice wastes, and Brewers' spent grain) as support materials for enzyme immobilization. In summary, the effective utilization of lignocellulosic wastes to develop multi-functional biocatalysts is not only economical but also reduce environmental problems of unsuitable management of organic wastes and drive up the application of biocatalytic technology in the industry.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300 - Prédio do ITP, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research, Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
15
|
Girelli AM, Astolfi ML, Scuto FR. Agro-industrial wastes as potential carriers for enzyme immobilization: A review. CHEMOSPHERE 2020; 244:125368. [PMID: 31790990 DOI: 10.1016/j.chemosphere.2019.125368] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
This review provides a general overview of the suitability of different agro-industrial wastes for enzyme immobilization. For the purposes of this literary study, the support materials are divided into two main groups, called lignocellulosic (coconut fiber, corn cob, spent grain, spent coffee, husk, husk ash, and straw rice, soybean and wheat bran) and not lignocellulosic by-products (eggshell and eggshell membranes). The study pointed out that all of these wastes are materials of great potentiality for enzyme immobilization even if coconut fiber is preferred. This result is of significant interest due to the low cost and great availability of such wastes, which actually are underused and cause significant environmental problems for improper storage. In addition, the development of economic biocatalysts more sustainable, besides reduce environmental impacts, improve the application of enzymatic technology in industry. Therefore, the enzyme immobilization reaction and the application of biocatalysts are reviewed and discussed.
Collapse
Affiliation(s)
- Anna Maria Girelli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Francesca Romana Scuto
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
16
|
Kim JH, Cha BJ, Kim YD, Seo HO. Kinetics and thermodynamics of methylene blue adsorption on the Fe-oxide nanoparticles embedded in the mesoporous SiO2. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.11.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Başakçılardan Kabakcı S, Baran SS. Hydrothermal carbonization of various lignocellulosics: Fuel characteristics of hydrochars and surface characteristics of activated hydrochars. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 100:259-268. [PMID: 31563839 DOI: 10.1016/j.wasman.2019.09.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
In the present study, various lignocellulosic biowastes (wood sawdust, olive pomace, walnut shell, apricot seed, tea stalk, hazelnut husk) were hydrothermally carbonized at 220 °C for 90 min. Since the hydrochars have several end-uses, this study particularly investigates their end-use as solid fuels and precursors of activated carbon after chemical activation. Activated hydrochars were obtained from the hydrochars of wood sawdust, olive pomace, walnut shell, apricot seed, tea stalk, hazelnut husk by chemical activation with KOH at 600 °C. As fuels, all hydrochars had higher fixed carbon content, lower volatile matter content and higher ignition temperatures compared to their original biomass samples. Olive pomace hydrochar, which has high heating value (25.56 MJ/kg) and low ash content (5.5%), has the best fuel properties among hydrochars investigated. Activated hydrochars demonstrated BET surface areas of 308.9-666.7 m2/g (activated hydrochar of wood sawdust and tea stalk), and total pore volumes of 0.25-0.73 cm3/g (activated hydrochar of olive pomace and wood sawdust). The average pore size distribution of the activated hydrochars ranged between 1.05 nm (olive pomace)- 4.74 nm (wood sawdust). All agricultural-based activated hydrochars had similar average pore size distribution of 1.05-1.25 nm, which fell in the range of super-microporous structure. With the average pore size of 4.74 nm, activated hydrochar of wood sawdust could be classified under mesoporous structure. This study clearly points out that biomass type definitely affected fuel properties of hydrochars and the porous structure of the activated hydrochars.
Collapse
|
18
|
Yang H, Bever CS, Zhang H, Mari GM, Li H, Zhang X, Guo L, Wang Z, Luo P, Wang Z. Comparison of soybean peroxidase with horseradish peroxidase and alkaline phosphatase used in immunoassays. Anal Biochem 2019; 581:113336. [PMID: 31201790 DOI: 10.1016/j.ab.2019.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023]
Abstract
Enzyme labeling of an antigen or an antibody helps to visualize and amplify the signal and is an important reagent used in immunoassays for the detection of a target of interest. In this research, soybean peroxidase (SBP), a less commonly used enzyme reporter, was compared in immunoassays with the two most commonly used reagents, horseradish peroxidase (HRP) and alkaline phosphatase (ALP). The enzyme-antibody conjugates were evaluated by their performance in an indirect competitive enzyme-linked immunosorbent assay (icELISA) and in an indirect competitive chemiluminescent enzyme immunoassay (icCLEIA) for ractopamine (RAC). The results revealed that the more affordable SBP offers a long-lasting chemiluminescent signal, which outperformed ALP and HRP. SBP-antibody conjugate (SBP-Ab) based immunoassays produced lower limits of detection (LODs) and better accuracy in the detection of RAC in animal urine samples. Additionally, SBP-Ab has advantages in being more resistant to heat, acid and organic solvents. These results suggest that SBP could be a potentially excellent alternative to HRP and ALP for the development of immunoassay in food safety field.
Collapse
Affiliation(s)
- Huijuan Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, People's Republic of China
| | - Candace S Bever
- Agricultural Research Service, United States Department of Agriculture, Albany, 94710, CA, USA
| | - Huiyan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, People's Republic of China
| | - Ghulam Mujtaba Mari
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, People's Republic of China
| | - Hongfang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, People's Republic of China
| | - Xiya Zhang
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, People's Republic of China
| | - Liuchuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, People's Republic of China
| | - Ziwen Wang
- China National Center for Food Safety Risk Assessment, NHC Key Laboratory of Food Safety Risk Assessment, Beijing, 100021, People's Republic of China
| | - Pengjie Luo
- China National Center for Food Safety Risk Assessment, NHC Key Laboratory of Food Safety Risk Assessment, Beijing, 100021, People's Republic of China.
| | - Zhanhui Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, People's Republic of China.
| |
Collapse
|
19
|
Ji Q, Wang B, Li C, Hao J, Feng W. Co-immobilised 7α- and 7β-HSDH as recyclable biocatalyst: high-performance production of TUDCA from waste chicken bile. RSC Adv 2018; 8:34192-34201. [PMID: 35548603 PMCID: PMC9086975 DOI: 10.1039/c8ra06798h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/26/2018] [Indexed: 11/21/2022] Open
Abstract
Chicken gallbladder has long been considered to be worthless and discarded as waste. The main composition of chicken bile is taurochenodeoxycholic acid (TCDCA), which is the isomeride of tauroursodeoxycholic acid (TUDCA). TUDCA has been effectively used for treatment of many diseases. In this paper, 7α- and 7β-hydroxysteroid dehydrogenases (HSDH) were co-immobilised on modified chitosan microspheres, and used as recyclable biocatalyst for the catalysis of chicken bile. The catalytic reaction reached equilibrium within 4 h compared with 1 h using TCDCA as substrate. After four continuous batch reactions, the conversion of TCDCA was lower than 40% and TUDCA yield was about 15% for the catalysis of chicken bile. TUDCA yield was approximately 62% after equilibrium and the content of TUDCA in reaction product was as high as 33.16%. Furthermore, the experiments showed that activity of enzymes were significantly inhibited by bilirubin, Cu2+ and Ca2+ in complex substrate. The research described not only widens the utilization of chicken bile, but also provides a clean way for the preparation of TUDCA.
Collapse
Affiliation(s)
- Qingzhi Ji
- School of Pharmacy, Yancheng Teachers' University No. 2, Hope Avenue Yancheng Jiangsu 224051 P. R. China +86-0515-88258773 +86-0515-88258773
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University Chongqing 400030 P. R. China
| | - Chou Li
- College of Marine and Bio-engineering, Yancheng Teachers' University Yancheng Jiangsu 224051 P. R. China
| | - Jinglan Hao
- School of Pharmacy, Yancheng Teachers' University No. 2, Hope Avenue Yancheng Jiangsu 224051 P. R. China +86-0515-88258773 +86-0515-88258773
| | - Wenjing Feng
- School of Pharmacy, Yancheng Teachers' University No. 2, Hope Avenue Yancheng Jiangsu 224051 P. R. China +86-0515-88258773 +86-0515-88258773
| |
Collapse
|
20
|
Torres JA, Silva MC, Lopes JH, Nogueira AE, Nogueira FGE, Corrêa AD. Development of a reusable and sustainable biocatalyst by immobilization of soybean peroxidase onto magnetic adsorbent. Int J Biol Macromol 2018; 114:1279-1287. [PMID: 29578014 DOI: 10.1016/j.ijbiomac.2018.03.136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023]
Abstract
In this work we synthesized an activated carbon/magnetite composite by a simple co-precipitation method. The activated carbon (AC) was synthesized from the solid waste obtained in the extraction process of the peroxidase enzyme and the magnetic composite was used as support for the immobilization of soybean peroxidase (SP). After the determination of the optimal immobilization parameters, a 100% yield was achieved under the following conditions: support:enzyme proportion of 1.0:0.05 g, equilibration time of 7 h, pH 3.0 (citrate buffer phosphate 0.1 mol L-1) and temperature of 50 °C. The determination of pH to the point of zero charge was also done to assist in the understanding of the immobilization process at different pH values. Several characterization techniques were used, such as thermogravimetric analysis, elemental analysis composition, X-ray powder diffraction, Fourier transform infrared spectroscopy and Scanning electron microscopy. The biocatalyst presented excellent operational stability and was reused for 11 consecutive cycles. The magnetic properties inserted in the AC contributed to the removal of the biocatalyst from the reaction medium without interfering in the adsorptive characteristics of the AC. Thus, the activated carbon/magnetite composite can be applied to different research fields with high performance.
Collapse
Affiliation(s)
- J A Torres
- Department of Chemistry, Universidade Federal de Lavras, Lavras 37200-000, Brazil.
| | - M C Silva
- Department of Chemistry, Universidade Federal de São João Del Rei, 31270-901, Brazil
| | - J H Lopes
- Laboratory of Engineering and Products Chemistry (LEQUIP), Department of Materials Engineering and Bioprocess (DEMBIO), School of Chemical Engineering (FEQ) - UNICAMP, University of Campinas - UNICAMP, 13083-852 Campinas, SP, Brazil
| | - A E Nogueira
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil
| | - F G E Nogueira
- Department of Chemistry Engineering, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil.
| | - A D Corrêa
- Department of Chemistry, Universidade Federal de Lavras, Lavras 37200-000, Brazil.
| |
Collapse
|
21
|
Siddiqui TAJ, Ghule BG, Shaikh S, Shinde PV, Gunturu KC, Zubaidha PK, Yun JM, O'Dwyer C, Mane RS, Kim KH. Metal-free heterogeneous and mesoporous biogenic graphene-oxide nanoparticle-catalyzed synthesis of bioactive benzylpyrazolyl coumarin derivatives. RSC Adv 2018; 8:17373-17379. [PMID: 35539260 PMCID: PMC9080412 DOI: 10.1039/c7ra12550j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/03/2018] [Indexed: 11/21/2022] Open
Abstract
We report the preparation of graphene oxide nanoparticles (GONPs), a metal-free, heterogeneous, non-toxic, reusable and mesoporous green-(acid)-catalyst obtained by sugar carbonization through a micro-wave chemical synthesis method for the synthesis of bio-active benzylpyrazolyl coumarin derivatives (BCDs) under thermal conditions (50 °C) in ethanol solvent. The obtained products were purified by re-crystallization from ethanol, assuring usability of GONPs in multicomponent reactions (MCRs) that could find wide application in the synthesis of a variety of biologically potent molecules of therapeutic significance.
Collapse
Affiliation(s)
- T A J Siddiqui
- School of Chemical Sciences, SRTM University Nanded India-431606
| | - Balaji G Ghule
- Center for Nanomaterials & Energy Devices, School of Physical Sciences, SRTM University Nanded India-431606
| | - Shoyebmohamad Shaikh
- Center for Nanomaterials & Energy Devices, School of Physical Sciences, SRTM University Nanded India-431606
| | - Pritamkumar V Shinde
- Center for Nanomaterials & Energy Devices, School of Physical Sciences, SRTM University Nanded India-431606
| | | | - P K Zubaidha
- School of Chemical Sciences, SRTM University Nanded India-431606
| | - Je Moon Yun
- Global Frontier R&D Center for Hybrid Interface Materials, Pusan National University San 30 Jangjeon-dong, Geumjeong-gu Busan 609-735 Republic of Korea
| | - Colm O'Dwyer
- School of Chemistry, University College Cork Cork T12 YN60 Ireland
- Micro-nano Systems Centre, Tyndall National Institute Lee Maltings Cork T12 R5CP Ireland
| | - Rajaram S Mane
- Center for Nanomaterials & Energy Devices, School of Physical Sciences, SRTM University Nanded India-431606
- Global Frontier R&D Center for Hybrid Interface Materials, Pusan National University San 30 Jangjeon-dong, Geumjeong-gu Busan 609-735 Republic of Korea
| | - Kwang Ho Kim
- Global Frontier R&D Center for Hybrid Interface Materials, Pusan National University San 30 Jangjeon-dong, Geumjeong-gu Busan 609-735 Republic of Korea
| |
Collapse
|