1
|
Kayani KF, Shatery OBA, Mohammed SJ, Ahmed HR, Hamarawf RF, Mustafa MS. Synthesis and applications of luminescent metal organic frameworks (MOFs) for sensing dipicolinic acid in biological and water samples: a review. NANOSCALE ADVANCES 2024; 7:13-41. [PMID: 39583129 PMCID: PMC11579904 DOI: 10.1039/d4na00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The detection of trace quantities of 2,6-dipicolinic acid (DPA) in real-world samples is crucial for early disease diagnosis and routine health monitoring. Metal-organic frameworks (MOFs), recognized for their diverse structural architectures, have emerged as advanced multifunctional hybrid materials. One of the most notable properties of MOFs is their luminescence (L), which can arise from structural ligands, guest molecules, and emissive metal ions. Luminescent MOFs have shown significant promise as platforms for sensor design. This review highlights the application of luminescent MOFs in the detection of DPA in biological and aqueous environments. It provides a comprehensive discussion of the various detection strategies employed in luminescent MOF-based DPA sensors. Additionally, it explores the origins of L in MOFs, their synthesis, and the mechanisms underlying their sensing capabilities. The article also addresses key challenges and limitations in this field, offering practical insights for the development of efficient luminescent MOFs for DPA detection.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, Charmo University Peshawa Street, Chamchamal Sulaimani City 46023 Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Omer B A Shatery
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Sewara J Mohammed
- Department of Anesthesia, College of Health Sciences, Cihan University Sulaimaniya Sulaymaniyah City Kurdistan Iraq
- Research and Development Center, University of Sulaimani Qlyasan Street, Kurdistan Regional Government Sulaymaniyah 46001 Iraq
| | - Harez Rashid Ahmed
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Rebaz F Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Muhammad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| |
Collapse
|
2
|
Patra S, Purohit SS, Swain SK. In vivo fluorescence non-enzymatic glucose sensing technique for diabetes management by CQDs incorporated dextran nanocomposites in human blood serums. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
3
|
Zhao J, Lu S, Bastos-Arrieta J, Palet C, Sun Y, Wang R, Qian Z, Fan S. Enhanced terahertz sensitivity for glucose detection with a hydrogel platform embedded with Au nanoparticles. BIOMEDICAL OPTICS EXPRESS 2022; 13:4021-4031. [PMID: 35991910 PMCID: PMC9352292 DOI: 10.1364/boe.461414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
We presented a strategy for enhancing the sensitivity of terahertz glucose sensing with a hydrogel platform pre-embedded with Au nanoparticles. Physiological-level glucose solutions ranging from 0 to 0.8 mg/mL were measured and the extracted absorption coefficients can be clearly distinguished compared to traditional terahertz time domain spectroscopy performed directly on aqueous solutions. Further, Isotherm models were applied to successfully describe the relationship between the absorption coefficient and the glucose concentration (R2 = 0.9977). Finally, the origin of the sensitivity enhancement was investigated and verified to be the pH change induced by the catalysis of Au nanoparticles to glucose oxidation.
Collapse
Affiliation(s)
- Jingjing Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
- Contributed equally to this work
| | - Shaohua Lu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
- Contributed equally to this work
| | - Julio Bastos-Arrieta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Recerca de l’Aigua (IdRA), University of Barcelona, 08028 Barcelona, Spain
| | - Cristina Palet
- Group of Separation Techniques in Chemistry, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalunya, Spain
| | - Yiling Sun
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
| | - Renheng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
| | - Zhengfang Qian
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
| | - Shuting Fan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
| |
Collapse
|
4
|
Catalase immobilized antimonene quantum dots used as an electrochemical biosensor for quantitative determination of H2O2 from CA-125 diagnosed ovarian cancer samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111296. [DOI: 10.1016/j.msec.2020.111296] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/23/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022]
|
5
|
Phytosynthesis of Palladium Nanoclusters: An Efficient Nanozyme for Ultrasensitive and Selective Detection of Reactive Oxygen Species. Molecules 2020; 25:molecules25153349. [PMID: 32717976 PMCID: PMC7436022 DOI: 10.3390/molecules25153349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Hydrogen peroxide is a low-reactivity reactive oxygen species (ROS); however, it can easily penetrate cell membranes and produce highly reactive hydroxyl radical species through Fenton’s reaction. Its presence in abnormal amounts can lead to serious diseases in humans. Although the development of a simple, ultrasensitive, and selective method for H2O2 detection is crucial, this remains a strategic challenge. The peroxidase mimetic activity of palladium nanoclusters (PdNCs) has not previously been evaluated. In this study, we developed an ultrasensitive and selective colorimetric detection method for H2O2 using PdNCs. An unprecedented eco-friendly, cost-effective, and facile biological method was developed for the synthesis of PdNCs. This is the first report of the biosynthesis of PdNCs. The synthesized nanoclusters had a significantly narrow size distribution profile and high stability. The nanoclusters were demonstrated to possess a peroxidase mimetic activity that could oxidize peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB). Various interfering substances in serum (100 μM phenylalanine, cysteine, tryptophan, arginine, glucose, urea, Na+, Fe2+, PO43−, Mn+2, Ca2+, Mg2+, Zn2+, NH4+, and K+) were included to evaluate the selectivity of the assay, and oxidation of TMB occurred only in the presence of H2O2. Therefore, PdNCs show an efficient nanozyme for the peroxidase mimetic activity. The assay produced a sufficient signal at the ultralow concentration of 0.0625 µM H2O2. This colorimetric assay provides a real-time, rapid, and easy-to-use platform for the detection of H2O2 for clinical purposes.
Collapse
|
6
|
Rosette-shaped graphitic carbon nitride acts as a peroxidase mimic in a wide pH range for fluorescence-based determination of glucose with glucose oxidase. Mikrochim Acta 2020; 187:286. [PMID: 32328802 DOI: 10.1007/s00604-020-04249-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Rosette-shaped graphitic carbon nitride (rosette-GCN) is described as a promising alternative to natural peroxidase for its application to fluorescence-based glucose assays. Rosette-GCN was synthesized via a rapid reaction between melamine and cyanuric acid for 10 min at 35 °C, followed by thermal calcination for 4 h. Importantly, rosette-GCN possesses a peroxidase-like activity, producing intense fluorescence from the oxidation of Amplex UltraRed in the presence of H2O2 over a broad pH-range of, including neutral pH; the peroxidase activity of rosette-GCN was ~ 10-fold higher than that of conventional bulk-GCN. This enhancement of peroxidase activity is presumed to occur because rosette-GCN has a significantly larger surface area and higher porosity while preserving its unique graphitic structure. Based on the high peroxidase activity of rosette-GCN along with the catalytic action of glucose oxidase (GOx), glucose was reliably determined down to 1.2 μM with a dynamic linear concentration range of 5.0 to 275.0 μM under neutral pH conditions. Practical utility of this strategy was also successfully demonstrated by determining the glucose levels in serum samples. This work highlights the advantages of GCNs synthesized via rapid methods but with unique structures for the preparation of enzyme-mimicking catalysts, thus extending their applications to the diagnostics field and other biotechnological fields. Graphical abstract.
Collapse
|
7
|
Bocanegra-Rodríguez S, Jornet-Martínez N, Molins-Legua C, Campíns-Falcó P. New Reusable Solid Biosensor with Covalent Immobilization of the Horseradish Peroxidase Enzyme: In Situ Liberation Studies of Hydrogen Peroxide by Portable Chemiluminescent Determination. ACS OMEGA 2020; 5:2419-2427. [PMID: 32064402 PMCID: PMC7017489 DOI: 10.1021/acsomega.9b03958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/08/2020] [Indexed: 05/27/2023]
Abstract
Herein, we reported a chemiluminescent biosensor based on the covalent immobilization of the horseradish peroxidase (HRP) enzyme on a polydimethylsiloxane (PDMS) support to quantify in situ hydrogen peroxide (H2O2). The chemiluminescent reaction based on the use of luminol as an oxidizable substrate, with HRP as the catalyst, has been used in order to quantify H2O2 as the oxidizing agent. The performance of the proposed biosensor has been demonstrated to determine H2O2 liberated by cells in a culture medium and for evaluating the delivery of H2O2 from denture cleaner tablets, as examples of application. For both analyses, the results indicated that the biosensor is cost-effective, sensitive, and selective with a detection limit of 0.02 μM and good linearity over the range 0.06-10 μM. Precision was also satisfactory (relative standard deviation, % RSD < 6). The strength of this biosensing system is the simplicity, portability, and reusability of the devices; it can be applied up to 60 times with 90% of its activity maintained.
Collapse
|
8
|
Díez‐Buitrago B, Barroso J, Saa L, Briz N, Pavlov V. Facile Synthesis and Characterization of Ag/Ag
2
S Nanoparticles Enzymatically Grown In Situ and their Application to the Colorimetric Detection of Glucose Oxidase. ChemistrySelect 2019. [DOI: 10.1002/slct.201901673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Beatriz Díez‐Buitrago
- CIC biomaGUNEPaseo Miramón 182 20014 Donostia-San Sebastián Spain
- Paseo Mikeletegi 2 20009 Donostia-San Sebastián Spain
| | - Javier Barroso
- CIC biomaGUNEPaseo Miramón 182 20014 Donostia-San Sebastián Spain
| | - Laura Saa
- CIC biomaGUNEPaseo Miramón 182 20014 Donostia-San Sebastián Spain
| | - Nerea Briz
- Paseo Mikeletegi 2 20009 Donostia-San Sebastián Spain
| | - Valeri Pavlov
- CIC biomaGUNEPaseo Miramón 182 20014 Donostia-San Sebastián Spain
| |
Collapse
|
9
|
A FRET-based fluorescent probe for hydrogen peroxide based on the use of carbon quantum dots conjugated to gold nanoclusters. Mikrochim Acta 2019; 186:294. [DOI: 10.1007/s00604-019-3398-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/01/2019] [Indexed: 02/04/2023]
|
10
|
Peng T, Wang J, Xie S, Yao K, Zheng P, Ke Y, Jiang H. Label-free gold nanoclusters as quenchable fluorescent probes for sensing olaquindox assisted by glucose oxidase-triggered Fenton reaction. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:752-761. [PMID: 30943120 DOI: 10.1080/19440049.2019.1592239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Glucose oxidase (GOx) catalyses oxidation of glucose accompanied with the generation of hydrogen peroxide. With the addition of Fe2+, hydroxyl radical produced by Fenton reaction between hydrogen peroxide and Fe2+ may quench the fluorescence of gold nanoclusters. In this work, a fluorescent enzyme-linked immunosorbent assay with gold nanoclusters was designed with a straightforward signal output, in which the fluorescence of gold nanoclusters was quenched by GOx-triggered Fenton reaction. Olaquindox was selected as a target analyte. Gold nanoclusters capped with bovine serum albumin and GOx-linked olaquindox conjugates were successfully prepared. Olaquindox in samples directly competed with the GOx-linked olaquindox conjugates for binding immobilized antibody. Consequently, the fluorescence signal increased with the amount of olaquindox. Under optimal conditions, the fluorescent enzyme-linked immunosorbent assay exhibited a favorable performance to detect olaquindox in swine feeds, demonstrating a good linear range from 1.0 µg kg-1 to 150 µg kg-1 with a reliable correlation coefficient (R2 = 0.9918); the limit of detection was 0.68 µg kg-1. Average recoveries in spiked samples were 85.3% to 113.5%. The proposed strategy is a promising approach for the detection of olaquindox and other harmful small molecules.
Collapse
Affiliation(s)
- Tao Peng
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety , China Agricultural University , Beijing , People's Republic of China
| | - Jianyi Wang
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety , China Agricultural University , Beijing , People's Republic of China
| | - Sanlei Xie
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety , China Agricultural University , Beijing , People's Republic of China
| | - Kai Yao
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety , China Agricultural University , Beijing , People's Republic of China
| | - Pimiao Zheng
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety , China Agricultural University , Beijing , People's Republic of China
| | - Yuebin Ke
- b Shenzhen Center for Disease Control and Prevention , Shenzhen , People's Republic of China
| | - Haiyang Jiang
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety , China Agricultural University , Beijing , People's Republic of China
| |
Collapse
|
11
|
Lee CY, Kim HY, Kim S, Park KS, Park HG. A simple and sensitive detection of small molecule-protein interactions based on terminal protection-mediated exponential strand displacement amplification. Analyst 2019; 143:2023-2028. [PMID: 29634063 DOI: 10.1039/c8an00099a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We herein describe a simple and sensitive strategy to detect a small molecule-protein interaction based on terminal protection-mediated exponential strand displacement amplification (eSDA). In principle, the small molecule linked to a DNA probe protects the DNA probe against the exonuclease I-catalyzed degradation after its binding to the corresponding target protein. The protected DNA probe then serves as a template to promote eSDA. Consequently, a large number of duplexes are produced, which leads to a high fluorescence from a double-stranded DNA specific fluorescent dye, SYBR Green I. As a model system to prove this sensing strategy, the interaction between biotin and streptavidin (SA), which is known to be the strongest among the non-covalent biological interactions, was selected and its analytical performance was thoroughly investigated. As a result, SA was sensitively detected with the limit of detection of 16 pM. In addition, the practical applicability of this method was successfully demonstrated by reliably determining the SA in human serum.
Collapse
Affiliation(s)
- Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK 21 + program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | | | | | | | | |
Collapse
|
12
|
Jiang C, Wei X, Bao S, Tu H, Wang W. Cu@Au(Ag)/Pt nanocomposite as peroxidase mimic and application of Cu@Au/Pt in colorimetric detection of glucose and l-cysteine. RSC Adv 2019; 9:41561-41568. [PMID: 35541589 PMCID: PMC9076479 DOI: 10.1039/c9ra08547e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022] Open
Abstract
Nanomaterial-based artificial peroxidase has attracted extensive interests due to their distinct advantages over natural counterpart. Cu@Au/Pt and Cu@Ag/Pt nanocomposite with rambutan-like structure were prepared and discovered to function like peroxidase, which was illustrated by catalyzing the oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) accompanied with a blue color change. Steady-state investigation indicates that the catalytic kinetics of Cu@Au/Pt and Cu@Ag/Pt all followed typical Michaelis–Menten behaviors and Cu@Au/Pt showed a strong affinity for H2O2, while Cu@Ag/Pt showed strong affinity for TMB. The color change and absorbance intensity strongly depend on the concentration of H2O2, thus the direct determination of H2O2 and indirect detection of glucose were demonstrated using Cu@Au/Pt with a detection limit of 1.5 μM and 6 μM, respectively. What is more important, the method was applied for detection of glucose in 50% fetal bovine serum with a detection limit of 80 μM, which is much lower than the lowest glucose content in blood for diabetes (7 mM). Moreover, the Cu@Au/Pt nanocomposite were also successfully applied for sensing l-cysteine because of the inhibition effect. Considering the good peroxidase-like activity and novel structure, Cu@Au(Ag)/Pt is expected to have a wide range of applications in bioassays and biocatalysis. Cu@Au(Ag)/Pt nanocomposite possess good peroxidase-like activity and can be used for detection of glucose and l-cysteine.![]()
Collapse
Affiliation(s)
- Cuifeng Jiang
- School of Materials Science and Engineering
- Yancheng Institute of Technology
- Yancheng
- China
| | - Xiaoxiu Wei
- School of Materials Science and Engineering
- Yancheng Institute of Technology
- Yancheng
- China
| | - Shuai Bao
- School of Materials Science and Engineering
- Yancheng Institute of Technology
- Yancheng
- China
| | - Huajian Tu
- School of Materials Science and Engineering
- Yancheng Institute of Technology
- Yancheng
- China
| | - Wei Wang
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng
- China
| |
Collapse
|
13
|
Xiong Y, Gao B, Wu K, Wu Y, Chai Y, Huang X, Xiong Y. Fluorescence immunoassay based on the enzyme cleaving ss-DNA to regulate the synthesis of histone-ds-poly(AT) templated copper nanoparticles. NANOSCALE 2018; 10:19890-19897. [PMID: 30345445 DOI: 10.1039/c8nr06175k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, for the first time we report a novel competitive fluorescence immunoassay for the ultrasensitive detection of aflatoxin B1 (AFB1) using histone-ds-poly(AT) templated copper nanoparticles (His-pAT CuNPs) as the fluorescent indicator. In this immunoassay, glucose oxidase (Gox) was used as the carrier of the competing antigen to catalyze the formation of hydrogen peroxide (H2O2) from glucose. H2O2 was converted to a hydroxyl radical using Fenton's reagent, which further regulated the fluorescence signals of His-pAT CuNPs. Owing to the ultrahigh sensitivity of the ss-DNA to the hydroxyl radical, the proposed fluorescence immunoassay exhibited a favorable dynamic linear detection of AFB1 ranging from 0.46 pg mL-1 to 400 pg mL-1 with an good half maximal inhibitory concentration and limit of detection of 6.13 and 0.15 pg mL-1, respectively. The intra- and inter-assay showed that the average recoveries for AFB1 spiked corn samples ranged from 96.87% to 100.73% and 96.67% to 114.92%, respectively. The reliability of this method was further confirmed by adopting ultra-performance liquid chromatography coupled with the fluorescence detector method. In summary, this work offers a novel screening strategy with high sensitivity and robustness for the quantitative detection of mycotoxins or other pollutants for food safety and clinical diagnosis.
Collapse
Affiliation(s)
- Ying Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Rathee N, Jaggi N. Hydrogen peroxide detection by hybrid Au–CdSe QDs: an indirect approach for sensing glucose level. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0881-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Lin WZ, Yeung CY, Liang CK, Huang YH, Liu CC, Hou SY. A colorimetric sensor for the detection of hydrogen peroxide using DNA-modified gold nanoparticles. J Taiwan Inst Chem Eng 2018; 89:49-55. [DOI: 10.1016/j.jtice.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Zong C, Li B, Wang J, Liu X, Zhao W, Zhang Q, Nie X, Yu Y. Visual and colorimetric determination of H2O2 and glucose based on citrate-promoted H2O2 sculpturing of silver nanoparticles. Mikrochim Acta 2018; 185:199. [DOI: 10.1007/s00604-018-2737-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/16/2018] [Indexed: 11/25/2022]
|
17
|
Díez-Buitrago B, Briz N, Liz-Marzán LM, Pavlov V. Biosensing strategies based on enzymatic reactions and nanoparticles. Analyst 2018; 143:1727-1734. [DOI: 10.1039/c7an02067h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Application of new nanomaterials to detection of enzymatic activities allows the development of new sensitive and selective bioanalytical assays based on enzymes for recognition and signal amplification.
Collapse
Affiliation(s)
| | - Nerea Briz
- Tecnalia
- 20009 Donostia-San Sebastián
- Spain
| | - Luis M. Liz-Marzán
- CIC BiomaGUNE
- 20014 Donostia-San Sebastián
- Spain
- Ikerbasque
- Basque Foundation for Science
| | | |
Collapse
|
18
|
Lee CY, Park KS, Park HG. Pyrrolo-dC modified duplex DNA as a novel probe for the sensitive assay of base excision repair enzyme activity. Biosens Bioelectron 2017; 98:210-214. [DOI: 10.1016/j.bios.2017.06.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/07/2017] [Accepted: 06/25/2017] [Indexed: 01/13/2023]
|
19
|
Jiang C, Zhu J, Li Z, Luo J, Wang J, Sun Y. Chitosan–gold nanoparticles as peroxidase mimic and their application in glucose detection in serum. RSC Adv 2017. [DOI: 10.1039/c7ra08967h] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chitosan–AuNPs possess peroxidase-like activity and can be used for the detection of glucose in serum.
Collapse
Affiliation(s)
- Cuifeng Jiang
- School of Materials Science and Engineering
- Yancheng Institute of Technology
- Yancheng
- China 224051
| | - Jing Zhu
- School of Materials Science and Engineering
- Yancheng Institute of Technology
- Yancheng
- China 224051
| | - Zhao Li
- School of Materials Science and Engineering
- Yancheng Institute of Technology
- Yancheng
- China 224051
| | - Juhua Luo
- School of Materials Science and Engineering
- Yancheng Institute of Technology
- Yancheng
- China 224051
| | - Jinshan Wang
- School of Materials Science and Engineering
- Yancheng Institute of Technology
- Yancheng
- China 224051
| | - Yu Sun
- School of Materials Science and Engineering
- Yancheng Institute of Technology
- Yancheng
- China 224051
| |
Collapse
|