1
|
Peng T, Liang Z, Si J, Huang L, Ye H, Li X, Sun M, Xie J, Dai X. Dendritic mesoporous silica loaded with gold nanoclusters and their application in immunochromatographic assay. Mikrochim Acta 2024; 191:729. [PMID: 39499405 DOI: 10.1007/s00604-024-06808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
Novel green-emitting fluorescent microspheres (GreFMPs) were assembled by loading highly luminescent gold nanoclusters (Arg/ATT/AuNCs) on dendritic mesoporous silica nanoparticles (DMSNs) via PEI-mediated electrostatic adsorption. The fluorescence microspheres exhibit excellent monodispersion with average diameters about (254.5 ± 34.6 nm). Compared with free Arg/ATT/AuNCs, the GreFMPs have similar fluorescent properties and biocompatibility but superior environmental tolerance. Subsequently, an immunochromatographic assay based on GreFMPs (GreFMP-ICA) has been successfully developed, which is highly selective toward alpha fetoprotein (AFP) in human serum. Under the optimal parameters, there is a good linear range between 0.5 and 160.0 ng/mL, the limit of detection was found to be about 0.5 ng/mL, and the recovery and relative standard deviation are 81.0 ~ 100.6% and 3.5 ~ 16.6%, respectively. These results manifested that the GreFMPs are beneficial for the rational design of the ICA platform, and the proposed GreFMP-ICA has the potential to screen AFP in clinical applications.
Collapse
Affiliation(s)
- Tao Peng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Zhanwei Liang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Jihao Si
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Lu Huang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Hua Ye
- Department of Neurology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/Affiliated Hospital of Shanghai University/Wenzhou People's Hospital, Wenzhou, 325000, People's Republic of China
| | - Xiaoqing Li
- Department of Neurology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/Affiliated Hospital of Shanghai University/Wenzhou People's Hospital, Wenzhou, 325000, People's Republic of China
| | - Miao Sun
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Jie Xie
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
2
|
Sun Y, Li X, Lin M, Yang G, He H, Bao Y, Li F, Jiang T. An innovative immunochromatographic assay employing Pt-Pd bimetallic nanoparticles as labels for the detection of foot-and-mouth disease virus serotype O. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1235:124043. [PMID: 38341952 DOI: 10.1016/j.jchromb.2024.124043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVE We created a novel, high sensitivity immunochromatographic assay that allows for clear and precise quantitative analysis by employing innovative bimetallic nanoparticles with peroxide-like activity as markers for the preparation of the test strip. METHODS Initially, we synthesized Pt-Pd bimetallic nanoparticles through the reduction of K2PtCl4 and Na2PdCl4 using ascorbic acid (AA) in an ultrasonic water bath. These bimetallic nanoparticles were then utilized to label purified antigens from the foot-and-mouth disease virus (FMDV) type O (FMDV-146S), resulting in the creation of antigen-captured nanomarkers. Upon completion of the antigen-antibody reaction, we introduced a color-developing agent (3,3',5,5'-tetramethylbenzidine) for cascade amplification, significantly enhancing detection sensitivity while ensuring clear and accurate quantitative analysis. RESULTS The quantitative detection sensitivity achieved was 1:28/test, with a linear range spanning from 1:26 ∼ 1:29 /test. For FMDV type O positive serum, the detection sensitivity reached 96.7 %. Furthermore, this method exhibited a 95 % detection sensitivity for FMDV negative serum, FMDV type A and type AsiaⅠ positive sera, as well as sera positive for other common viral diseases in animals. In comparison to the OIE-recommended LPB-ELISA, this approach displayed higher correlation (correlation coefficient = 0.909). Innovation was at the core of establishing this immunochromatographic assay based on Pt-Pd bimetallic nanoparticles for the detection of FMDV antibodies. CONCLUSION The findings revealed a striking 24-fold improvement in sensitivity when compared to colloidal gold, accompanied by a strong correlation coefficient (R2 > 0.9). This suggests a robust and consistent linear association in the results. This method represents a significant advancement in the field of rapid immunochromatographic assays, offering a promising alternative application for bimetallic nanoparticles.
Collapse
Affiliation(s)
- Yanyan Sun
- Lanzhou Shouyan Biotechnology Co., Ltd, Lanzhou 730070, China
| | - Xin Li
- Lanzhou Shouyan Biotechnology Co., Ltd, Lanzhou 730070, China
| | - Mi Lin
- Lanzhou Shouyan Biotechnology Co., Ltd, Lanzhou 730070, China; Key Laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Guang Yang
- Lanzhou Shouyan Biotechnology Co., Ltd, Lanzhou 730070, China
| | - Huali He
- Lanzhou Shouyan Biotechnology Co., Ltd, Lanzhou 730070, China
| | - Yanfang Bao
- Lanzhou Shouyan Biotechnology Co., Ltd, Lanzhou 730070, China
| | - Fengsong Li
- Lanzhou Shouyan Biotechnology Co., Ltd, Lanzhou 730070, China
| | - Tao Jiang
- Lanzhou Shouyan Biotechnology Co., Ltd, Lanzhou 730070, China; Key Laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| |
Collapse
|
3
|
Wang J, Zheng Y, Wang X, Zhou X, Qiu Y, Qin W, ShenTu X, Wang S, Yu X, Ye Z. Dosage-sensitive and simultaneous detection of multiple small-molecule pollutants in environmental water and agriproducts using portable SERS-based lateral flow immunosensor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169440. [PMID: 38123096 DOI: 10.1016/j.scitotenv.2023.169440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
The co-contamination of pesticide residues and mycotoxins in agricultural products is a global concern, with the potential for cumulative and synergistic damaging effects, imposing substantial health and economic burdens to the public. The dosage-sensitive and simultaneous detection of multiple pollutants, with a heightened sensitivity in real samples, poses a significant demand and challenge. Herein, we propose a portable detection method integrating surface-enhanced Raman scattering (SERS)-with lateral flow immunoassay (LFIA), offering high sensitivity and multiplex analysis capabilities. This approach enables the simultaneous detection of imidacloprid (IMI), pyraclostrobin (PYR) and aflatoxin B1 (AFB1) through a single test strip. Utilizing the immune-specific binding between antigen and antibodies, we immobilised antibody- conjugated SERS nanotags on three test lines of the strips to generate Raman signal amplification in the proposed biosensor. Accurate quantitative analysis was performed by measuring the SERS signal intensity on the test lines. The limits of detection were 8.6 pg/mL for IMI, 97.4 pg/mL for PYR and 8.9 pg/mL for AFB1, exhibiting sensitivities 12-fold, 102-fold and11-fold higher than the colorimetric signals, respectively. Importantly, the SERS-LFIA immunosensor demonstrated robust performance when applied to real samples, yielding recoveries ranging from 86.16 % to 115.0 %, with relative standard deviation values below 8.67 %. These results underscore the excellent stability, high selectivity and reliability the proposed SERS-LFIA immunosensor. Consequently, it holds promise for the detection of multiple pesticides and mycotoxins in both environmental and agricultural samples.
Collapse
Affiliation(s)
- Jianping Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yuanyuan Zheng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xinyu Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaoying Zhou
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yulou Qiu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Weiwei Qin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xuping ShenTu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Zhou X, Lai W, Zhong J, Yang Y, Chen Z, Zhang C. Point-of-care detection of glycated hemoglobin using a novel dry chemistry-based electrochemiluminescence device. Anal Chim Acta 2023; 1279:341829. [PMID: 37827624 DOI: 10.1016/j.aca.2023.341829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023]
Abstract
As a good biomarker to reflect the average level of blood glucose, glycated hemoglobin (HbA1c) is mainly used for long-term glycemic monitoring and risk assessment of complications in diabetic patients. Previous analysis methods for HbA1c usually require complex pretreatment processes and large-scale biochemical analyzers, which makes it difficult to realize the point-of-care testing (POCT) of HbA1c. In this work, we have proposed a three-electrode dry chemistry-based electrochemiluminescence (ECL) biosensor and its self-contained automatic ECL analyzer. In this enzymatic biosensor, fructosyl amino-caid oxidase (FAOD) reacts with the hydrolysis product of HbA1c, and the produced hydrogen peroxide further reacts with luminol under the appropriate driving voltage, generating photons to realize the quantitative detection of HbA1c. Under optimized conditions, the biosensors have a good linear response to different concentrations of fructosyl valine (FV) ranging from 0.05 to 2 mM, with a limit of detection of 2 μM. The within-batch variation is less than 15%, and the biosensors still have 78% of the initial response after the accelerated aging test of 36 h at 37 °C. Furthermore, the recoveries for different concentrations of samples in whole blood were within 92.3-99.7%. These results illustrate that the proposed method has the potential for use in POCT of HbA1c.
Collapse
Affiliation(s)
- Xinya Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Wei Lai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Jinbiao Zhong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yang Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zhenyu Chen
- Guangzhou First People's Hospital Nansha Hospital, Guangzhou, 511457, China.
| | - Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
5
|
Zhang Y, Wang L, Ma N, Wan Y, Zhu X, Qian W. Ordered Porous Layer Interferometry for Dynamic Observation of Non-Specific Adsorption Induced by 1-Ethyl-3-(3-(dimethylamino)propyl) Carbodiimide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11406-11413. [PMID: 37542713 DOI: 10.1021/acs.langmuir.3c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
Nonspecific adsorption (NSA) seems to be an impregnable obstacle to the progress of the biomedical, diagnostic, microelectronic, and material fields. The reaction path of bioconjugation can alter the surface charge distribution on products and the interaction of bioconjugates, an ignored factor causing NSA. We monitored exacerbated NSA introduced by a 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDC) addition reaction, which cannot be resistant to bovine serum albumin (BSA) or polyethylene glycol (PEG) antifouling coating and Tween-20. And the negative effects can be minimized by adding as low as 7.5 × 10-6 M N-hydroxysulfosuccinimide (sulfo-NHS). We applied ordered porous layer interferometry (OPLI) to sensitively evaluate the NSA that is difficult to measure on individual particles. Using the silica colloidal crystal (SCC) film with Fabry-Perot fringes as in situ and real-time monitoring for the NSA, we optimized the surface chemistry to yield a conjugate surface without variational charge distribution. In this work, we propose a novel approach from the perspective of the reaction pathway to minimize the NSA of solely EDC-induced chemistry.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lu Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yizhen Wan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xueyi Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiping Qian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Liang Y, Xue K, Shi Y, Zhan T, Lai W, Zhang C. Dry Chemistry-Based Bipolar Electrochemiluminescence Immunoassay Device for Point-of-Care Testing of Alzheimer-Associated Neuronal Thread Protein. Anal Chem 2023; 95:3434-3441. [PMID: 36719948 DOI: 10.1021/acs.analchem.2c05164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, we developed, for the first time, a novel dry chemistry-based bipolar electrochemiluminescence (ECL) immunoassay device for point-of-care testing (POCT) of Alzheimer-associated neuronal thread protein (AD7c-NTP), where the ECL signals were automatically collected and analyzed after the sample and buffer solutions were manually added onto the immunosensor. The proposed immunoassay device contains an automatic ECL analyzer and a dry chemistry-based ECL immunosensor fabricated with a screen-printed fiber material-based chip and a three-dimensional (3D)-printed shell. Each pad of the fiber material-based chip was premodified with certain reagents for immunoreaction and then assembled to form the ECL immunosensor. The self-enhanced ECL of the Ru(II)-poly-l-lysine complex and the lateral flow fiber material-based chip make the addition of coreactants and repeated flushing unnecessary. Only the sample and buffer solutions are added to the ECL immunosensor, and the process of ECL detection can be completed in about 6 min using the proposed automatic ECL analyzer. Under optimized conditions, the linear detection range for AD7c-NTP was 1 to 104 pg/mL, and the detection limit was 0.15 pg/mL. The proposed ECL immunoassay device had acceptable selectivity, stability, and reproducibility and had been successfully applied to detect AD7c-NTP levels in human urine. In addition, the accurate detection of AD7c-NTP and duplex detection of AD7c-NTP and apolipoprotein E ε4 gene were also validated. It is believed that the proposed ECL immunoassay device may be a candidate for future POCT applications.
Collapse
Affiliation(s)
- Yi Liang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Kaifa Xue
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yanyang Shi
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tingting Zhan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wei Lai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
7
|
He F, Lv X, Li X, Yao M, Li K, Deng Y. Fluorescent microspheres lateral flow assay integrated with Smartphone-based reader for multiple microRNAs detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Pan Y, Wang Z, Duan C, Dou L, Wen K, Wang Z, Yu X, Shen J. Comparison of two fluorescence quantitative immunochromatographic assays for the detection of amantadine in chicken muscle. Food Chem 2022; 377:131931. [PMID: 34998149 DOI: 10.1016/j.foodchem.2021.131931] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
The two sensitive fluorescence quantitative immunochromatographic assays (FQICAs), background fluorescence quenching immunochromatographic assay (bFQICA) and time-resolved fluorescent immunochromatographic assay (TRFICA), play an important role increasingly in rapid detection technology for food safety. Amantadine (AMD), used extensively in virus infections in livestock and poultry, has been prohibited due to hazard concerns over public human health. Therefore, AMD was used as a model molecule in the FQICAs establishment and comparison based on the same bioreagents. The outstanding performance in technical parameters of the two FQICAs indicated that they could provide rapid, precise, reliable technical support for large-scale on-site screening for AMD detection. What's more, the systematic and comprehensive comparison of the two FQICAs would give useful suggestions for scientists and users in monitoring the harmful compounds.
Collapse
Affiliation(s)
- Yantong Pan
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Zhaopeng Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, Shandong, People's Republic of China
| | - Changfei Duan
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Leina Dou
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Xuezhi Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China.
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China.
| |
Collapse
|
9
|
Li R, Wen Y, Wang F, He P. Recent advances in immunoassays and biosensors for mycotoxins detection in feedstuffs and foods. J Anim Sci Biotechnol 2021; 12:108. [PMID: 34629116 PMCID: PMC8504128 DOI: 10.1186/s40104-021-00629-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungus. Many mycotoxin species are highly toxic and are frequently found in cereals and feedstuffs. So, powerful detection methods are vital and effective ways to prevent feed contamination. Traditional detection methods can no longer meet the needs of massive, real-time, simple, and fast mycotoxin monitoring. Rapid detection methods based on advanced material and sensor technology are the future trend. In this review, we highlight recent progress of mycotoxin rapid detection strategies in feedstuffs and foods, especially for simultaneous multiplex mycotoxin determination. Immunoassays, biosensors, and the prominent roles of nanomaterials are introduced. The principles of different types of recognition and signal transduction are explained, and the merits and pitfalls of these methods are compared. Furthermore, limitations and challenges of existing rapid sensing strategies and perspectives of future research are discussed.
Collapse
Affiliation(s)
- Runxian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yang Wen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Sun J, Wang L, Shao J, Yang D, Fu X, Sun X. One-step time-resolved fluorescence microsphere immunochromatographic test strip for quantitative and simultaneous detection of DON and ZEN. Anal Bioanal Chem 2021; 413:6489-6502. [PMID: 34430984 DOI: 10.1007/s00216-021-03612-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023]
Abstract
Deoxynivalenol (DON) and zearalenone (ZEN) are mycotoxins that contaminate a wide range of grains and crops. In this study, a one-step time-resolved single-channel immunochromatographic test strip based on europium ion polystyrene fluorescence microspheres was first developed for sensitive and quantitative detection of DON and ZEN. The concentration of the artificial antigen and the mass ratio of the monoclonal antibody to fluorescent microspheres for conjugation were optimized to simplify the sample addition process during immunochromatographic assay and improve the on-site detection efficiency. The limits of detection (LOD) of the single-channel immunochromatographic test strip for DON and ZEN detection were 0.17 and 0.54 μg/L, respectively. Meanwhile, the dual-channel immunochromatographic test strip was designed to simultaneously detect DON and ZEN, with LODs of 0.24 and 0.69 μg/L achieved for DON and ZEN, respectively. The developed test strips also yielded recovery results consistent with that obtained by LC-MS/MS for DON and ZEN detection in real samples of wheat and corn flour, confirming the practicability and reliability of the test strip. The developed immunochromatographic test strips realize quick and sensitive detection of DON and ZEN, exhibiting potential for broad applications in the point-of-care testing platform of multiple mycotoxins in agricultural products. Graphic abstract.
Collapse
Affiliation(s)
- Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Liangzhe Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jingdong Shao
- Comprehensive Technology Center of Zhangjiagang Customs, Zhangjiagang, Jiangsu, 215600, People's Republic of China
| | - Diaodiao Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xuran Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
11
|
Liu J, Yu Q, Zhao G, Dou W. Ultramarine blue nanoparticles as a label for immunochromatographic on-site determination of ractopamine. Mikrochim Acta 2020; 187:285. [PMID: 32322994 DOI: 10.1007/s00604-020-04270-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
Abstract
A competitive immunochromatographic assay (ICA) is presented and used for on-site determination of ractopamine (RAC). Ultramarine blue nanoparticles were directly separated from ultramarine blue industrial products by centrifugation (< 10,000 rpm and > 4000 rpm) and used as visible labels in ICAs. The ultramarine blue nanoparticles were coated by polyacrylic acid (PAA), which provides carboxyl groups on the surface of ultramarine blue nanoparticles. An anti-RAC monoclonal antibody (mAb) was covalently immobilized on the carboxyl-modified ultramarine blue nanoparticle surface via diimide-activated conjugation between the carboxyl groups on the ultramarine blue nanoparticle surface and the amino groups of the antibodies. RAC and BSA-modified RAC competitively bind to the anti-RAC mAb on the ultramarine blue nanoparticles. The blue band in the test line is generated by the accumulation of ultramarine blue nanoparticles and is negatively associated with the RAC content. Under optimal conditions, the visual limit of detection (vLOD) of this ICA for RAC is 2.0 ng mL-1, 2.0 ng mL-1, and 1.0 ng mL-1 in phosphate-buffered saline (PBS), feed samples, and pork samples, respectively. The ultramarine blue nanoparticle-based ICA also shows no cross activity with salbutamol, clorprenaline, clenbuterol, or terbutaline. Graphical abstract Schematic representation of the ultramarine blue nanoparticles immunochromatographic assay for detection of ractopamine (RAC) based on competitive method. The ultramarine blue nanoparticles were screened from commercial ultramarine pigments for the first time and used to detect ractopamine.
Collapse
Affiliation(s)
- Jing Liu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qiongqiong Yu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China.
| |
Collapse
|
12
|
Ross GMS, Bremer MGEG, Wichers JH, van Amerongen A, Nielen MWF. Rapid Antibody Selection Using Surface Plasmon Resonance for High-Speed and Sensitive Hazelnut Lateral Flow Prototypes. BIOSENSORS 2018; 8:E130. [PMID: 30558252 PMCID: PMC6316566 DOI: 10.3390/bios8040130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
Abstract
Lateral Flow Immunoassays (LFIAs) allow for rapid, low-cost, screening of many biomolecules such as food allergens. Despite being classified as rapid tests, many LFIAs take 10⁻20 min to complete. For a really high-speed LFIA, it is necessary to assess antibody association kinetics. By using a label-free optical technique such as Surface Plasmon Resonance (SPR), it is possible to screen crude monoclonal antibody (mAb) preparations for their association rates against a target. Herein, we describe an SPR-based method for screening and selecting crude anti-hazelnut antibodies based on their relative association rates, cross reactivity and sandwich pairing capabilities, for subsequent application in a rapid ligand binding assay. Thanks to the SPR selection process, only the fast mAb (F-50-6B12) and the slow (S-50-5H9) mAb needed purification for labelling with carbon nanoparticles to exploit high-speed LFIA prototypes. The kinetics observed in SPR were reflected in LFIA, with the test line appearing within 30 s, almost two times faster when F-50-6B12 was used, compared with S-50-5H9. Additionally, the LFIAs have demonstrated their future applicability to real life samples by detecting hazelnut in the sub-ppm range in a cookie matrix. Finally, these LFIAs not only provide a qualitative result when read visually, but also generate semi-quantitative data when exploiting freely downloadable smartphone apps.
Collapse
Affiliation(s)
- Georgina M S Ross
- RIKILT, Wageningen University & Research. P.O Box 230, 6700 AE Wageningen, The Netherlands.
| | - Maria G E G Bremer
- RIKILT, Wageningen University & Research. P.O Box 230, 6700 AE Wageningen, The Netherlands.
| | - Jan H Wichers
- Wageningen Food & Biobased Research, BioSensing & Diagnostics, Wageningen University & Research, P.O Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Aart van Amerongen
- Wageningen Food & Biobased Research, BioSensing & Diagnostics, Wageningen University & Research, P.O Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Michel W F Nielen
- RIKILT, Wageningen University & Research. P.O Box 230, 6700 AE Wageningen, The Netherlands.
- Wageningen University, Laboratory of Organic Chemistry, Helix Building 124, Stippeneng 4. 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
13
|
Aptamer-based fluorometric lateral flow assay for creatine kinase MB. Mikrochim Acta 2018; 185:364. [PMID: 29982871 DOI: 10.1007/s00604-018-2905-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022]
Abstract
A group of aptamers possessing high specificity and affinity for creatine kinase MB (CKMB) was obtained by magnetic systematic evolution of ligands by exponential enrichment. Two aptamers (referred to as C.Apt.21 and C.Apt.30) were found to possess adequately low Kd values. They form a well suited pair for CKMB binding. By using fluorescent microspheres, an aptamer-based lateral flow assay was developed. It is portable, economical, and sensitive. The limit of detection for CKMB is as low as 0.63 ng·mL-1, and the assay works in the 0.005 - 2 μg·mL-1 CKMB concentration range. The method is specific for CKMB, and biomarkers for AMI (such as cardiac troponin I and myoglobin) and serum do not interfere. The strip is highly accurate as shown by analysis of spiked serum samples which gave recoveries ranging between 88 and 117%. Graphical Abstract Schematic of the test strip and sandwich aptamer-based fluorometric lateral flow assay for creatine kinease. The detection is based on the specific affinity between CKMB and selected aptamers to form a sandwich structure.
Collapse
|