1
|
Ravele T, Fuku XG, Hlongwa NW, Nkambule TTI, Gumbi NN, Sekhosana KE. Advances in Electrochemical Systems for Detection of Anti‐Androgens in Water Bodies. ChemistrySelect 2023. [DOI: 10.1002/slct.202203768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Thompho Ravele
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Xolile G. Fuku
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Ntuthuko W. Hlongwa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Thabo T. I. Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Nozipho N. Gumbi
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Kutloano E. Sekhosana
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| |
Collapse
|
2
|
Liao C, Wu Z, Lin C, Chen X, Zou Y, Zhao W, Li X, Huang G, Xu B, Briganti GE, Qi Y, Wang X, Zeng T, Wuethrich A, Zou H. Nurturing the marriages of urinary liquid biopsies and nano-diagnostics for precision urinalysis of prostate cancer. SMART MEDICINE 2023; 2:e20220020. [PMID: 39188554 PMCID: PMC11236013 DOI: 10.1002/smmd.20220020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 08/28/2024]
Abstract
Prostate cancer remains the second-most common cancer diagnosed in men, despite the increasingly widespread use of serum prostate-specific antigen (PSA) screening. The controversial clinical implications and cost benefits of PSA screening have been highlighted due to its poor specificity, resulting in a high rate of overdiagnosis and underdiagnosis. Thus, the development of novel biomarkers for prostate cancer detection remains an intriguing challenge. Urine is emerging as a source for prostate cancer biomarker discovery. Currently, new urine biomarkers already outperform serum PSA in clinical diagnosis. Meanwhile, the advances in nanotechnology have provided a suite of diagnostic tools to study prostate cancer in more detail, sparking a new era of biomarker discoveries. In this review, we envision that future prostate cancer diagnosis will probably integrate multiplex nano-diagnostic approaches to detect novel urinary biomarkers. However, challenges remain in differentiating indolent from aggressive cancers to better inform treatment decisions, and clinical translation still needs to be overcome.
Collapse
Affiliation(s)
- Caizhi Liao
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Zhihao Wu
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Chan Lin
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xiaofeng Chen
- School of Environmental and Geographical SciencesShanghai Normal UniversityShanghaiChina
- School of ChemistryNorthwestern UniversityChicagoIllinoisUSA
| | - Yaqun Zou
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Wan Zhao
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xin Li
- Department of UrologySir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | | | - Baisheng Xu
- Department of UrologyThe First People's Hospital of XiushuiJiujiangChina
| | | | - Yan Qi
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xianshu Wang
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Tao Zeng
- Department of Urologythe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of QueenslandBrisbaneQueenslandAustralia
| | - Hongzhi Zou
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
- The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
3
|
Bhuvaneswari C, Palpandi K, Amritha B, Paunkumar P, Lakshmi Priya R, Raman N, Ganesh Babu S. Conniving for the first time of BiVO4 - rGO/CE-BN and its Potential as enhanced electrochemical sensing of non-steroidal anti-androgen drug. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Das N, Chakraborty B, RoyChaudhuri C. A review on nanopores based protein sensing in complex analyte. Talanta 2022; 243:123368. [DOI: 10.1016/j.talanta.2022.123368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/30/2022] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
|
5
|
Durai L, Gopalakrishnan A, Badhulika S. A low-cost and facile electrochemical sensor for the trace-level recognition of flutamide in biofluids using large-area bimetallic NiCo 2O 4 micro flowers. NEW J CHEM 2022. [DOI: 10.1039/d1nj05246b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nickel–cobalt-based bimetallic oxide compound (NiCo2O4) as a highly sensitive and selective platform for the detection of flutamide in biological fluids.
Collapse
Affiliation(s)
- Lignesh Durai
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Arthi Gopalakrishnan
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| |
Collapse
|
6
|
Manjula N, Vinothkumar V, Chen SM. Synthesis and characterization of iron-cobalt oxide/polypyrrole nanocomposite: An electrochemical sensing platform of anti-prostate cancer drug flutamide in human urine and serum samples. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Durai L, Badhulika S. 3D, large-area NiCo 2O 4 microflowers as a highly stable substrate for rapid and trace level detection of flutamide in biofluids via surface-enhanced Raman scattering (SERS). Mikrochim Acta 2021; 188:371. [PMID: 34625854 DOI: 10.1007/s00604-021-05034-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
A one-pot hydrothermal synthesis of three-dimensional (3D), large-area, bimetallic oxide NiCo2O4 (NCO) microflowers has been developed as a novel substrate for surface-enhanced Raman scattering (SERS) detection of flutamide in biological fluids. The 3D flower-like morphology of the NCO is observed via FESEM micrographs, while the orthorhombic phase formation is confirmed through XRD spectra. Due to the presence of multiple coordination cations of the 3D NCO microflowers (such as Ni2+ and Co2+), the high surface area and surface roughness, the NCO-modified indium tin oxide (NCO/ITO) SERS substrate exhibits a linear detection range from 0.5-500 nM with a low limit of detection (LOD) of 0.1 nM. The SERS substrate provides a high enhancement factor of 1.864 × 106 with an accumulation time of 30 s using a laser source of λ = 532 nm, which can be ascribed to the excellent and rapid interaction between the flutamide molecule and the NCO microflower substrate that leads to photoinduced charge transfer (PICT) resonance. The NCO/ITO substrate exhibits excellent homogeneity and high chemical stability. Besides, the substrate displays an excellent selectivity to flutamide molecules in the existence of other metabolites such as urea, ascorbic acid (AA), glucose, NaCl, KCl, CaCl2, and hydroxyflutamide. The NCO/ITO substrate is successful in the trace-level detection of flutamide in simulated blood serum samples. The strategy outlined here presents a novel strategy for the efficacy of transition metal oxides (TMOs) based electrodes useful for a wide variety of bioanalytical applications.
Collapse
Affiliation(s)
- Lignesh Durai
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India.
| |
Collapse
|
8
|
Umesh NM, Antolin Jesila J, Wang SF, Govindasamy M, Alshgari RA, Ouladsmane M, Asharani I. Fabrication of highly sensitive anticancer drug sensor based on heterostructured ZnO-Co3O4 capped on carbon nitride nanomaterials. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Das N, Damodaran V, Chakraborty B, Roychaudhuri C. Experiment and FEM Analysis of Silica Nanoparticle-Based Impedance Immunosensor for Sensitivity Enhancement. IEEE Trans Nanobioscience 2021; 20:247-255. [PMID: 33690122 DOI: 10.1109/tnb.2021.3064677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This article investigates the impact of incorporating silica nanoparticles of varying diameters in label free impedance immunosensor. It has been observed that even if the surface area improvement has been adjusted to be similar for all the diameters, the sensitivity is enhanced by five times at a particular diameter of 100 nm due to the optimum combination of intersection with electric field lines and surface convexity. This study has enabled the detection of 0.1 fM Hep-B surface antigen with a reliable sensitivity of around 75%. Further, it has been observed that the SNR corresponding to 0.1 fM is 20 dB only for 100 nm particle. This SNR is comparable to a recent report on Hep-B virus detection but the limit of detection in the proposed sensor is lowered by more than three orders of magnitude.
Collapse
|
10
|
Pepsin mediated synthesis of blue fluorescent copper nanoclusters for sensing of flutamide and chloramphenicol drugs. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105947] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Venkatesh K, Muthukutty B, Chen SM, Karuppiah C, Amanulla B, Yang CC, Ramaraj SK. Nanomolar level detection of non-steroidal antiandrogen drug flutamide based on ZnMn 2O 4 nanoparticles decorated porous reduced graphene oxide nanocomposite electrode. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124096. [PMID: 33131940 DOI: 10.1016/j.jhazmat.2020.124096] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Flutamide is a non-steroidal antiandrogen drug and widely used in the treatment of prostatic carcinoma. Nevertheless, the excessive intake and improper disposal could affect the living organisms. In this work, we have synthesized a new nanocomposite based on ZnMn2O4 nanoparticles and porous reduced graphene oxide nanosheets (ZnMn2O4-PGO) for the electrocatalytic detection of flutamide (FLU) drug. The crystallinity and morphological properties of ZnMn2O4-PGO composite examined by different characterization techniques such as X-ray diffraction, Raman spectroscopy and so on. The fabricated ZnMn2O4-PGO nanocomposite modified electrode exhibited superior electrocatalytic performance to FLU drug in an optimized pH electrolyte. Fascinatingly, the electrode received a wide linear range (0.05-3.5 µM) with limit of detection of 8 nM. Besides, the developed ZnMn2O4-PGO nanocomposite electrode showed good sensitivity 1.05 µAµM-1 cm-2 and excellent selectivity for FLU detection in presence of various interfering species. A developed disposable electrode was scrutinized to determine FLU level in human urine samples by spiking method and the results achieved good recoveries in real sample analysis.
Collapse
Affiliation(s)
- Krishnan Venkatesh
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| | - Balamurugan Muthukutty
- Electroanalysis and Biotelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Biotelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Chelladurai Karuppiah
- Battery Research center of Green Energy, Ming Chi University of technology, New Taipei City 24301, Taiwan, ROC.
| | - Baishnisha Amanulla
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| | - Chun-Chen Yang
- Battery Research center of Green Energy, Ming Chi University of technology, New Taipei City 24301, Taiwan, ROC.
| | - Sayee Kannan Ramaraj
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India.
| |
Collapse
|
12
|
Lavanya AL, Kumari KGB, Prasad KRS, Kumar Brahman P. Nickel and Tungsten Bimetallic Nanoparticles Modified Pencil Graphite Electrode: A High‐performance Electrochemical Sensor for Detection of Endocrine Disruptor Bisphenol A. ELECTROANAL 2021. [DOI: 10.1002/elan.202060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Akkaraboyina Lakshmi Lavanya
- Electroanalytical Lab Department of Chemistry Koneru Lakshmaiah Education Foundation Vaddeswaram Guntur-522502, Andhra Pradesh India
| | - K. Gowri Bala Kumari
- Electroanalytical Lab Department of Chemistry Koneru Lakshmaiah Education Foundation Vaddeswaram Guntur-522502, Andhra Pradesh India
- Department of Chemistry Acharya Nagarjuna University Nagarjuna Nagar-522510, Andhra Pradesh India
| | - K. R. S. Prasad
- Electroanalytical Lab Department of Chemistry Koneru Lakshmaiah Education Foundation Vaddeswaram Guntur-522502, Andhra Pradesh India
| | - Pradeep Kumar Brahman
- Electroanalytical Lab Department of Chemistry Koneru Lakshmaiah Education Foundation Vaddeswaram Guntur-522502, Andhra Pradesh India
| |
Collapse
|
13
|
Rajakumaran R, Sukanya R, Chen SM, Karthik R, Breslin CB, Shafi PM. Synthesis and Characterization of Pyrochlore-Type Praseodymium Stannate Nanoparticles: An Effective Electrocatalyst for Detection of Nitrofurazone Drug in Biological Samples. Inorg Chem 2021; 60:2464-2476. [PMID: 33534999 DOI: 10.1021/acs.inorgchem.0c03377] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Apart from perovskites, the development of different types of pyrochlore oxides is highly focused on various electrochemical applications in recent times. Based on this, we have synthesized pyrochlore-type praseodymium stannate nanoparticles (Pr2Sn2O7 NPs) by using a coprecipitation method and further investigated by different analytical and spectroscopic techniques such as X-ray diffraction, Raman spectroscopy, field emission-scanning electron microscopy, high resolution-transmission electron microscopy, and X-ray photoelectron spectroscopy analysis. Followed by this, we have designed a unique and novel electrochemical sensor for nitrofurazone detection, by modifying the glassy carbon electrode (GCE) with the prepared Pr2Sn2O7 NPs. For that, the electrochemical experiments were performed by using cyclic voltammetry and differential pulse voltammetry techniques. The Pr2Sn2O7 NPs modified GCE exhibits high sensitivity (2.11 μA μM-1 cm-2), selectivity, dynamic linear ranges (0.01-24 μM and 32-332 μM), and lower detection limit (4 nM). Furthermore, the Pr2Sn2O7 NPs demonstrated promising real sample analysis with good recovery results in biological samples (human urine and blood serum) which showed better results than the noble metal catalysts. Based on these results, the present work gives clear evidence that the pyrochlore oxides are highly suitable electrode materials for performing outstanding catalytic activity toward electrochemical sensors.
Collapse
Affiliation(s)
- Ramachandran Rajakumaran
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Ramaraj Sukanya
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Raj Karthik
- School of Chemical Engineering, Yeungnam Universit, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Carmel B Breslin
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 FH6, Ireland
| | - P Muhammed Shafi
- School of Chemical Engineering, Yeungnam Universit, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
14
|
Using cerium (III) orthovanadate as an efficient catalyst for the electrochemical sensing of anti-prostate cancer drug (flutamide) in biological fluids. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Sabourian R, Mirjalili SZ, Namini N, Chavoshy F, Hajimahmoodi M, Safavi M. HPLC methods for quantifying anticancer drugs in human samples: A systematic review. Anal Biochem 2020; 610:113891. [PMID: 32763305 DOI: 10.1016/j.ab.2020.113891] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 01/11/2023]
Abstract
Pharmacokinetic (PK) study of anticancer drugs in cancer patients is highly crucial for dose selection and dosing intervals in clinical applications. Once an anticancer drug is administered, it undergoes various metabolic pathways; to determine these pathways, it is necessary to follow the administered drug in biological samples via different analytical methods. In addition, multi-drug quantification methods in patients undergoing multi-drug regimens of cancer therapy can have several benefits, such as reduced sampling time and analysis costs. In order to collect and categorize these studies, we conducted a systematic review of HPLC methods reported for the analysis of anticancer drugs in biological samples. A systematic search was performed on PubMed Medline, Scopus, and Web of Science databases, and 116 studies were included. In summary of included studies, when the objective of a method was to quantify a single drug, MS, or UV detectors were utilized equivalently. On the other hand, in methods with the aim of quantifying drug and metabolite(s) in a single run, MS detectors were the most utilized. This review can provide a comprehensive insight for researchers prior to developing a quantification method and selecting a detector.
Collapse
Affiliation(s)
- Reyhaneh Sabourian
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zohreh Mirjalili
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Negar Namini
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Chavoshy
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mannan Hajimahmoodi
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| |
Collapse
|
16
|
Tseng TW, Rajaji U, Chen TW, Chen SM, Huang YC, Mani V, Irudaya Jothi A. Sonochemical synthesis and fabrication of perovskite type calcium titanate interfacial nanostructure supported on graphene oxide sheets as a highly efficient electrocatalyst for electrochemical detection of chemotherapeutic drug. ULTRASONICS SONOCHEMISTRY 2020; 69:105242. [PMID: 32673961 DOI: 10.1016/j.ultsonch.2020.105242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
In green approaches for electrocatalyst synthesis, sonochemical methods play a powerful role in delivering the abundant surface areas and nano-crystalline properties that are advantageous to electrocatalytic detection. In this article, we proposed the sphere-like and perovskite type of bimetal oxides which are synthesized through an uncomplicated sonochemical procedure. As a yield, the novel calcium titanate (orthorhombic nature) nanoparticles (CaTiO3 NPs) decorated graphene oxide sheets (GOS) were obtained through simple ultrasonic irradiation by a high-intensity ultrasonic probe (Titanium horn; 50 kHz and 60 W). The GOS/CaTiO3 NC were characterized morphologically and chemically through the analytical methods (SEM, XRD, and EDS). Besides, as-prepared nanocomposites were modified on a GCE (glassy carbon electrode) and applied towards electrocatalytic and electrochemical sensing of chemotherapeutic drug flutamide (FD). Notably, FD is a crucial anticancer drug and also a non-steroidal anti-androgen chemical. Mainly, the designed and modified sensor has shown a wide linear range (0.015-1184 µM). A limit of detection was calculated as nanomolar level (5.7 nM) and sensitivity of the electrode is 1.073 μA μM-1 cm-2. The GOS/CaTiO3 modified electrodes have been tested in human blood and urine samples towards anticancer drug detection.
Collapse
Affiliation(s)
- Tien-Wen Tseng
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Umamaheswari Rajaji
- Electroanalysis and Biotelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Electroanalysis and Biotelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Yi-Chen Huang
- Electroanalysis and Biotelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Veerappan Mani
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - A Irudaya Jothi
- Department of Chemistry, St. Joseph's College (Autonomous), Tiruchirappalli 620002, (Affiliated to Bharathidasan University, Tiruchirappali 620024), Tamilnadu, India
| |
Collapse
|
17
|
Sundaresan P, Yamuna A, Chen SM. Sonochemical synthesis of samarium tungstate nanoparticles for the electrochemical detection of nilutamide. ULTRASONICS SONOCHEMISTRY 2020; 67:105146. [PMID: 32371349 DOI: 10.1016/j.ultsonch.2020.105146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
This study reports the sonochemical synthesis of samarium tungstate nanoparticles (SWNPs) for applications in electrochemical sensors. The synthesis process is based on a precipitation reaction, which was investigated by ultrasound and compared with the effect of stirring. A bath sonicator operated at a frequency and power of 37/100 kHz and ~60 W, respectively, was employed to prepare the material. The shock waves efficiently irradiated the reaction conditions as much as possible, resulting in the good crystallinity of the monoclinic phase of the SWNPs, which was confirmed by XRD analysis. The surface morphology and structural composition was further evaluated by HRTEM, EDS and XPS. The good crystallinity and uniform distribution of elements in the nanoparticles were confirmed. The performance of the SWNPs to electrochemically sense nilutamide (NLT) was studied, which revealed a good electrochemical signal. As a result, the SWNPs were applied to an electrode material for the detection of NLT. This study revealed the excellent activity of the SWNPs for NLT detection, resulting in a low detection limit (0.0026 µM) and good linear range (0.05-318 µM). Furthermore, the results show appreciable analytical performances, which could be applied to electrochemical anti-androgen drug nilutamide sensors.
Collapse
Affiliation(s)
- Periyasamy Sundaresan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Annamalai Yamuna
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| |
Collapse
|
18
|
Suvina V, Kokulnathan T, Wang TJ, Balakrishna RG. Unraveling the electrochemical properties of lanthanum cobaltite decorated halloysite nanotube nanocomposite: An advanced electrocatalyst for determination of flutamide in environmental samples. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110098. [PMID: 31901811 DOI: 10.1016/j.ecoenv.2019.110098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Prostate cancer is one of the primary causes of death around the world. As an important drug, flutamide has been used in the clinical diagnosis of prostate cancer. However, the over dosage and improper discharge of flutamide could affect the living organism. Thus, it necessary to develop the sensor for detection of flutamide with highly sensitivity. In this paper, we report the synthesis of lanthanum cobaltite decorated halloysite nanotube (LCO/HNT) nanocomposite prepared by a facile method and evaluated for selective reduction of flutamide. The as-prepared LCO/HNT nanocomposite shows the best catalytic performance towards detection of flutamide, when compared to other bare and modified electrodes. The good electrochemical performance of the LCO/HNT nanocomposite modified electrode is ascribed to abundant active sites, large specific surface area and their synergetic effects. Furthermore, the LCO/HNT modified electrode exhibits low detection limit (0.002 μM), wide working range (0.009-145 μM) and excellent selectivity with remarkable stability. Meaningfully, the developed electrochemical sensor was applied in real environmental samples with an acceptable recovery range.
Collapse
Affiliation(s)
- V Suvina
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Kanakapura, Bangalore, 562112, India
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan, ROC
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan, ROC.
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Kanakapura, Bangalore, 562112, India.
| |
Collapse
|
19
|
Rajakumaran R, Abinaya M, Chen SM, Balamurugan K, Muthuraj V. Ultrasonication and hydrothermal assisted synthesis of cloud-like zinc molybdate nanospheres for enhanced detection of flutamide. ULTRASONICS SONOCHEMISTRY 2020; 61:104823. [PMID: 31669843 DOI: 10.1016/j.ultsonch.2019.104823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Ultrasonication is one of the emerging probes for nanoparticles synthesis as well as promoting the material property by treasuring the precious time during a chemical reaction. In this present work, we successfully designed a cloud-like α-ZnMoO4 nanospheres (ZMNS) using ultrasound assistance (bath sonication with the power of 60 W and frequency of 37/80 kHz) hydrothermal method for catalyzing the effective electrochemical determination of anti-androgen drug candidate flutamide (FLT). The crystallinity and phase purity were investigated using powder X-ray diffractometric analysis. The FTIR and Raman spectra information were compared to detect the possible bonding in ZMNS. The texture and surface morphology were studied using Field emission scanning electron microscope and High-resolution Transmission electron microscope images. The presence of the elements (Zn, Mo and O) and the absence of any other impurities were monitored and confirmed using EDAX analysis. The fabrication of ZMNS modified GCE was performed carefully. Additionally, the ZMNS modified glassy carbon electrode (GCE) exhibits superior electrocatalytic activity by means of higher cathodic peak current towards the detection of FLT. The fashioned electrode attained two wide linear response ranges (0.1 to 73 µM; 111 to 1026 µM) with a lower detection limit of about 33 nM correspondingly. Furthermore, the fabricated sensor displayed excellent sensitivity of 1.095 µA µM-1 cm-2 and good selectivity for FLT sensing even in the existence of similar interfering compounds and biomolecules. Along with that, the designed sensor executed noticeable reproducibility, repeatability, and enduring stability.
Collapse
Affiliation(s)
- Ramachandran Rajakumaran
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | | | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Karuppaiah Balamurugan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Velluchamy Muthuraj
- Department of Chemistry, VHNSN College (Autonomous), Virudhunagar, TN, India.
| |
Collapse
|
20
|
Karuppaiah B, Ramachandran R, Chen SM, Wan-Ling S, Wan JY. Hierarchical construction and characterization of lanthanum molybdate nanospheres as an unassailable electrode material for electrocatalytic sensing of the antibiotic drug nitrofurantoin. NEW J CHEM 2020. [DOI: 10.1039/c9nj05347f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, lanthanum molybdate nanospheres (LMNSs) were prepared by employing a co-precipitation methodology, and their electrochemical activity against nitrofurantoin (NF) was reported.
Collapse
Affiliation(s)
- Balamurugan Karuppaiah
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Rajakumaran Ramachandran
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shih Wan-Ling
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Jun Yu Wan
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| |
Collapse
|
21
|
Mehrabi A, Rahimnejad M, Mohammadi M, Pourali M. Electrochemical detection of flutamide with gold electrode as an anticancer drug. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Saka C. Electroanalytical Approaches for Determination of Prostate Cancer Drugs in Biological Samples and Dosage Forms. Crit Rev Anal Chem 2019; 49:403-414. [DOI: 10.1080/10408347.2018.1538768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Cafer Saka
- School of Healthy, Siirt University, Siirt, Turkey
| |
Collapse
|
23
|
A sandwich-type electrochemiluminescence aptasensor for insulin detection based on the nano-C60/BSA@luminol nanocomposite and ferrocene derivative. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Kubendhiran S, Sakthivel R, Chen SM, Mutharani B, Chen TW. Innovative Strategy Based on a Novel Carbon-Black-β-Cyclodextrin Nanocomposite for the Simultaneous Determination of the Anticancer Drug Flutamide and the Environmental Pollutant 4-Nitrophenol. Anal Chem 2018; 90:6283-6291. [PMID: 29695156 DOI: 10.1021/acs.analchem.8b00989] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present work, a noncovalent and eco-friendly approach was proposed to prepare a carbon-black/β-cyclodextrin (CB/β-CD) nanocomposite. CB/β-CD-nanocomposite-modified screen-printed carbon electrodes were applied for the simultaneous determination of the anticancer drug flutamide (Flut) and the environmental pollutant 4-nitrophenol (4-NP). The electrochemical performance of the proposed sensor relied on the conductivity of CB, the different binding strengths of the guests (Flut and 4-NP) to the host (β-CD), and the different reduction potentials of the nitroaromatic compounds. Fascinatingly, the proposed sensor exhibited an excellent electrochemical performance with high sensitivity, selectivity, and reproducibility. The obtained wide linear ranges were 0.05-158.3 and 0.125-225.8 μM for Flut and 4-NP. The low detection limits of 0.016 and 0.040 μM with the higher sensitivities of 5.476 and 9.168 μA μM-1 cm-2 were achieved for the determination of Flut and 4-NP, respectively. The practical feasibility of the proposed sensor was studied in tap-water and human-serum samples.
Collapse
Affiliation(s)
- Subbiramaniyan Kubendhiran
- Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , Taipei 106 , Taiwan, ROC
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , Taipei 106 , Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , Taipei 106 , Taiwan, ROC
| | - Bhuvanenthiran Mutharani
- Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , Taipei 106 , Taiwan, ROC
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , Taipei 106 , Taiwan, ROC
| |
Collapse
|
25
|
Li H, Hu Y, Li A, Wang X, Hou P, Wang C, Chen K, Zhao C. A highly sensitive electrochemical impedance immunosensor for indole-3-acetic acid and its determination in sunflowers under salt stress. RSC Adv 2017. [DOI: 10.1039/c7ra09979g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel label-free electrochemical impedance immunosensor for IAA determination has been developed based on PAMAM and anti-IAA–AuNP complexes.
Collapse
Affiliation(s)
- Haiyang Li
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- School of Life Science and Engineering
| | - Ye Hu
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- National Engineering Research Center for Information Technology in Agriculture
| | - Aixue Li
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- National Engineering Research Center for Information Technology in Agriculture
| | - Xiaodong Wang
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- National Engineering Research Center for Information Technology in Agriculture
| | - Peichen Hou
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- National Engineering Research Center for Information Technology in Agriculture
| | - Cheng Wang
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- National Engineering Research Center for Information Technology in Agriculture
| | - Ke Chen
- School of Life Science and Engineering
- Southwest University of Science and Technology
- Mianyang 621000
- China
| | - Chunjiang Zhao
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- National Engineering Research Center for Information Technology in Agriculture
| |
Collapse
|