1
|
Moradi H, Vanlalhmingmawia C, Kim DS, Yang JK. Plasma-catalytic remediation of pharmaceutical-contaminated wastewater: Catalyst design and mechanistic insights from DFT. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125281. [PMID: 40203717 DOI: 10.1016/j.jenvman.2025.125281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Contaminants of emerging concern (CECs), characterized by persistence, poor biodegradability, and high toxicity, pose significant risks to aquatic ecosystems and human health. Plasma-catalytic processes may eliminate CECs, particularly micropollutants, from wastewater. However, discharge-zone thermalization and heavy-metal leaching from metal-based catalysts pose challenges for industrial adoption of cold plasma technology. This study presents a novel coaxial plasma electrode and a heteroatom-doped carbonaceous catalyst that overcome these limitations. Catalysts with varying boron and oxygen contents are synthesized through the pyrolysis of waste wood, boric acid, and zinc borate at 1000 °C. Boron-doped graphene-like carbon with 15-wt.% boric acid and 15-wt.% zinc borate exhibits superior ozone degradation and hydrogen-peroxide formation. The plasma-catalytic system demonstrates high-efficacy micropollutant degradation, achieving complete naproxen degradation in less than 30 min with a 0.1112 degradation rate and 75.67 % mineralization. Additionally, it effectively removed naproxen, rhodamine B, and Congo red from real wastewater spiked with 10 ppm of each pollutant. Density functional theory calculations elucidate the high affinity of armchair BC2O for ozone adsorption. Moreover, the dual role of zinc borate as both an activator and dopant in the synthesis of boron-doped graphene-like carbon is revealed. As the synthesized metal-free catalyst exhibits high performance for treatment of real wastewater samples, and the plasma setup is simple and efficient, this system has scalability and practical applicability in wastewater treatment plants.
Collapse
Affiliation(s)
- Hiresh Moradi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | | | - Dong-Su Kim
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
2
|
Habibi Zare M, Mehrabani-Zeinabad A. Yolk@Wrinkled-double shell smart nanoreactors: new platforms for mineralization of pharmaceutical wastewater. Front Chem 2023; 11:1211503. [PMID: 37347043 PMCID: PMC10281210 DOI: 10.3389/fchem.2023.1211503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
Nanomaterials with "yolk and shell" "structure" can be considered as "nanoreactors" that have significant potential for application in catalysis. Especially in terms of electrochemical energy storage and conversion, the nanoelectrode has a large specific surface area with a unique yolk@shell structure, which can reduce the volume change of the electrode during the charging and discharging process and fast ion/electron transfer channels. The adsorption of products and the improvement of conversion reaction efficiency can greatly improve the stability, speed and cycle performance of the electrode, and it is a kind of ideal electrode material. In this research, heterojunction nanoreactors (FZT Y@WDS) Fe3O4@ZrO2-X@TiO2-X were firstly synthesized based on the solvothermal combined hard-template process, partial etching and calcination. The response surface method was used to determine the performance of the FZT Y@WDS heterojunction nanoreactors and the effects of four process factors: naproxen concentration (NAP), solution pH, the amount of charged photocatalyst, and the irradiation time for photocatalytic degradation of NAP under visible light irradiation. To maximize the photocatalytic activity, the parameters of the loaded catalyst, the pH of the reaction medium, the initial concentration of NAP, and the irradiation time were set to 0.5 g/L, 3, 10 mg/L, and 60 min, respectively, resulting in complete removal of NAP and the optimum amount was calculated to be 0.5 g/L, 5.246, 14.092 mg/L, and 57.362 min, respectively. Considering the promising photocatalytic activity of FZT Y@WDS under visible light and the separation performance of the nanocomposite, we proposed this photocatalyst as an alternative solution for the treatment of pharmaceutical wastewater.
Collapse
Affiliation(s)
- Masoud Habibi Zare
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
3
|
Orozco-Gonzalez LR, Acosta-Najarro DR, Magaña-Zavala CR, Tavizón-Pozos JA, Cervantes-Cuevas H, Chavez-Esquivel G. Photocatalytic degradation of naproxen using single-doped TiO 2/FTO and co-doped TiO 2-VO 2/FTO thin films synthesized by sonochemistry. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2022. [DOI: 10.1515/ijcre-2022-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Single-doped TiO2/FTO and co-doped TiO2-VO2/FTO thin films were prepared by sonochemistry and spray pyrolysis deposition on FTO substrates. The co-deposition of TiO2-VO2 on FTO significantly changed the morphological, structural, optical, and photocatalytical properties compared to the single-deposition. X-ray diffraction and HRTEM results showed polycrystalline film structures composed of SnO2-tetragonal from FTO, anatase-TiO2, rutile-TiO2, and monoclinic-VO2 phases. The co-deposition technique increases the particle size distribution by approximately two times compared to simple deposition. The single-doped TiO2/FTO thin film had a 15% higher bandgap than the co-doped TiO2-VO2/FTO thin film, and the electrical resistivity calculated from the van der Pauw method was 55.3 MΩ sq−1 for the TiO2-VO2/FTO co-doped thin film, 2.7 times lower than that obtained for the TiO2/FTO thin film. Single-doped TiO2/FTO and co-doped TiO2-VO2/FTO thin films presented pseudo-first-order reactions at pH 6.5, with kinetic constants of 0.026 and 0.015 min−1, respectively. This behavior is related to the production of inactive or less active aggregates by the addition of vanadium during the co-doping process, which led to lattice contraction, which encouraged the formation of the rutile phase rather than the anatase phase. However, the co-doped thin film can modify the metal-insulator transition compared to the single-doped TiO2/FTO thin film. Furthermore, co-deposition decreased the bandgap value by 16% compared to single-deposition thin film. In this sense, co-doped TiO2-VO2/FTO thin films inhibited the recombination of photogenerated carriers and the formation of reactive oxygen species involved in the photocatalytic degradation of naproxen.
Collapse
Affiliation(s)
- Luis Rene Orozco-Gonzalez
- Instituto de Física, Universidad Nacional Autónoma de México, Cuidad Universitaria , Coyoacan , Ciudad de México 20364 , México
| | - Dwight Roberto Acosta-Najarro
- Instituto de Física, Universidad Nacional Autónoma de México, Cuidad Universitaria , Coyoacan , Ciudad de México 20364 , México
| | - Carlos Raúl Magaña-Zavala
- Instituto de Física, Universidad Nacional Autónoma de México, Cuidad Universitaria , Coyoacan , Ciudad de México 20364 , México
| | - Jesus Andres Tavizón-Pozos
- Investigadoras e Investigadores por México CONACYT, Área Académica de Química , Universidad Autónoma del Estado de Hidalgo , Carr. Pachuca-Tulancingo km 4.5 , Pachuca 42184 , Hidalgo , México
| | - Humberto Cervantes-Cuevas
- Departamento de Ciencias Básicas, División de Ciencias Básicas e Ingeniería , Universidad Autónoma Metropolitana-Azcapotzalco , Av. San Pablo 180, Col. Reynosa Tamaulipas, Azcapotzalco , Ciudad de México 02200 , México
| | - Gerardo Chavez-Esquivel
- Departamento de Ciencias Básicas, División de Ciencias Básicas e Ingeniería , Universidad Autónoma Metropolitana-Azcapotzalco , Av. San Pablo 180, Col. Reynosa Tamaulipas, Azcapotzalco , Ciudad de México 02200 , México
| |
Collapse
|
4
|
Jain A, Ghosh R, Kishore N. Quantitative calorimetric and spectroscopic analysis of drug-drug interactions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Photocatalytic activity of ZrO 2/TiO 2/Fe 3O 4 ternary nanocomposite for the degradation of naproxen: characterization and optimization using response surface methodology. Sci Rep 2022; 12:10388. [PMID: 35725903 PMCID: PMC9208713 DOI: 10.1038/s41598-022-14676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, ZrO2, TiO2, and Fe3O4 components were synthesized by co-precipitation, sol–gel, and co-precipitation methods, respectively. In addition, solid-state dispersion method was used for synthesizing of ZrO2/TiO2/Fe3O4 ternary nanocomposite. The ZrO2/TiO2/Fe3O4 nanocomposite was characterized by different techniques including XRD, EDX, SEM, BET, FTIR, XPS, EELS, and Photoluminescence (PL). The FTIR analysis of ZrO2/TiO2/Fe3O4 photocatalyst showed strong peaks in the range of 450 to 700 cm−1, which represent stretching vibrations of Zr–O, Ti–O, and Fe–O. The results of FTIR and XRD, XPS analyses and PL spectra confirmed that the solid-state dispersion method produced ZrO2/TiO2/Fe3O4 nanocomposites. The EELS analysis confirmed the pure samples of Fe3O4, TiO2 and ZrO2. The EDAX analysis showed that the Zr:Ti:Fe atomic ratio was 0.42:2.08:1.00. The specific surface area, pores volume and average pores size of the photocatalyst were obtained 280 m2/g, 0.92 cm3/g, and 42 nm respectively. Furthermore, the performance of ZrO2/TiO2/Fe3O4 nanocomposite was evaluated for naproxen removal using the response surface method (RSM). The four parameters such as NPX concentration, time, pH and catalyst concentration was investigated. The point of zero charge of the photocatalyst was 6. The maximum and minimum degradation of naproxen using photocatalyst were 100% (under conditions: NPX concentration = 10 mg/L, time = 90 min, pH = 3 and catalyst concentration = 0.5 g/L) and 66.10% respectively. The stability experiment revealed that the ternary nanocatalyst demonstrates a relatively higher photocatalytic activity after 7 recycles.
Collapse
|
6
|
Belghit A, Merouani S, Hamdaoui O, Bouhelassa M, Al-Zahrani S. The multiple role of inorganic and organic additives in the degradation of reactive green 12 by UV/chlorine advanced oxidation process. ENVIRONMENTAL TECHNOLOGY 2022; 43:835-847. [PMID: 32762301 DOI: 10.1080/09593330.2020.1807609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The impact of various mineral anions, diverse organic substrates and different environmental matrices on the removal of C.I. reactive green 12 (RG12), a refractory textile dye, by UV/chlorine emerging advanced oxidation process (AOP) was performed. The co-exposure of RG12 (20 mg L-1) to UV and chlorine (0.5 mM) at pH 5 produced a strong synergism on the degradation rate. Radical probe technique showed that ●OH and Cl2●- were the main source of the synergistic effect. Bromide, bicarbonate and chloride at small dosage, i.e. 1 mM, enhanced the rate of RG12 degradation, but higher concentrations of these anions quenched the degradation process. Sulphate anions did not alter the degradation rate of the dye, but nitrite quenched it at ∼ 90%. The inhibiting effect of nitrate appeared only at advanced reaction time (>1 min).On the other hand, natural organic matter (NOM) reduced effectively the degradation rate. Besides, SDS surfactant at only 1 µM accelerated the degradation efficiency by ∼12%. However, Tween 80 has shown an insignificant effect, whereas reductions of 10% and 30% were recorded by Triton X100 and Tween 20, respectively. The RG12-degradation rate was not affected in the mineral water, but it was drastically improved in seawater. Conversely, a huge drop in the RG12-degradation efficiency was obtained in the wastewater effluent. UV/chlorine process is highly viable for degrading pollutant in matrices free of NOM. However, the process losses its potential application in matrices riche of NOM.
Collapse
Affiliation(s)
- Aouattef Belghit
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Slimane Merouani
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Oualid Hamdaoui
- Chemical Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bouhelassa
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Saeed Al-Zahrani
- Chemical Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Heterogeneous Photocatalytic Chlorination of Methylene Blue Using a Newly Synthesized TiO2-SiO2 Photocatalyst. Catalysts 2022. [DOI: 10.3390/catal12020156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The titanium dioxide-silicon dioxide (TiO2-SiO2) nanocomposite used for the study was synthesized using a sol-gel method followed by UV-treatment. The physicochemical properties of the synthesized catalyst, TiO2-SiO2 were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL). The photocatalytic degradation of methylene blue (MB) dye was evaluated in the presence of TiO2-SiO2 and reactive chlorine species (RCS) under experimental conditions. By comparing the important reaction processes in the study, including photocatalysis, chlorination and photocatalytic chlorination, it was found out that the process of photocatalytic chlorination had the highest photodegradation efficiency (95% at 60 min) of the MB under optimum reaction conditions (MB = 6 mg L−1, catalyst = 0.1 g and pH = 4). The enhanced removal of MB from the aqueous medium was identified because of the synergy between chlorination and photocatalysis activated in the presence of TiO2-SiO2. The mechanism of the photocatalytic chlorination process was scrutinized in the presence of various RCS and reactive oxygen species (ROS) scavengers. Based on the experimental data attained, Na2S2O3 exhibited the highest inhibitory effect on the degradation efficiency of MB, indicating that the RCS is the main contributor to visible light-induced photodegradation of MB.
Collapse
|
8
|
Ghanbari F, Yaghoot-Nezhad A, Wacławek S, Lin KYA, Rodríguez-Chueca J, Mehdipour F. Comparative investigation of acetaminophen degradation in aqueous solution by UV/Chlorine and UV/H 2O 2 processes: Kinetics and toxicity assessment, process feasibility and products identification. CHEMOSPHERE 2021; 285:131455. [PMID: 34273698 DOI: 10.1016/j.chemosphere.2021.131455] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The degradation of acetaminophen (ACM) was comparatively studied by UV/chlorine and UV/H2O2 systems. An apparent reduction in the removal rate was observed above the optimum pH levels of 7.0 and 3.0 in UV/chlorine and UV/H2O2 processes, respectively. The relative contribution of each oxidizing agent in ACM removal using the two advanced oxidation processes (AOPs) was evaluated. Even though hydroxyl radicals, with the contribution percentage of 90.1%, were determined as the primary oxidizing species in ACM removal using the UV/H2O2 process, reactive chlorine species (RCS), with 43.8% of contribution percentage, were also found to play a pivotal role in ACM removal using the UV/chlorine process. For instance, dichlorine radical (Cl2•-) showed an acceptable contribution percentage of 32.2% in the degradation of ACM by the UV/chlorine process. The rate of ACM degradation significantly rose to 99.9% and 75.6%, as higher amounts of oxidants were used in the UV/chlorine and UV/H2O2 processes, respectively, within 25 min. The introduction of HCO3- ions and humic acid remarkably decreased the rate of ACM degradation in both techniques used in this study. The presence of NO3- and Cl- ions did not considerably affect the removal rate in the UV/chlorine process. The acute toxicity analysis revealed that a more pronounced reduction in the ACM solution toxicity could be achieved by the UV/H2O2 process compared to the UV/chlorine process, which should be ascribed to the formation of chlorinated products in the UV/chlorine treatment. Eventually, plausible oxidation pathways were proposed for each process.
Collapse
Affiliation(s)
- Farshid Ghanbari
- Department of Environmental Health Engineering, Abadan University of Medical Sciences, Abadan, Iran.
| | - Ali Yaghoot-Nezhad
- Department of Chemical Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, 63187-14331, Iran
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic.
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| | - Jorge Rodríguez-Chueca
- Universidad Politécnica de Madrid (UPM), E.T.S. de Ingenieros Industriales, Departamento de Ingeniería Química Industrial y del Medio Ambiente, c/ de José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Fayyaz Mehdipour
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Serra-Pérez E, Álvarez-Torrellas S, Ismael Águeda V, Larriba M, Ovejero G, García J. Effective removal of naproxen from aqueous solutions by CWAO process using noble metals supported on carbon nanospheres catalysts. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Reduced Graphene Oxide/ZnIn2S4 Nanocomposite Photocatalyst with Enhanced Photocatalytic Performance for the Degradation of Naproxen under Visible Light Irradiation. Catalysts 2020. [DOI: 10.3390/catal10060710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of photocatalysts with visible light response is of great significance to cope with energy crisis and environmental remediation. In this study, a visible light-driven photocatalyst reduced graphene oxide/ZnIn2S4 (rGO/ZIS) was prepared by a facile one-pot hydrothermal method. The photocatalyst was used for the degradation of naproxen under visible light illumination and it exhibited remarkably degradation efficiency (nearly 99% within 60 min). The improved photocatalytic degradation performance can be attributed to the enhancement of light adsorption capacity and effective separation of photoinduced electron–hole pairs. The reactive species quenching experiments and EPR measurements demonstrated that superoxide radical (O2−) and hole (h+) play a dominant role in the photocatalytic degradation reactions. In addition, the degradation intermediates were identified and the degradation pathway was suggested.
Collapse
|
11
|
Liu D, Song K, Xie G, Li L. MBR-UV/Cl 2 system in treating polluted surface water with typical PPCP contamination. Sci Rep 2020; 10:8835. [PMID: 32483265 PMCID: PMC7264135 DOI: 10.1038/s41598-020-65845-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/11/2020] [Indexed: 12/02/2022] Open
Abstract
This study proposed the membrane bioreactor–ultraviolet/chlorine (MBR-UV/Cl2) process for treating polluted surface water with pharmaceutical personal care product (PPCP) contamination. Results showed that MBR-UV/Cl2 effectively removed the organic matters and ammonia at approximately 80% and 95%. MBR-UV/Cl2 was used in the removal of sulfadiazine(SDZ), sulfamethoxazole(SMZ), tetracycline(TC), oxytetracycline(OTC), ciprofloxacin(CIP), ofloxacin(OFX), erythromycin(ERY), roxithromycin(ROX), ibuprofen(IBU) and, naproxen(NAX) at 12.18%, 95.61%, 50.50%, 52.97%, 33.56%, 47.71%, 87.57%, 93.38%, 93.80%, and 71.46% in which their UV/Cl2 contribution was 12.18%, 95.61%, 29.04%, 38.14%, 25.94%, 7.20%, 80.28%, 33.79%, 73.08%, and 23.05%, respectively. The removal of 10 typical PPCPs using UV/Cl2 obtained higher contributions than those of the MBR process, except OTC, ROX, and IBU. The UV/Cl2 process with 3-min hydraulic retention time and chlorine concentration at 3 mg/L effectively removed the trace of PPCPs. MBR-UV/Cl2 has the potential to be developed as an effective technology in treating polluted surface water with PPCP contamination.
Collapse
Affiliation(s)
- Dan Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
12
|
Jung SC, Bang HJ, Lee H, Kim H, Ha HH, Yu YH, Park YK. Degradation behaviors of naproxen by a hybrid TiO 2 photocatalyst system with process components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135216. [PMID: 31806301 DOI: 10.1016/j.scitotenv.2019.135216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/05/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
A hybrid system combining microwave and a microwave discharge electrodeless lamp (MDEL) was proposed to overcome the limitations of conventional TiO2 photocatalysts. The degradation efficiency and mechanism of naproxen were determined using a series of single processes, including conventional TiO2 photocatalyst reactors and a hybrid system that fuses them. Although the degradation efficiency tended to increase after changing the experimental condition of a single process, the optimal conditions existed for these experimental conditions. On the other hand, remarkable synergy was observed in the fused process, whose efficiency was significantly higher than that of the unit process. In particular, the optimal degradation ability was obtained by adding hydrogen peroxide together with microwave irradiation. The seven intermediates in the proposed photocatalytic degradation pathway were generated by the demethylation and hydroxylation by hydroxyl radicals. These results are expected to provide new data on the design of high efficiency photocatalytic systems at low cost.
Collapse
Affiliation(s)
- Sang-Chul Jung
- Department of Environmental Engineering, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Hye-Jin Bang
- Department of Environmental Engineering, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Heon Lee
- Department of Environmental Engineering, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Young Hyun Yu
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
13
|
Visible-light-driven photocatalytic degradation of naproxen by Bi-modified titanate nanobulks: Synthesis, degradation pathway and mechanism. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112108] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Jia X, Jin J, Gao R, Feng T, Huang Y, Zhou Q, Li A. Degradation of benzophenone-4 in a UV/chlorine disinfection process: Mechanism and toxicity evaluation. CHEMOSPHERE 2019; 222:494-502. [PMID: 30721807 DOI: 10.1016/j.chemosphere.2019.01.186] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the degradation of benzophenone-4 (BP-4) in a UV/chlorine disinfection process, with chlorination and UV disinfection as comparisons. With a degradation efficiency of 80% after 10 s, the UV/chlorine process significantly enhanced the degradation of BP-4. However, a rebound of 36% of the initial concentration was observed in the UV/chlorine process ([free active chlorine (FAC)]0:[BP-4]0 = 1:1, pH = 7). The same tendency appeared under the addition of alkalinity, Cl-, and humic acid (HA). This work interpreted this interesting kinetic tendency from the perspective of mechanism. In fact, the transformation between the chlorinated product P1 and BP-4 was reversible under certain conditions. The inhomogeneous charge distribution of the CCl bond in P1 led to the photolytic dechlorination of P1. This transformation caused an increase in BP-4 concentration. In addition, the increase in the UV light power promoted the photodecomposition of P1 under the experimental condition. In addition, this study evaluated the change in absorbable organic halogens (AOX) and three kinds of toxicity changes in the BP-4 solution after chlorination and the UV/chlorine process, including the acute toxicity of luminescent bacteria, endocrine disrupting effect and cytotoxicity. The UV/chlorine process exhibited lower ecotoxicity than chlorination in water treatment.
Collapse
Affiliation(s)
- Xiaorui Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Jing Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Rui Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Tianyu Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Yan Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China.
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| |
Collapse
|
15
|
Cai WW, Peng T, Zhang JN, Hu LX, Yang B, Yang YY, Chen J, Ying GG. Degradation of climbazole by UV/chlorine process: Kinetics, transformation pathway and toxicity evaluation. CHEMOSPHERE 2019; 219:243-249. [PMID: 30543959 DOI: 10.1016/j.chemosphere.2018.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 05/28/2023]
Abstract
Climbazole is an antifungal agent widely used in household personal care products, and it was found persistent in chlorination disinfection process. Here we investigated the kinetics and mechanism of climbazole degradation by UV/chlorine process. The results showed that the UV/chlorine process dramatically enhanced degradation of climbazole when compared to the UV photolysis and chlorination alone. The neutral condition (pH 7) produced the highest reaction rate for the climbazole by UV/chlorine among the various pH conditions. Dissolved organic matter and inorganic ions in natural water showed moderate inhibition effects on the degradation of climbazole in the UV/chlorine process. Hydroxyl radical (OH and chlorine radical (Cl) were found to be the main reactive species in the degradation of climbazole, with the second-order rate constant of 1.24 × 1010 M-1 s-1 and 6.3 × 1010 M-1 s-1, respectively. In addition, the OH and Cl in the UV/chlorine at 100 μM accounted for 82.2% and 7.7% contributions to the removal of climbazole, respectively. Eleven of main transformation products of climbazole were identified in the UV/chlorine process. These oxidation products did not cause extra toxicity than climbazole itself. The findings from this study show that the combination of chlorination with UV photolysis could provide an effective approach for removal of climbazole during conventional disinfection process.
Collapse
Affiliation(s)
- Wen-Wen Cai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Na Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Xin Hu
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Bin Yang
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Yuan-Yuan Yang
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Jun Chen
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Guang-Guo Ying
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Górny D, Guzik U, Hupert-Kocurek K, Wojcieszyńska D. Naproxen ecotoxicity and biodegradation by Bacillus thuringiensis B1(2015b) strain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:505-512. [PMID: 30368144 DOI: 10.1016/j.ecoenv.2018.10.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 05/09/2023]
Abstract
High level of naproxen consumption leads to the appearance of this drug in the environment but its possible effects on non-target organisms together with its biodegradation are not well studied. The aim of this work was to evaluate naproxen ecotoxicity by using the Microbial Assay for Risk Assessment. Moreover, Bacillus thuringiensis B1(2015b) was tested for both ecotoxicity and the ability of this strain to degrade naproxen in cometabolic conditions. The results indicate that the mean value of microbial toxic concentration estimated by MARA test amounts to 1.66 g/L whereas EC50 of naproxen for B1(2015b) strain was 4.69 g/L. At toxic concentration, Bacillus thuringiensis B1(2015b) showed 16:0 iso 3OH fatty acid presence and an increase in the ratio of total saturated to unsaturated fatty acids. High resistance of the examined strain to naproxen correlated with its ability to degrade this drug in cometabolic conditions. The results of bacterial reverse mutation assay (Ames test) revealed that naproxen at concentrations above 1 g/L showed genotoxic effect but the response was not dose-dependent. Maximal specific naproxen removal rate was observed at pH 6.5 and 30 °C, and in the presence of 0.5 g/L glucose as a growth substrate. Kinetic analysis allowed estimation of the half saturation constant (Ks) and the maximum specific naproxen removal rate (qmax) as 6.86 mg/L and 1.26 mg/L day, respectively. These results indicate that Bacillus thuringiensis B1(2015b) has a high ability to degrade naproxen and is a potential tool for bioremediation.
Collapse
Affiliation(s)
- Dorota Górny
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Katarzyna Hupert-Kocurek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
17
|
Fan G, Zhan J, Luo J, Zhang J, Chen Z, You Y. Photocatalytic degradation of naproxen by a H2O2-modified titanate nanomaterial under visible light irradiation. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00965e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A H2O2-modified titanate nanomaterial was synthesized to improve catalytic activity. The influencing factors, intermediate product transformation pathways and degradation mechanism of the photodegradation process of NPX by the HTNM were studied.
Collapse
Affiliation(s)
- Gongduan Fan
- College of Civil Engineering
- Fuzhou University
- China
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
| | - Jiajun Zhan
- College of Civil Engineering
- Fuzhou University
- China
| | - Jing Luo
- College of Civil Engineering
- Fuzhou University
- China
| | - Jin Zhang
- Institute of Groundwater and Earth Sciences
- Jinan University
- 510632 Guangzhou
- China
| | - Zhong Chen
- College of Civil Engineering
- Fuzhou University
- China
| | - Yifan You
- College of Civil Engineering
- Fuzhou University
- China
| |
Collapse
|
18
|
Zhang X, Liu Z, Kong Q, Liu G, Lv W, Li F, Lin X. Aquatic photodegradation of clofibric acid under simulated sunlight irradiation: kinetics and mechanism analysis. RSC Adv 2018; 8:27796-27804. [PMID: 35542726 PMCID: PMC9083450 DOI: 10.1039/c8ra03140a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/07/2018] [Indexed: 11/21/2022] Open
Abstract
Clofibric acid is one of the most frequently detected pharmaceuticals in various aquatic environments.
Collapse
Affiliation(s)
- Xiangdan Zhang
- School of Environmental Science and Engineering
- Guangdong University of Technology
- Guangzhou Higher Education Mega Center
- Guangzhou 510006
- China
| | - Zongchao Liu
- School of Environmental Science and Engineering
- Guangdong University of Technology
- Guangzhou Higher Education Mega Center
- Guangzhou 510006
- China
| | - Qingqing Kong
- School of Environmental Science and Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Guoguang Liu
- School of Environmental Science and Engineering
- Guangdong University of Technology
- Guangzhou Higher Education Mega Center
- Guangzhou 510006
- China
| | - Wenying Lv
- School of Environmental Science and Engineering
- Guangdong University of Technology
- Guangzhou Higher Education Mega Center
- Guangzhou 510006
- China
| | - Fuhua Li
- School of Environmental Science and Engineering
- Guangdong University of Technology
- Guangzhou Higher Education Mega Center
- Guangzhou 510006
- China
| | - Xiaoxuan Lin
- School of Environmental Science and Engineering
- Guangdong University of Technology
- Guangzhou Higher Education Mega Center
- Guangzhou 510006
- China
| |
Collapse
|