1
|
Yadav A, Dogra P, Sagar P, Srivastava M, Srivastava A, Kumar R, Srivastava SK. A contemporary overview on quantum dots-based fluorescent biosensors: Exploring synthesis techniques, sensing mechanism and applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:126002. [PMID: 40068316 DOI: 10.1016/j.saa.2025.126002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/24/2025]
Abstract
In the epoch of bioinformatics, pivotal biomedical scrutiny and clinical diagnosis hinge upon the unfolding of highly efficacious biosensors for intricate and targeted identification of specific biomolecules. In pursuit of developing robust biosensors endowed with superior sensitivity, precise selectivity, rapid performance, and operational simplicity, semiconductor QDs have been acknowledged as pivotal and advantageous entities. In this review, we present a comprehensive analysis of the latest unfolding within the domain of QDs used in fluorescent biosensors for the detection of diverse biomolecular entities, encompassing proteins, nucleic acids, and a range of small molecules, with an emphasis on the synthesis methodologies of QDs employed and mechanism behind sensing. Additionally, this review delves into several pivotal facets of QD-based fluorescent biosensors in detail, such as surface functionalization methodologies aimed at enhancing biocompatibility and improving target specificity. The challenges and future perspectives of QD-based fluorescent biosensors are also considered, emphasizing the necessity of ongoing multidisciplinary research to realize their full potential in enhancing personalized medicine and biomedical diagnostics.
Collapse
Affiliation(s)
- Anushka Yadav
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Priyanka Dogra
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pinky Sagar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India; Physics-Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221005, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur 222001, India
| | - Rajneesh Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Zhou Z, Liu T, Ouyang X, Tang J, Fan X, Liao Y, Zhu X, Zhang Z, Tang L. Highly Selective and Instant Ratio Fluorescence-Scattering Sensor for Phosphate Detection in a Water Environment by a Stable Eu 3+/Y 3+-Modified Nitrogen-Doped Carbon Quantum Dot. ACS Sens 2025; 10:2861-2871. [PMID: 40117134 DOI: 10.1021/acssensors.4c03627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Developing an accurate sensor for the detection of phosphate ions (Pi, a crucial indicator of water quality) in water environments is of great significance. Fluorescence-scattering ratiometric probes with great promise to achieve sensitive and selective detection are still hindered by the poor solubility and stability and complex construction of fluorescence composites. In this paper, a simple ratio fluorescence-scattering sensor based on Eu3+- and Y3+-modified nitrogen-doped carbon quantum dots (NCQDs) was developed for Pi rapid detection. It is found that Eu3+ can specifically recognize Pi and form ternary ion chelates with Pi and NCQDs, resulting in decreased fluorescence signals of NCQDs at 420 nm and increased second-order scattering (SOS) signals at 640 nm. Y3+ as the sensitizer of Eu3+ promotes the aggregation of NCQDs, thereby enhancing the sensitivity of the sensor. The ratio fluorescence-scattering probe based on NCQDs-Eu3+-Y3+ shows a high sensitivity, a low detection limit of 0.08 μM, a rapid response time of within 2 s, and a wide detection range from 1 to 150 μM. Moreover, the proposed probe showed excellent selectivity and stability, and the relative standard deviation (RSD) of seven cycles of Pi detection is only 0.559%. Furthermore, the accurate detection of Pi (RSD < 5%) in real environmental water samples confirmed the practicality of the proposed sensor. This ratio fluorescence-scattering sensor provides a novel method for the detection of Pi with a simple preparation process and excellent detection performance, having great application potential for the fast on-site detection of Pi.
Collapse
Affiliation(s)
- Zheping Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Tianhao Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xilian Ouyang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xinya Fan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yibo Liao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xu Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Ziling Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
3
|
Dai Y, Hu P, Chu T, Niu M, Shi H, Li H, Wang Z, Guo Y. Confinement of carbon dots into carboxymethyl cellulose matrice to prepare solid-state fluorescent films and couple with Eu-MOF toward white light-emitting diodes. Int J Biol Macromol 2025; 296:139682. [PMID: 39793810 DOI: 10.1016/j.ijbiomac.2025.139682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
As a novel fluorescent carbon nanomaterial, carbon dots are restricted by their poor fluorescence in the solid state, although they exhibit favorable photoluminescence in solution. N-doped carbon dots (N-CDs) and solid-state fluorescence films were prepared using green and renewable cellulose-derived materials, respectively. The hydrogen bonding network of carboxymethyl cellulose (CMC) inhibits the self-aggregation behavior of N-CDs, which leads to solid-state fluorescence. The N-CDs was initially obtained with CMC as the carbon source, which showed excellent blue fluorescence. Subsequently, the white-emitting films (N-CDs@Eu-MOF/CMC) were successfully constructed by combining the blue fluorescent N-CDs with the red fluorescence of the europium metal-organic framework. The prepared films showed stable luminescence within 30 days and in the heat environment at 120 °C for 3 h. After covering the N-CDs@Eu-MOF/CMC films on the UV-LED chip with ultraviolet emissive at 365 nm, the white light-emitting diodes were obtained, which exhibited excellent color characteristics with the color coordinates, a correlated color temperature, and a color rendering index of (0.31, 0.32), 6580 K, and 92, respectively. The strategy proposed in this work will provide ideas for generating optical luminescent films from biomass and provide guidance for solid-state fluorescence biomass materials.
Collapse
Affiliation(s)
- Yunchuan Dai
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Pengyu Hu
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Tingting Chu
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Meihong Niu
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haiqiang Shi
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haiming Li
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zhiwei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yanzhu Guo
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Jeeva D, Velu KS, Ahmad N, Roy P, Mohandoss S, Bhuvanalogini G, Kim SC. Facile Synthesis of N-Doped CDs from Ridge Gourd Seeds for the Sensitive Detection of Fe 3+ Ions. J Fluoresc 2025:10.1007/s10895-025-04176-3. [PMID: 39998786 DOI: 10.1007/s10895-025-04176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
This study reports the synthesis of nitrogen-doped carbon dots (N-CDs) from ridge gourd seeds via a hydrothermal process. The optical and physicochemical properties of the synthesized N-CDs were characterized using various techniques, including UV-Visible, fluorescence (FL), FT-IR, X-ray diffractometer (XRD), TEM, and XPS. The resulting N-CDs had an average size of 4.72 ± 0.2 nm, high monodispersity, and a quantum yield of 11.8%, which is related to efficient light emission. These N-CDs were highly dispersible in water and exhibited excitation-independent FL at varying excitation wavelengths. They showed excellent stability under diverse conditions, such as variations in pH, high ionic strengths, and prolonged light exposure, which enhances their use in potential applications. As FL probes, the N-CDs demonstrated the selective and sensitive detection of Fe3+ ions, with a significant FL quenching response. A strong linear correlation (R2 = 0.9899) was observed for Fe3+ concentrations in the range of 0-20 µM, with a detection limit of 67.3 nM. Notably, the FL quenching could be reversed by adding EDTA, which is a chelating agent for Fe3+, indicating the potential for reversible sensing applications. The biocompatibility of the N-CDs was assessed via an MTT assay on HCT 116 cells, which revealed low cytotoxicity (94.3 ± 1.8% viability at 75 µg/mL). These findings suggest that N-CDs are safe for in biological applications and hold great promise for use in biosensing, bioimaging, and environmental monitoring.
Collapse
Affiliation(s)
- Diraviam Jeeva
- Department of Industrial Chemistry, Alagappa University, Karaikudi, Tamilnadu, 630003, India
- Department of Biochemistry, Caussanel College of Arts and Science, Affiliated to Alagappa University, Muthupettai, Ramanathapuram, Tamilnadu, 623523, India
| | - Kuppu Sakthi Velu
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Prasanta Roy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
- Centre of Molecular Medicine and Diagnostics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamil Nadu, India.
| | | | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
5
|
Joseph SR, Janardhanan JC, Radhakrishnan S, John H, Mythili U. Cellulose as Source and Matrix for Fluorescent Chemo-Sensors. J Fluoresc 2025:10.1007/s10895-025-04200-6. [PMID: 39992320 DOI: 10.1007/s10895-025-04200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
The review explores the pivotal role of cellulose in enhancing the sensing capabilities of fluorescent chemo-sensors, particularly carbon dots (CDs) and delineates cellulose's multifaceted contributions as both a precursor and stabilizing matrix, highlighting its structural adaptability across varied forms-hydrogels, aerogels, films-to bolster the stability, sensitivity, and selectivity of these sensors. Cellulose's structural versatility enables advanced functionalization, fostering a robust platform that amplifies the stability and functional efficiency of CDs across diverse sensing paradigms. The investigation encompasses utilization of cellulose as precursor for CDs, cellulose nanocrystals and matrix for the integration of CDs, elucidating their collective impact on advancing fluorescence-based detection technologies.
Collapse
Affiliation(s)
- Sicily Rilu Joseph
- Department of Chemistry and Centre for Research, St. Teresa's College (Autonomous), Kochi, Kerala, 682011, India
| | - Jith C Janardhanan
- Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - Sithara Radhakrishnan
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Ernakulam, Kerala, 682022, India
| | - Honey John
- Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Ernakulam, Kerala, 682022, India
| | - Ushamani Mythili
- Department of Chemistry and Centre for Research, St. Teresa's College (Autonomous), Kochi, Kerala, 682011, India.
| |
Collapse
|
6
|
Hariram M, Pal PK, Chandran AS, Nair MR, Kumar M, Ganesha MK, Singh AK, Dasgupta B, Goel S, Roy T, Menezes PW, Sarkar D. Insights into Interlayer Dislocation Augmented Zinc-Ion Storage Kinetics in MoS 2 Nanosheets for Rocking-Chair Zinc-Ion Batteries with Ultralong Cycle-Life. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410408. [PMID: 39780694 DOI: 10.1002/smll.202410408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Increasing attention to sustainability and cost-effectiveness in energy storage sector has catalyzed the rise of rechargeable Zinc-ion batteries (ZIBs). However, finding replacement for limited cycle-life Zn-anode is a major challenge. Molybdenum disulfide (MoS2), an insertion-type 2D layered material, has shown promising characteristics as a ZIB anode. Nevertheless, its high Zn-ion diffusion barrier because of limited interlayer spacing substantiates the need for interlayer modifications. Here, N-doped carbon quantum dots (N-CQDs) are used to modify the interlayers of MoS2, resulting in increased interlayer spacing (0.8 nm) and rich interlayer dislocations. MoS2@N-CQDs attain a high specific capacity (258 mAh g-1 at 0.1 A g-1), good cycle life (94.5% after 2000 cycles), and an ultrahigh diffusion coefficient (10-6 to 10-8 cm2 s-1), much better than pristine MoS2. Ex situ Raman studies at charge/discharge states reveal that the N-CQDs-induced interlayer expansion and dislocations can reversibly accommodate the volume strain created by Zn-ion diffusion within MoS2 layers. Atomistic insight into the interlayer dislocation-induced Zn-ion storage of MoS2 is unveiled by molecular dynamic simulations. Finally, rocking-chair ZIB with MoS2@N-CQDs anode and a ZnxMnO2 cathode is realized, which achieved a maximum energy density of 120.3 Wh kg-1 and excellent cyclic stability with 97% retention after 15 000 cycles.
Collapse
Affiliation(s)
- Muruganandham Hariram
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Pankaj K Pal
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Anusree S Chandran
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani (BITS Pilani), Rajasthan, 333031, India
| | - Manikantan R Nair
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani (BITS Pilani), Rajasthan, 333031, India
| | - Manoj Kumar
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | | | - Ashutosh K Singh
- Centre for Nano and Soft Matter Sciences, Bengaluru, 562162, India
| | - Basundhara Dasgupta
- Department of Chemistry, Technical University of Berlin, Straße des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany
| | - Saurav Goel
- School of Engineering, London South Bank University, London, SE1 0 AA, UK
- University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Tribeni Roy
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani (BITS Pilani), Rajasthan, 333031, India
| | - Prashanth W Menezes
- Department of Chemistry, Technical University of Berlin, Straße des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany
- Material Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Centre for Future Materials (CFM), University of Southern Queensland, Queensland, QLD, 4350, Australia
| | - Debasish Sarkar
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| |
Collapse
|
7
|
Mondal S, Sarkar O, Mandal SM, Chattopadhyay A, Sahoo P. Monitoring CO as a plant signaling molecule under heavy metal stress using carbon nanodots. Dalton Trans 2025. [PMID: 39829111 DOI: 10.1039/d4dt03101f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Carbon monoxide (CO) is widely recognized as a significant environmental pollutant and is associated with numerous instances of accidental poisoning in humans. However, it also serves a pivotal role as a signaling molecule in plants, exhibiting functions analogous to those of other gaseous signaling molecules, including nitric oxide (NO) and hydrogen sulfide (H2S). In plant physiology, CO is synthesized as an integral component of the defense mechanism against oxidative damage, particularly under abiotic stress conditions such as drought, salinity, and exposure to heavy metals. Current research methodologies have demonstrated a lack of effective tools for monitoring CO dynamics in plants during stress conditions, particularly in relation to heavy metal accumulation across various developmental stages. Therefore, development of a sensor capable of detecting CO in living plant tissues is essential, as it would enable a deeper understanding of its biological functions, underlying mechanisms, and metabolic pathways. In response to this gap, the present study introduces a novel technique for monitoring CO production and activity in plants using nitrogen-doped carbon quantum dots (N-CQDs). These nanodots exhibited exceptional biocompatibility, low toxicity, and environmentally sustainable characteristics, rendering them an optimal tool for CO detection via fluorescence quenching mechanism, with a detection limit (LOD) of 0.102 μM. This innovative nanomarker facilitated the detection of trace quantities of CO within plant cells, providing new insights into plant stress responses to heavy metals such as Cu, Zn, Pb, Ru, Cr, Cd, and Hg, as well as the processes involved in seed germination. Additionally, confocal microscopy validated the interaction between CO and N-CQDs, yielding visual evidence of CO binding within plant cells, further enhancing the understanding of CO's role in plant biology.
Collapse
Affiliation(s)
- Shrodha Mondal
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| | - Olivia Sarkar
- Department of Zoology, Visva-Bharati University, Santiniketan-731235, India
| | - Santi M Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | | | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| |
Collapse
|
8
|
Tian R, Zhan S, He G, Wang Z, Zhang Z, Wang X. Research and application discussion on new technology for detecting cadmium ions based on a near-red light carbon dot fluorescence quenching method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:611-620. [PMID: 39676588 DOI: 10.1039/d4ay01760a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cadmium ions are considered one of the most dangerous heavy metal pollutants. The human body does not require cadmium for growth and development, yet continuous intake of cadmium ions due to environmental pollution can lead to their accumulation in the body. This accumulation can result in damage to the urinary system and, in severe cases, pose life-threatening risks. The current conventional methods for analyzing heavy metals in the environment primarily include inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), and inductively coupled plasma atomic emission spectrometry (ICP-AES). These methods are known for their drawbacks such as complex testing procedures, as well as expensive instrumentation and equipment. In this study, a novel technique for detecting cadmium ions using the near-red light carbon spot fluorescence burst method was developed. The near-infrared carbon dots (NIR-CDs) exhibited vibrant deep red fluorescence ranging from 625 to 710 nm, with a prominent peak at 685 nm. At a pH of 7 and a concentration of 0.1805 g L-1, the linear detection range for Cd2+ was determined to be 0.15-0.75 μM. The CDs demonstrated selectivity for Cd2+ detection, boasting an impressive detection limit of 0.397 nM. Mechanistic studies indicated that the interaction between red carbon dots and cadmium ions involved dynamic bursting of the ions. The practical application of the near-red light carbon spot fluorescence burst method for detecting cadmium ions could be further explored through the establishment of a Cd2+ recovery detection system.
Collapse
Affiliation(s)
- Runfeng Tian
- Colorado State University, 1001 Amy Van Dyken Way, Fort Collins, CO 80523, USA
| | - Shifang Zhan
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Guanlong He
- Colorado State University, 1001 Amy Van Dyken Way, Fort Collins, CO 80523, USA
| | - Zixuan Wang
- Colorado State University, 1001 Amy Van Dyken Way, Fort Collins, CO 80523, USA
| | - Zheng Zhang
- Colorado State University, 1001 Amy Van Dyken Way, Fort Collins, CO 80523, USA
| | - Xiaoyan Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
9
|
Dutta A, Begum W, Sarkar S, Dam S, Mandal U. Highly Luminescent Nitrogen Doped Carbon Quantum Dots for Mercury Ion Sensing with Antibacterial Activity. J Fluoresc 2025:10.1007/s10895-024-04119-4. [PMID: 39798020 DOI: 10.1007/s10895-024-04119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy. Measured quantum yield of the NCQDs was ~ 50.5%. TEM image represented that the NCQDs were quasi-spherical shaped with average size of 3.5 nm. This nitrogen doped carbon quantum dots have been used to study their bactericidal activity against representative Gram-negative (E. coli and P. aeruginosa) and Gram-positive (B. subtilis and S. aureus) bacterial strains using the agar well diffusion method. Results demonstrated that synthesized Nitrogen doped carbon quantum dots have been found to exhibit maximum antibacterial activity against S. aureus with good inhibitory effect with inhibition range from 2 mg mL- 1 to 3 mg mL- 1. These Nitrogen doped carbon quantum dots have also been used as fluorescence probe for sensitive and selective detection of mercury. The emission intensity of carbon quantum dots has drastically quenched by Hg2+ ion. Observed limit of detection (LOD) was found to be 4.98 nM, much below than the approved limit prescribed by Environmental Protection Agency. Hence the synthesized NCQDs play an important role in monitoring the antibacterial effect as well as water quality.
Collapse
Affiliation(s)
- Ankita Dutta
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, India
| | - Wasefa Begum
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, India
| | - Subhasish Sarkar
- Department of Microbiology, The University of Burdwan, Golapbag, Burdwan, 713104, India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan, Golapbag, Burdwan, 713104, India
| | - Ujjwal Mandal
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, India.
| |
Collapse
|
10
|
Singh GP, Jaiswal A, Joshi S, Soni H, Saxena S, Shukla S. Fabrication of broadband-emissive micro/nanostructures using two-photon lithography. NANOTECHNOLOGY 2024; 36:095301. [PMID: 39637442 DOI: 10.1088/1361-6528/ad9aae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
The development of broadband emissive micro/nanoscale structures has enabled unprecedented opportunities to innovate multifunctional devices with applications in lighting, display, sensing, biomedical, photovoltaics, and optical communication. Realization of these micro/nanostructures require multi-step processing, and depends on sophisticated, complex, time-consuming, expensive, and conventional nanofabrication techniques such as mask-based photolithography, electron beam lithography, reactive ion etching. Precise control overz-axis features with a subwavelength resolution for the fabrication of 3D features is a challenge using these methods. Thus, the traditional methods often fall short of meeting these requirements simultaneously. Fabrication of emissive structures demand techniques that offer material compatibility, high resolution, and structural complexity. Here, we report single-step fabrication of 1D, 2D, and 3D broadband emissive micro/nanostructures using two-photon lithography. The broadband emissive resin used for fabricating these structures is made by combining synthesized functionalized carbon quantum dots with a commercially available acrylate-based resin. The resulting structures demonstrate excellent broadband emissive properties in the visible range under UV-Vis excitation. We have observed consistent emission across the fabricated structures along with good thermal and optical stability. Furthermore, we can tune the emission properties of the micro/nanostructures by modifying the functionalization/doping of the quantum dots. These micro/nanostructures have the potential to be used as fundamental components in photonics, particularly in the fields of biophotonics, sensing, and optoelectronics, and could drive new innovations in these areas.
Collapse
Affiliation(s)
- Gaurav Pratap Singh
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, MH, India
| | - Arun Jaiswal
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, MH, India
| | - Sarika Joshi
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, MH, India
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400076, MH, India
| | - Himanshu Soni
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, MH, India
| | - Sumit Saxena
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, MH, India
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400076, MH, India
- Water Innovation Center: Technology Research & Education, Indian Institute of Technology Bombay, Mumbai 400076, MH, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076, MH, India
| | - Shobha Shukla
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, MH, India
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400076, MH, India
- Water Innovation Center: Technology Research & Education, Indian Institute of Technology Bombay, Mumbai 400076, MH, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076, MH, India
| |
Collapse
|
11
|
Rani S, Das RK, Suryawanshi T, Jaiswal A, Majumder A, Cheng W, Saxena S, Shukla S. Directed Cell Growth of C2C12 Cells on ECM Free Bioprinted Nano/Micro Scaffolds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405928. [PMID: 39679760 DOI: 10.1002/smll.202405928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/14/2024] [Indexed: 12/17/2024]
Abstract
Skeletal muscle cell growth impairment can result in severe health issues, such as reduced mobility, metabolic problems, and cardiovascular issues, which can significantly impact an individual's overall health and lifestyle. To address this issue, it is essential to adopt a multi-faceted approach. Conventional 2D cell culture methods fail to replicate the critical features of in vivo micro/nanoarchitecture, which is crucial for the growth of skeletal muscle cells. In this study, the directed growth of mouse skeletal myoblasts (C2C12) cells on ECM-free biocompatible scaffolds is demonstrated and fabricated using two-photon lithography (TPL). These scaffolds are 2D and 3D and have nano/micro-features derived from chitosan-based carbon quantum dots (Ch-CQDs). Ch-CQDs act as two-photon initiators for TPL and also provide the scaffolds with adequate mechanical strength and specific binding sites. These scaffolds are biocompatible and can support cellular adhesion and growth without the need for ECM coating. The nano/micro scaffolds mimic the in vivo cellular microenvironment, enabling directed cell growth on ECM-free surfaces. The fabricated scaffolds have tunable mechanical strength ranging from 0.09 to 0.75 GPa. By using Ch-CQDs, scaffolds are created that promote cell growth and alignment, which is crucial for skeletal muscle cell growth.
Collapse
Affiliation(s)
- Sweta Rani
- IITB-Monash Research Academy, Mumbai, Maharashtra, 400076, India
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Rahul Kumar Das
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Tejas Suryawanshi
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
- Center for Research in Nano Technology and Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Arun Jaiswal
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Wenlong Cheng
- IITB-Monash Research Academy, Mumbai, Maharashtra, 400076, India
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Sumit Saxena
- IITB-Monash Research Academy, Mumbai, Maharashtra, 400076, India
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
- Center for Research in Nano Technology and Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Shobha Shukla
- IITB-Monash Research Academy, Mumbai, Maharashtra, 400076, India
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
- Center for Research in Nano Technology and Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| |
Collapse
|
12
|
Rahmatpour A, Hesarsorkh AHA. XG and CS-based self-assembled nanocomposite hydrogel embedding fluorescent NCQDs capable of detection and adsorptive removal of the polar MO and Cr(VI) pollutants. Carbohydr Polym 2024; 346:122588. [PMID: 39245483 DOI: 10.1016/j.carbpol.2024.122588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
Aiming at dealing with organic and inorganic pollutants dissolved in aquatic environments, we introduce self-assembled fluorescent nanocomposite hydrogel based on a binary polysaccharide network (xanthan gum/chitosan) embedding nitrogen-doped carbon quantum dots not only as a hybrid solid optical sensor for detecting Cr(VI) ions but also to remove anionically charged contaminants Cr(VI) and methyl orange (MO) by acting as an adsorbent. This fluorescent nanocomposite achieved a detection limit of 0.29 μM when used to detect Cr(VI) and demonstrated a fluorescence quantum yield of 59.7 %. Several factors contributed to the effectiveness of the adsorption of Cr(VI) and MO in batch studies, including the solution pH, dosage of the adsorbent, temperature, initial contamination level, and contact time. Experimental results showed 456 mg/g maximum adsorption capacity at pH 4 for MO compared to 291 mg/g at pH 2 for Cr(VI) at 25 °C. In addition to conforming to Langmuir's model, Cr(VI) and MO's adsorption kinetics closely matched pseudo-second-order. Using thermodynamic parameters, the results indicate that Cr(VI) and MO adsorb spontaneously and exothermically. Recycling spent adsorbent for Cr(VI) and MO using NaOH at 0.1 M was possible; the respective adsorption efficiency remained at approximately 82.2 % and 83 % after the fifth regeneration cycle.
Collapse
Affiliation(s)
- Ali Rahmatpour
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, P.O. Box: 1983969411, Tehran, Iran.
| | - Amir Hossein Alizadeh Hesarsorkh
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, P.O. Box: 1983969411, Tehran, Iran
| |
Collapse
|
13
|
Bansod BS, Sharma P. Developing a selective and sensitive Fluoride sensing scheme by fluorimetric and chemometric optimisations using highly fluorescent boron-doped Carbon dots with a 'turn off-on' mechanism. J Fluoresc 2024:10.1007/s10895-024-04038-4. [PMID: 39671153 DOI: 10.1007/s10895-024-04038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024]
Abstract
Fluoride detection in water is a critical issue that has received extensive attention recently. Researchers have focused on developing practical and reliable methods for detecting Fluoride in water, and fluorescent carbon dots have emerged as a promising solution. These dots are easy to synthesise, highly fluorescent and stable, making them an ideal choice for this application. In this context, highly fluorescent boron-doped Carbon Dots (BCDs) were synthesised using Urea, Citric acid, and Boric acid via microwave synthesis. Characterisation of BCDSs was performed (Photoluminescence, HR-TEM, DLS, and FTIR), showing excellent optical properties (quantum yield = 55.4%), size (< 5 nm). The BCDSs solution was used as a fluoride sensor probe using the 'turn-off-on' property. Ferric (Fe3+) solution was used to inhibit (turn-off) the fluorescence of the BCDs by forming BCDs-Fe3+ complex in the solution. The addition of a fluoride sample recovers the fluorescence (turn-on) by removing Fe3+ from the complex to form [FeF6]3-. Materials, BCDs, quencher volume and reaction time were optimised to develop a reliable fluoride sensing scheme, which included BCDs dilution, controlled turn-off by adjusting the volume of the quencher, and time dependence studies (2-15 s). A chemometric model was generated through PLS analysis to study the influence of each optimisation on the sensing performance. The result is a highly reproducible and reliable method for detecting Fluoride in water, obtaining high linearity (R2 = 0.98), low error (RMSE = 0.7) and high sensitivity (LOD and LOQ of 0.69 and 2.10 ppm, respectively) for a concentration range of 0-50 ppm. Real samples were also analysed to get an overview of sensing performance. Overall, fluorescent BCDs-based and chemometric-assisted sensor optimisation schemes have shown great promise for F- detection in water. This breakthrough could open new pathways for optical-based sensor optimisations for other hazardous ions as well, which in turn have far-reaching implications for community's worldwide, helping to ensure safe and healthy drinking water for everyone.
Collapse
Affiliation(s)
- Babankumar S Bansod
- CSIR-Central Scientific Instrument Organization (CSIO), Chandigarh, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR- CSIO, Chandigarh, India.
| | - Priyanshu Sharma
- CSIR-Central Scientific Instrument Organization (CSIO), Chandigarh, India
| |
Collapse
|
14
|
Rafiq K, Sadia I, Abid MZ, Waleed MZ, Rauf A, Hussain E. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomater Sci Eng 2024; 10:7268-7313. [PMID: 39499739 DOI: 10.1021/acsbiomaterials.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Size-dependent optical and electronic properties are unique characteristics of quantum dots (QDs). A significant advantage is the quantum confinement effect that allows their precise tuning to achieve required characteristics and behavior for the targeted applications. Regarding the aforementioned factors, QDs-based sensors have exhibited dramatic potential for the diverse and advanced applications. For example, QDs-based devices have been potentially utilized for bioimaging, drug delivery, cancer therapy, and environmental remediation. In recent years, use of QDs-based electrochemical sensors have been further extended in other areas like gas sensing, metal ion detection, monitoring of organic pollutants, and detection of radioactive isotopes. Objective of this study is to rationalize the QDs-based electrochemical sensors for state-of-the-art applications. This review article comprehensively illustrates the importance of aforementioned devices along with sources from which QDs devices have been formulated and fabricated. Other distinct features of QDs devices are associated with their extremely high active surfaces, inherent ability of reproducibility, sensitivity, and selectivity for the targeted analyte detection. In this review, major categories of QD materials along with justification of their key roles in electrochemical devices have been demonstrated and discussed. All categories have been evaluated with special emphasis on the advantages and drawbacks/challenges associated with QD materials. However, in the interests of readers and researchers, recent improvements also have been included and discussed. On the evaluation, it has been concluded that despite significant challenges, QDs-based electrochemical sensors exhibit excellent performances for state-of-the-art and targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iqra Sadia
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zaryab Waleed
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
15
|
Kuchaiyaphum P, Amornsakchai T, Chotichayapong C, Saengsuwan N, Yordsri V, Thanachayanont C, Batpo P, Sotawong P. Pineapple stem starch-based films incorporated with pineapple leaf carbon dots as functional filler for active food packaging applications. Int J Biol Macromol 2024; 282:137224. [PMID: 39505188 DOI: 10.1016/j.ijbiomac.2024.137224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Pineapple leaf waste, a byproduct of agricultural processes, was used as a novel raw material to synthesize carbon dots (CDs) through a simple hydrothermal method. The CDs were subsequently incorporated into pineapple stem starch (PSS)-based active food packaging films. The characterization of the CDs and PSS-CDs films was conducted using various techniques, including UV-light spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. The results revealed that the CDs measured 2.36 ± 0.33 nm and exhibited antioxidant and antibacterial activities. The addition of the CDs led to notable enhancements in both mechanical strength and UV-barrier properties. Thus, PSS-CDs packaging film was successfully prepared, with the incorporation of CDs enhancing the antioxidant and antimicrobial properties of the film, thereby extending the shelf-life of fresh pork.
Collapse
Affiliation(s)
- Pusita Kuchaiyaphum
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand.
| | - Taweechai Amornsakchai
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| | - Chatrachatchaya Chotichayapong
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Nikorn Saengsuwan
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Visittapong Yordsri
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chanchana Thanachayanont
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Phitchaya Batpo
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Phatcharaporn Sotawong
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
16
|
Yu W, Yong Y, Liu Y, Liu Z, Bian H, Dong R. High Luminescent Carbon Dots Derived from Fermented Beverages for Sensitive Sensing of Tartrazine in Foods. J Fluoresc 2024:10.1007/s10895-024-03944-x. [PMID: 39320635 DOI: 10.1007/s10895-024-03944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Highly luminescent carbon dots (CDs) derived from fermented beverages-kvass (K-CDs) were synthesized through a one-step hydrothermal method with ethylenediamine (EDA) as a surface passivation reagent. Purified K-CDs with a fluorescent quantum yield of 35.1% were obtained after a dialysis process. The K-CDs were characterized by TEM, FT-IR, XPS, fluorescence and UV-vis spectroscopy. The results indicated that K-CDs possess typical excitation wavelength-dependent blue fluorescence emission, and the strongest excitation and emission wavelengths are 350 nm and 440 nm, respectively. The great spectral overlap between the emission peak (440 nm) of K-CDs and the absorption peak (430 nm) of tartrazine (TAR) leads to an effective fluorescence quenching phenomenon by TAR through inner filter effect (IFE) and the calculated (lg(I0/I)) showed a linear response to TAR concentration in the range of 0.1-70 µM. The detection limit of the developed method is 23 nM for TAR, and the relative standard deviation (RSD) is 3.9% (c = 10 µM, n = 7). The fluorescent sensor for TAR based on K-CDs through the IFE mechanism possesses the characteristics of rapid, sensitive, and high selectivity. It has been successfully applied to detect of trace TAR in foods.
Collapse
Affiliation(s)
- Wei Yu
- Dalian Inspection, Examination and Certification Technical Service Center, Dalian, 116021, People's Republic of China.
| | - Yanhua Yong
- Dalian Inspection, Examination and Certification Technical Service Center, Dalian, 116021, People's Republic of China
| | - Yang Liu
- Dalian Inspection, Examination and Certification Technical Service Center, Dalian, 116021, People's Republic of China
| | - Ziyan Liu
- Dalian Inspection, Examination and Certification Technical Service Center, Dalian, 116021, People's Republic of China
| | - Haitao Bian
- Dalian Inspection, Examination and Certification Technical Service Center, Dalian, 116021, People's Republic of China
| | - Ruinan Dong
- Dalian Inspection, Examination and Certification Technical Service Center, Dalian, 116021, People's Republic of China
| |
Collapse
|
17
|
Jia Z, Hu J, Lu P, Wang Y. Carbon quantum dots from carbohydrate-rich residue of birch obtained following lignin-first strategy. BIORESOURCE TECHNOLOGY 2024; 408:131206. [PMID: 39097241 DOI: 10.1016/j.biortech.2024.131206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Carbon quantum dots (CQDs) were successfully synthesized from carbohydrate-rich residue of birch obtained following the lignin-first strategy. The optical and physicochemical properties of the CQDs were studied, along with their potential for photocatalytic pollutant degradation. By combining solvothermal and chemical oxidation methods, the product yield of CQDs from carbohydrate-rich residue reached 8.1 wt%. Doping nitrogen enhances the graphitization of CQDs and introduces abundant amino groups to the surface, thereby boosted the quantum yield significantly from 8.9 % to 18.7 %-19.3 %. Nitrogen-doped CQDs exhibited efficient photocatalytic degradation of methylene blue, reaching 37 % within 60 min, with a kinetic degradation rate of 0.00725 min-1. This study demonstrates that carbohydrate-rich residue obtained from lignin-first strategy are ideal precursors for synthesizing CQD with high mass yield and quantum yield by combining solvothermal treatment and chemical oxidation methods, offering a novel approach for the utilization of whole biomass components following the lignin-first strategy.
Collapse
Affiliation(s)
- Ziyu Jia
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jun Hu
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Ping Lu
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yunjun Wang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
18
|
Osman MM, El-Shaheny R, Ibrahim FA. Alfalfa biomass as a green source for the synthesis of N,S-CDs via microwave treatment. Application as a nano sensor for nifuroxazide in formulations and gastric juice. Anal Chim Acta 2024; 1319:342946. [PMID: 39122268 DOI: 10.1016/j.aca.2024.342946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/11/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Researchers have investigated different techniques for synthesis of carbon dots. These techniques include Arc discharge, laser ablation, oxidation, water/solvothermal, and chemical vapor deposition. However, these techniques suffer from some limitations like the utilization of gaseous charged particles, high current, high temperature, potent oxidizing agents, non-environmentally friendly carbon sources, and the generation of uneven particle size. Therefore, there was a significant demand for the adoption of a new technology that combines the environmentally friendly aspects of both bio-based carbon sourcing and synthesis technique. RESULTS Medicago sativa L (alfalfa)-derived N, S-CDs have been successfully synthesized via microwave irradiation. The N,S-CDs exhibit strong fluorescence (λex/em of 320/420 nm) with fluorescence quantum yield of 2.2 % and high-water solubility. The produced N,S-CDs were characterized using TEM, EDX, Zeta potential analysis, IR, UV-Visible, and fluorescence spectroscopy. The average diameter of the produced N, S-CDs was 4.01 ± 1.2 nm, and the Zeta potential was -24.5 ± 6.63 mv. The stability of the produced nano sensors was also confirmed over wide pH range, long time, and in presence of different ions. The synthesized N, S-CDs were employed to quantify the antibacterial drug, nifuroxazide (NFZ), by fluorescence quenching via inner filter effect mechanism. The method was linear with NFZ concentration ranging from 1.0 to 30.0 μM. LOD and LOQ were 0.16 and 0.49 μM, respectively. The method was applied to quantify NFZ in simulated gastric juice (SGJ) with % recovery 99.59 ± 1.4 in addition to pharmaceutical dosage forms with % recovery 98.75 ± 0.61 for Antinal Capsules® and 100.63 ± 1.54 for Antinal suspension®. The Method validation was performed in compliance with the criteria outlined by ICH. SIGNIFICANCE AND NOVELTY The suggested approach primarily centers on the first-time use of alfalfa, an ecologically sustainable source of dopped-CDs, and a cost-effective synthesis technique via microwave irradiation, which is characterized by low energy consumption, minimized reaction time, and the ability to control the size of the produced CDs. This is in line with the growing global recognition of the implementation of green analytical chemistry principles.
Collapse
Affiliation(s)
- Mohamed M Osman
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Rania El-Shaheny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Fawzia A Ibrahim
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
19
|
Kujur AB, Satnami ML, Chawre Y, Miri P, Sinha A, Nagwanshi R, Karbhal I, Ghosh KK, Pervez S, Deb MK. Inner-filter effect of nitrogen-doped carbon quantum dots-MnO 2 nanotubes for smartphone-integrated dual-mode sensing of glutathione and captopril. RSC Adv 2024; 14:20093-20104. [PMID: 38915329 PMCID: PMC11194709 DOI: 10.1039/d4ra03287j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/15/2024] [Indexed: 06/26/2024] Open
Abstract
Nitrogen-doped carbon quantum dots (N-CQDs) exhibit unique fluorescence properties and are considered one of the best candidates for the development of fluorescence-based sensors for the detection of many analytes. In this work, a smartphone-assisted fluorescent sensor has been developed using N-CQDs and MnO2 nanotubes (MnO2 NTs) for the detection of glutathione (GSH) and captopril (CAP). N-CQDs were facilely synthesized via the solvothermal method, where o-phenylenediamine (o-PD) and urea were used as nitrogen precursors. Likewise, MnO2 NTs were synthesized using the hydrothermal method. Relying on the excellent fluorescence quenching ability of MnO2 NTs, a nanocomposite of N-CQDs and MnO2 NTs is prepared, wherein the fluorescence intensity of N-CQDs was effectively quenched in the presence of MnO2 NTs via the inner-filter effect (IFE). The addition of thiolated compounds (GSH and CAP) helped in the recovery of the fluorescence of N-CQDs by triggering the redox reaction and decomposing the MnO2 NTs. An investigation of fluorescence along with smartphone-based studies by evaluating the gray measurement using Image J software showed a great response towards GSH and CAP providing LODs of 4.70 μM and 5.22 μM (fluorometrically) and 5.76 μM and 2.81 μM (smartphone-based), respectively. The practical applicability of the sensing system has been verified using human blood plasma samples.
Collapse
Affiliation(s)
- Ankita B Kujur
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India
| | - Manmohan L Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India
| | - Yogyata Chawre
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India
| | - Pinki Miri
- Department of Chemistry, Govt. Nagarjuna P. G. College of Science Raipur-492010 Chhattisgarh India
| | - Akash Sinha
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India
- Department of Chemistry, Govt. Nagarjuna P. G. College of Science Raipur-492010 Chhattisgarh India
| | - Rekha Nagwanshi
- Department of Chemistry, Govt. Madhav Science P. G. College Ujjain-456010 Madhya Pradesh India
| | - Indrapal Karbhal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India
| | - Shamsh Pervez
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India
| | - Manas Kanti Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India
| |
Collapse
|
20
|
Liu P, Sun Q, Gai Z, Yang F, Yang Y. Dual-mode fluorescence and colorimetric smartphone-based sensing platform with oxidation-induced self-assembled nanoflowers for sarcosine detection. Anal Chim Acta 2024; 1306:342586. [PMID: 38692787 DOI: 10.1016/j.aca.2024.342586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Early prostatic cancer (PCa) diagnosis significantly improves the chances of successful treatment and enhances patient survival rates. Traditional enzyme cascade-based early cancer detection methods offer efficiency and signal amplification but are limited by cost, complexity, and enzyme dependency, affecting stability and practicality. Meanwhile, sarcosine (Sar) is commonly considered a biomarker for PCa development. It is essential to develop a Sar detection method based on cascade reactions, which should be efficient, low skill requirement, and suitable for on-site testing. RESULTS To address this, our study introduces the synthesis of organic-inorganic self-assembled nanoflowers to optimize existing detection methods. The Sar oxidase (SOX)-inorganic hybrid nanoflowers (Cu3(PO4)2:Ce@SOX) possess inherent fluorescent properties and excellent peroxidase activity, coupled with efficient enzyme loading. Based on this, we have developed a dual-mode multi-enzyme cascade nanoplatform combining fluorescence and colorimetric methods for the detection of Sar. The encapsulation yield of Cu3(PO4)2:Ce@SOX reaches 84.5 %, exhibiting a remarkable enhancement in catalytic activity by 1.26-1.29 fold compared to free SOX. The present study employing a dual-signal mechanism encompasses 'turn-off' fluorescence signals ranging from 0.5 μM to 60 μM, with a detection limit of 0.226 μM, and 'turn-on' colorimetric signals ranging from 0.18 μM to 60 μM, with a detection limit of 0.120 μM. SIGNIFICANCE Furthermore, our study developed an intelligent smartphone sensor system utilizing cotton swabs for real-time analysis of Sar without additional instruments. The nano-platform exhibits exceptional repeatability and stability, rendering it well-suited for detecting Sar in authentic human urine samples. This innovation allows for immediate analysis, offering valuable insights for portable and efficient biosensors applicable to Sar and other analytes.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Qian Sun
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhexu Gai
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Fei Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| | - Yanzhao Yang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
21
|
Chen W, Yin H, Cole I, Houshyar S, Wang L. Carbon Dots Derived from Non-Biomass Waste: Methods, Applications, and Future Perspectives. Molecules 2024; 29:2441. [PMID: 38893317 PMCID: PMC11174087 DOI: 10.3390/molecules29112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Carbon dots (CDs) are luminescent carbon nanoparticles with significant potential in analytical sensing, biomedicine, and energy regeneration due to their remarkable optical, physical, biological, and catalytic properties. In light of the enduring ecological impact of non-biomass waste that persists in the environment, efforts have been made toward converting non-biomass waste, such as ash, waste plastics, textiles, and papers into CDs. This review introduces non-biomass waste carbon sources and classifies them in accordance with the 2022 Australian National Waste Report. The synthesis approaches, including pre-treatment methods, and the properties of the CDs derived from non-biomass waste are comprehensively discussed. Subsequently, we summarize the diverse applications of CDs from non-biomass waste in sensing, information encryption, LEDs, solar cells, and plant growth promotion. In the final section, we delve into the future challenges and perspectives of CDs derived from non-biomass waste, shedding light on the exciting possibilities in this emerging area of research.
Collapse
Affiliation(s)
- Wenjing Chen
- School of Fashion and Textiles, RMIT University, Brunswick, VIC 3056, Australia; (W.C.); (L.W.)
| | - Hong Yin
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (I.C.); (S.H.)
| | - Ivan Cole
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (I.C.); (S.H.)
| | - Shadi Houshyar
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (I.C.); (S.H.)
| | - Lijing Wang
- School of Fashion and Textiles, RMIT University, Brunswick, VIC 3056, Australia; (W.C.); (L.W.)
| |
Collapse
|
22
|
Yalshetti S, Thokchom B, Bhavi SM, Singh SR, Patil SR, Harini BP, Sillanpää M, Manjunatha JG, Srinath BS, Yarajarla RB. Microwave-assisted synthesis, characterization and in vitro biomedical applications of Hibiscus rosa-sinensis Linn.-mediated carbon quantum dots. Sci Rep 2024; 14:9915. [PMID: 38689005 PMCID: PMC11061284 DOI: 10.1038/s41598-024-60726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
In recent years, carbon quantum dots (CQDs) have garnered considerable attention as a promising material for biomedical applications because of their unique optical and biological properties. In this study, CQDs were derived from the leaves of Hibiscus rosa-sinensis Linn. via microwave-assisted technique and characterized using different techniques such as ultraviolet-visible, Fourier transform infrared, fluorescence spectrometry, X-ray diffraction, dynamic light scattering, transmission electron microscopy and energy-dispersive X-ray spectroscopy. Subsequently, their potential for biomedical applications was investigated through in vitro assays assessing scratch healing, anti-inflammatory, antibacterial, and cytotoxicity properties. It was found that the CQDs were fluorescent, polycrystalline, quasi-spherical, ~ 12 nm in size with presence of -OH and -COOH groups on their negatively charged surfaces, and demonstrated good anti-inflammatory by inhibiting protein denaturation, cyclooxygenase-2 and regulating inflammatory cytokines. The CQDs also exhibited antimicrobial activity against Klebsiella pneumoniae and Bacillus cereus, good biocompatibility, along with excellent promotion of cell proliferation in vitro, indicating their potential as a anti-inflammatory and wound healing material. The properties were more enhanced than their precursor, H. rosa-sinensis leaf extract. Hence, the CQDs synthesized from the leaves of H. rosa-sinensis can serve as a potential biomedical agent.
Collapse
Affiliation(s)
- Shweta Yalshetti
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Bothe Thokchom
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Santosh Mallikarjun Bhavi
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Sapam Riches Singh
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Sneha R Patil
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - B P Harini
- Department of Zoology, Bangalore University, Bangalore, Karnataka, 560056, India
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Norrebrogade 44, 8000, Aarhus C, Denmark
| | - J G Manjunatha
- Department of Chemistry, FMKMC College, Mangalore University Constituent College, Madikeri, Karnataka, 571201, India
| | - B S Srinath
- Department of Microbiology and Biotechnology, Bangalore University, Bangalore, Karnataka, 560056, India
| | - Ramesh Babu Yarajarla
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India.
| |
Collapse
|
23
|
Rais A, Sharma S, Mishra P, Khan LA, Prasad T. Biocompatible carbon quantum dots as versatile imaging nanotrackers of fungal pathogen - Candida albicans. Nanomedicine (Lond) 2024; 19:671-688. [PMID: 38426561 DOI: 10.2217/nnm-2023-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Aim: The development of carbon quantum dots (C-QDs) as nanotrackers to understand drug-pathogen interactions, virulence and multidrug resistance. Methods: Microwave synthesis of C-QDs was performed using citric acid and polyethylene glycol. Further, in vitro toxicity was evaluated and imaging applications were demonstrated in Candida albicans isolates. Results: Well-dispersed, ultra small C-QDs exhibited no cyto/microbial/reactive oxygen species-mediated toxicity and internalized effectively in Candida yeast and hyphal cells. C-QDs were employed for confocal imaging of drug-sensitive and -resistant cells, and a study of the yeast-to-hyphal transition using atomic force microscopy in Candida was conducted for the first time. Conclusion: These biocompatible C-QDs have promising potential as next-generation nanotrackers for in vitro and in vivo targeted cellular and live imaging, after functionalization with biomolecules and drugs.
Collapse
Affiliation(s)
- Anam Rais
- Special Centre for Nano Science & AIRF, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shubham Sharma
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Prashant Mishra
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Luqman Ahmad Khan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Tulika Prasad
- Special Centre for Nano Science & AIRF, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
24
|
Onishi BSD, Carneiro Neto AN, Bortolleto-Santos R, Masterlaro VR, Carlos LD, Ferreira RAS, Ribeiro SJL. Carbon dots on LAPONITE® hybrid nanocomposites: solid-state emission and inter-aggregate energy transfer. NANOSCALE 2024; 16:6286-6295. [PMID: 38451238 DOI: 10.1039/d3nr06336d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
This study delves into the photoluminescent characteristics of solid-state hybrid carbon dots/LAPONITE® (CDLP). These hybrid materials were synthesized using the hydrothermal method with a precise pH control set at 8.5. The LAPONITE® structure remains intact without structural collapse, and we detected the possible deposition of carbon dots (CDs) aggregates on the clay mineral's edges. The use of different concentrations of citric acid (10-, 6-, 2- and 1-times weight/weight of LAPONITE® mass, maintaining the 1 : 1 molar ratio with ethylenediamine) during synthesis results in different CDs concentrations in CDLP-A (low precursors concentration) and CDLP-D (high concentration) with an amorphous structure and average size around 2.8-3.0 nm. The CDLP displayed visible photoluminescence emission in aqueous and powder, which the last underwent quenching according to lifetimes and quantum yield measurements. Low-temperature measurements revealed an enhancement of the non-radiative pathways induced by aggregation. Energy transfer modelling based on Förster-Dexter suggests an approximate mean distance of 9.5 nm between clusters of CDs.
Collapse
Affiliation(s)
- Bruno S D Onishi
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
- Institute of Chemistry, São Paulo State University-UNESP, São Paulo, Araraquara, 14800-060, Brazil.
| | - Albano N Carneiro Neto
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ricardo Bortolleto-Santos
- Postgraduate Program in Environmental Technology, University of Ribeirão Preto-UNAERP, São Paulo, Ribeirão Preto, 14096-900, Brazil
| | - Valmor R Masterlaro
- São Carlos Institute of Chemistry, University of São Paulo-USP, São Paulo, São Carlos, 13566-590, Brazil
| | - Luís D Carlos
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Rute A S Ferreira
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sidney J L Ribeiro
- Institute of Chemistry, São Paulo State University-UNESP, São Paulo, Araraquara, 14800-060, Brazil.
| |
Collapse
|
25
|
Chaudhary M, Singh P, Singh GP, Rathi B. Structural Features of Carbon Dots and Their Agricultural Potential. ACS OMEGA 2024; 9:4166-4185. [PMID: 38313515 PMCID: PMC10831853 DOI: 10.1021/acsomega.3c04638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 02/06/2024]
Abstract
Carbon dots (CDs) have drawn attention due to their enticing physical, chemical, and surface properties. Besides, good conductivity, low toxicity, environmental friendliness, simple synthetic routes, and comparable optical properties are advantageous features of CDs. Further, recently, CDs have been explored for biological systems, including plants. Among biological systems, only plants form the basis for sustainability and life on Earth. In this Review, we reviewed suitable properties and applications of CDs, such as promoting the growth of agricultural plants, disease resistance, stress tolerance, and target transportation. Summing up the available studies, we believe that the applications of CDs are yet to be explored significantly for innovation and technology-based agriculture.
Collapse
Affiliation(s)
- Monika Chaudhary
- Department
of Chemistry, Hansraj College, University
of Delhi, Delhi 110007, India
| | - Priyamvada Singh
- Department
of Chemistry, Miranda House, University
of Delhi, Delhi 110007, India
| | - Gajendra Pratap Singh
- Disruptive
and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology
(SMART), 138602 Singapore
| | - Brijesh Rathi
- Department
of Chemistry, Hansraj College, University
of Delhi, Delhi 110007, India
| |
Collapse
|
26
|
Luo Q, Liu W, Zhuo Q. The Mechanism of Ozone Oxidation of Coal and the Revelation of Coal Macromolecular Structure by Oxidation Products. ACS OMEGA 2024; 9:753-770. [PMID: 38222567 PMCID: PMC10785781 DOI: 10.1021/acsomega.3c06525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2024]
Abstract
Ozone was injected into a coal-water suspension, and an HRTEM test was carried out on the separated oxidation products. The results show that from the perspective of visualization the macromolecular network structure of coal contains a large number of graphite-like structures. However, the chemical reaction mechanism between the coal surface and O3 is not clear, and the microscopic formation mechanism of oxygen-containing functional groups in carbon quantum dots has not been explained. As a result, the reaction process between O3 and methylene on the coal surface was studied by the DFT method. We found that OH• generated by O3 in water can oxidize two adjacent carbon atoms in methylene into double bonds (C=C), and finally, aldehydes and carboxylic acids were generated. By calculation of thermodynamic parameters ΔG and ΔH, it is found that all reactions are spontaneous exothermic processes. The above chemical reaction is based on the physical adsorption of OH• with Ar-(CH2)6-Ar and O3 with Ar-CH2-CH=CH-(CH2)3-Ar. The calculated adsorption energies of the two systems are -9.41 and -12.55 kcal/mol, respectively. Then, the charge transfer and atomic orbital interaction before and after adsorption are analyzed from the perspectives of Mulliken charge, density of states, deformation density, and total charge density. The results show that the electrostatic attraction is the main driving force of adsorption. The ether bond (C-O-C) in coal is finally oxidized to an ester group (RCOOR'), the hydroxyl group (CH2-CH-OH) on the aliphatic chain is oxidized to a carbonyl group (CH2-C=O), and the benzene with two OH• forms phenol hydroxyl and one molecule of water. Finally, the coal and the corresponding coal-based carbon quantum dots were investigated by infrared spectroscopy; the difference in functional groups before and after oxidation was clarified, and the result was in good agreement with the simulation.
Collapse
Affiliation(s)
- Qing Luo
- School
of Materials and Chemical Engineering, Henan
University of Urban Construction, Daxiangshan Road, Pingdingshan 467036, Henan Province, China
- School
of Chemical and Environment Engineering, China University of Mining & Technology (Beijing), D11, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Wenli Liu
- School
of Chemical and Environment Engineering, China University of Mining & Technology (Beijing), D11, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qiming Zhuo
- School
of Chemical and Environment Engineering, China University of Mining & Technology (Beijing), D11, Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
27
|
Guo X, Yang R, Wang Y, Cheng C, Fu D, Sheng J. Molecularly designed and synthesized of bright blue nitrogen-doped lignin-derived carbon dots applied in printable anti-counterfeiting. Int J Biol Macromol 2023; 253:126723. [PMID: 37696377 DOI: 10.1016/j.ijbiomac.2023.126723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
With the increased demand for green and sustainable development, the research of advanced biomass-based carbon dots (CDs) has drawn growing attention. Herein, a one-step green solvent integration strategy-assisted solvothermal method to preparing CDs from hydrolyzed lignin and ethylenediamine (EDA) in formamide (FA) was developed. The Schiff reaction between FA and EDA contributes to the formation of -C-N groups, further inducing the high photoluminescence quantum yield (up to 42.69 %),obviously higher than NCDs prepared in H2O, EtOH and DMF systems (corresponding to H-NCDs, E-NCDs and D-NCDs, respectively). The analysis of structure, composition, photoluminescence (PL) behaviors and DFT calculations showed that F-NCDs have main blue fluorescent emission peak from 410 to 455 nm under 330-390 nm excitation due to the small sp2 structure in carbon core, and the large sp2 conjugated clusters and CO group related surface states leaded to the long wavelength emission. The F-NCDs with excellent optical properties was further used for preparing fluorescent film and invisible anti-counterfeiting ink, which exhibited outstanding fluorescence even at different temperatures and aging times. We provided a facile way for green facile preparation of lignin-based CDs and their sustainable anti-counterfeiting application.
Collapse
Affiliation(s)
- Xiaohui Guo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rendang Yang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yang Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Chen Cheng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Danning Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jie Sheng
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| |
Collapse
|
28
|
Falara PP, Ibrahim I, Zourou A, Sygellou L, Sanchez DE, Romanos GE, Givalou L, Antoniadou M, Arfanis MK, Han C, Terrones M, Kordatos KV. Bi-functional photocatalytic heterostructures combining titania thin films with carbon quantum dots (C-QDs/TiO 2) for effective elimination of water pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124976-124991. [PMID: 37160858 PMCID: PMC10754734 DOI: 10.1007/s11356-023-27285-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
In this study, carbon quantum dots (C-QDs), prepared via hydrothermal-microwave procedures, were successfully combined with nanostructured titania (TiO2). The photocatalytic oxidation/reduction activity of the C-QDs/TiO2 composite films was evaluated in the decomposition of organic-inorganic contaminants from aqueous solutions under UV illumination. Physicochemical characterizations were applied to investigate the crystal structure of the carbon quantum dots and the composites. It was found that the prepared C-QDs/TiO2 composites had great contribution to the photocatalytic reduction of hexavalent chromium (Cr+6) species and 4-Nitrophenol (PNP) as well as to the photocatalytic oxidation of methylene blue (MB) and Rhodamine B (RhB) dyes. The mechanism of the photocatalytic reaction was studied with trapping experiments, revealing that the electron (e-) radical species were powerfully supported for the photocatalytic reduction of Cr+6 and PNP and the holes (h+) are the main active species for the photocatalytic oxidation reactions.
Collapse
Affiliation(s)
- Pinelopi P Falara
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., 15780 Zografou, Athens, Greece
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Islam Ibrahim
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Adamantia Zourou
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., 15780 Zografou, Athens, Greece
| | - Labrini Sygellou
- Foundation of Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), POB 1414, GR-26504, Patras, Greece
| | - David Emanuel Sanchez
- Department of Materials Science and Engineering and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - George Em Romanos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Lida Givalou
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., 15780 Zografou, Athens, Greece
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Maria Antoniadou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
- Department of Chemical Engineering, University of Western Macedonia, ZEP, 50100, Kozani, Greece
| | - Michalis K Arfanis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Changseok Han
- Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, South Korea
- Program in Environmental & Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, South Korea
| | - Mauricio Terrones
- Department of Materials Science and Engineering and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Department of Chemistry and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Konstantinos V Kordatos
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., 15780 Zografou, Athens, Greece.
| |
Collapse
|
29
|
Gan J, Chen L, Chen Z, Zhang J, Yu W, Huang C, Wu Y, Zhang K. Lignocellulosic Biomass-Based Carbon Dots: Synthesis Processes, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304066. [PMID: 37537709 DOI: 10.1002/smll.202304066] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Indexed: 08/05/2023]
Abstract
Carbon dots (CDs), a new type of carbon-based fluorescent nanomaterial, have attracted widespread attention because of their numerous excellent properties. Lignocellulosic biomass is the most abundant renewable natural resource and possesses broad potential to manufacture different composite and smart materials. Numerous studies have explored the potential of using the components (such as cellulose, hemicellulose, and lignin) in lignocellulosic biomass to produce CDs. There are few papers systemically aiming in the review of the state-of-the-art works related to lignocellulosic biomass-derived CDs. In this review, the significant advances in synthesis processes, formation mechanisms, structural characteristics, optical properties, and applications of lignocellulosic biomass-based CDs such as cellulose-based CDs, hemicellulose-based CDs and lignin-based CDs in latest research are reviewed. In addition, future research directions on the improvement of the synthesis technology of CDs using lignocellulosic biomass as raw materials to enhance the properties of CDs are proposed. This review will serve as a road map for scientists engaged in research and exploring more applications of CDs in different science fields to achieve the highest material performance goals of CDs.
Collapse
Affiliation(s)
- Jian Gan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Lizhen Chen
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Zhijun Chen
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science & Technology Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jilei Zhang
- Department of Sustainable Bioproducts, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Wenji Yu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Caoxing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
30
|
Saini S, Saini P, Kumar K, Sethi M, Meena P, Gurjar A, Dandia A, Dhuria T, Parewa V. Unlocking the Molecular Behavior of Natural Amine-Targeted Carbon Quantum Dots for the Synthesis of Diverse Pharmacophore Scaffolds via an Unusual Nanoaminocatalytic Route. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49083-49094. [PMID: 37819203 DOI: 10.1021/acsami.3c08812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Despite the fact that carbon quantum dots (CQDs) have significant catalytic potential, only emblematic applications that rely on simple acid-base or hydrogen-bonding activation pathways have been reported. In this study, natural amine-targeted CQDs (NAT-CQDs) have been successfully fabricated using a sustainable technique that harnesses a renewable green source. Based on a holistic sustainable assessment, the present approach for the synthesis of NAT-CQDs surpasses previously reported methods in terms of estimated circular and good-manufacturing-practice metrics. A set of spectroscopic and analytical techniques, including FTIR, XPS, conductometric assay, pH titration, 19FNMR, and 13CNMR confirms the presence of the assessable amino-rich groups (0.0083N) at the surface of NAT-CQDs. The occurrence of surface amine groups unlocked the molecular behavior of as-prepared NAT-CQDs and makes them an unprecedented nanoaminocatalytic platform for the synthesis of diverse pharmacophore scaffolds (>40 examples) via a one-pot Knoevenagel/(aza) Michael addition reaction in water at room temperature. The assessable amine group can covalently activate carbonyl groups through nucleophilic iminium activation modes in water and facilitate the ability to build valuable and therapeutic scaffolds on a gram scale. By transferring significant molecular primacy at the frontier of nanoscale materials, NAT-CQDs can thus bridge the gap between the nanoscale and molecular domains. This protocol can also be applied for the preparation of therapeutic anticoagulant drugs, warfarin, and coumachlor. All the reactions exhibited a high atom economy, low E-factor, low process mass intensity (PMI), high reaction mass efficiency (RME), high carbon efficiency (CE), and high catalyst reusability with overall high sustainable values. NAT-CQDs show high recyclability, and the spectral data of reused catalysts indicate that the NAT-CQDs maintained their surface chemistry and electronic properties, suggesting their stability under the tested conditions. This study presents a remarkable instance of NAT-CQDs showcasing covalent catalysis. Expanding on the aforementioned design concept, the utilization of NAT-CQDs' "potential" as distinct colloidal organocatalysts in aqueous environments at the molecular level introduces valuable prospects for aminocatalytic pathways.
Collapse
Affiliation(s)
- Surendra Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| | - Pratibha Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
- Institute Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Krishan Kumar
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| | - Mukul Sethi
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| | - Priyanka Meena
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| | - Aditya Gurjar
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| | - Anshu Dandia
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| | - Tanya Dhuria
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| | - Vijay Parewa
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| |
Collapse
|
31
|
Santos N, Valenzuela S, Segura C, Osorio-Roman I, Arrázola MS, Panadero-Medianero C, Santana PA, Ahumada M. Poly(ethylene imine)-chitosan carbon dots: study of its physical-chemical properties and biological in vitro performance. DISCOVER NANO 2023; 18:129. [PMID: 37847425 PMCID: PMC10581970 DOI: 10.1186/s11671-023-03907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Carbon dots (CDs) have been quickly extended for nanomedicine uses because of their multiple applications, such as bioimaging, sensors, and drug delivery. However, the interest in increasing their photoluminescence properties is not always accompanied by cytocompatibility. Thus, a knowledge gap exists regarding their interactions with biological systems linked to the selected formulations and synthesis methods. In this work, we have developed carbon dots (CDs) based on poly (ethylene imine) (PEI) and chitosan (CS) by using microwave irradiation, hydrothermal synthesis, and a combination of both, and further characterized them by physicochemical and biological means. Our results indicate that synthesized CDs have sizes between 1 and 5 nm, a high presence of amine groups on the surface, and increased positive ζ potential values. Further, it is established that the choice and use of different synthesis procedures can contribute to a different answer to the CDs regarding their optical and biological properties. In this regard, PEI-only CDs showed the longest photoluminescent emission lifetime, non-hemolytic activity, and high toxicity against fibroblast. On the other hand, CS-only CDs have higher PL emission, non-cytotoxicity associated with fibroblast, and high hemolytic activity. Interestingly, their combination using the proposed methodologies allow a synergic effect in their CDs properties. Therefore, this work contributes to developing and characterizing CD formulations based on PEI and CS and better understanding the CD's properties and biological interaction.
Collapse
Affiliation(s)
- Nicolás Santos
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, RM, Chile
| | - Santiago Valenzuela
- Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago, Chile
| | - Camilo Segura
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Isla Teja S/N, Valdivia, Región de los Ríos, Chile
| | - Igor Osorio-Roman
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Isla Teja S/N, Valdivia, Región de los Ríos, Chile
| | - Macarena S Arrázola
- Centro de Biología Integrativa, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, RM, Chile
| | - Concepción Panadero-Medianero
- Centro de Biología Integrativa, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, RM, Chile
| | - Paula A Santana
- Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago, Chile.
| | - Manuel Ahumada
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, RM, Chile.
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, RM, Chile.
| |
Collapse
|
32
|
Kaur N, Tiwari P, Kumar P, Biswas M, Sonawane A, Mobin SM. Multifaceted Carbon Dots: toward pH-Responsive Delivery of 5-Fluorouracil for In Vitro Antiproliferative Activity. ACS APPLIED BIO MATERIALS 2023. [PMID: 37366546 DOI: 10.1021/acsabm.3c00228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The synthesis of smart hybrid material to assimilate diagnosis and treatment is crucial in nanomedicine. Herein, we present a simple and facile method to synthesize multitalented blue-emissive nitrogen-doped carbon dots N@PEGCDs. The as-prepared carbon dots N@PEGCDs show enhanced biocompatibility, small size, high fluorescence, and high quantum yield. The N@PEGCDs are used as a drug carrier for 5-fluorouracil (5-FU) with more release at acidic pH. Furthermore, the mode of action of drug-loaded CD (5FU-N@PEGCDs) has also been explored by performing wound healing assay, DCFDA assay for ROS generation, and Hoechst staining. The drug loaded with carbon dots showed less toxicity to normal cells compared to cancer cells, making it a perfect candidate to be studied for designing next-generation drug delivery systems.
Collapse
Affiliation(s)
- Navpreet Kaur
- Discipline of Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Pranav Tiwari
- Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Pawan Kumar
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Mainak Biswas
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Avinash Sonawane
- Discipline of Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Shaikh M Mobin
- Discipline of Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
- Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
33
|
Sun Y, Ma S, Wang H, Wang H, Gao M, Wang X. Construction of an "ON-OFF" fluoroprobe using ionic liquids-modified orange peel-based carbon quantum dots for selective/sensitive permanganate assay in waters and the underlying quenching mechanisms. Anal Bioanal Chem 2023:10.1007/s00216-023-04768-7. [PMID: 37286905 DOI: 10.1007/s00216-023-04768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Herein, we fabricated blue-fluorescence carbon quantum dots modified by ionic liquids (ILs-CQDs) with a quantum yield of 18.13% by employing orange peel as a carbon source and [BMIM][H2PO4] as a dopant. The fluorescence intensities (FIs) of ILs-CQDs were significantly quenched upon the addition of MnO4- with excellent selectivity and sensitivity in waters, and this phenomenon provided a feasibility for constructing a sensitive "ON-OFF" fluoroprobe. The prominent overlapping between the maximum excitation/emission of ILs-CQDs and the UV-Vis absorption of MnO4- implied an inner filter effect (IFE). The higher Kq value demonstrated that the fluorescence-quenching phenomenon was a static-quenching process (SQE). Coordination between MnO4- and oxygen/amino-rich groups in ILs-CQDs resulted in the alteration of zeta potential in the fluorescence system. Consequently, the interactions between MnO4- and ILs-CQDs belong to a joint mechanism of IFE and SQE. When plotting the FIs of ILs-CQDs vs. the concentrations of MnO4-, a satisfactorily linear correlation was obtained across the range of 0.3-100 μM with a detectable limit of 0.09 μM. This fluoroprobe was successfully applied to detect MnO4- in environmental waters with satisfactory recoveries of 98.05-103.75% and relative standard deviations (RSDs) of 1.57-2.68%. Also, it gave more excellent performance metrics as compared to the Chinese standard indirect iodometry method and other previous approaches for MnO4- assay. Overall, these findings offer a new avenue to engineer/develop a highly efficient fluoroprobe based on the combination of ILs and biomass-derived CQDs for the rapid/sensitive detection of metal ions in environmental waters.
Collapse
Affiliation(s)
- Yue Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Su Ma
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hanyu Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
34
|
Patel S, Shrivas K, Sinha D, Karbhal I, Patle TK. A portable smartphone-assisted digital image fluorimetry for analysis of methiocarb pesticide in vegetables: Nitrogen-doped carbon quantum dots as a sensing probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122824. [PMID: 37192578 DOI: 10.1016/j.saa.2023.122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
The increasing use of pesticides in the agriculture fields strengthen the crop production to meet the needs of increasing population. The residues in water and food materials cause several health hazards. Herein, nitrogen-doped carbon quantum dot (N-CQDs) is designed for determination of methiocarb pesticide in vegetables by fluorescent paper sensor and compared the results with fluorimetry. The fluorescent paper-based detection is performed by recording the change in fluorescence of N-CQDs with introduction of methiocarb using smartphone and ImageJ software. Good linear range was acquired for analysis of methiocarb from 10 to 1000 μgL-1 with a low detection limit (LOD) of 3.5 μgL-1 in fluorimetry; and 700-10,000 μgL-1 with a LOD of 500 μgL-1 in fluorescent paper sensor. A better recovery from 92.0 to 95.4% illustrating the selectivity of both methods for analysis of methiocarb in vegetables. Thus, the advantage of using N-CQDs as a fluorescent sensor for analysis of methiocarb in vegetables is instrument free, portable and user-friendly.
Collapse
Affiliation(s)
- Sanyukta Patel
- Department of Chemistry, Government Nagarjuna Post Graduate College of Science, Raipur, CG 492010, India
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishanakar Shukla University, Raipur 492010, CG, India.
| | - Deepak Sinha
- Department of Chemistry, Government Nagarjuna Post Graduate College of Science, Raipur, CG 492010, India.
| | - Indrapal Karbhal
- School of Studies in Chemistry, Pt. Ravishanakar Shukla University, Raipur 492010, CG, India
| | - Tarun Kumar Patle
- Department of Chemistry, Pt. Sundarlal Sharma Open University, Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
35
|
Mohammed SJ, Omer KM, Hawaiz FE. Deep insights to explain the mechanism of carbon dot formation at various reaction times using the hydrothermal technique: FT-IR, 13C-NMR, 1H-NMR, and UV-visible spectroscopic approaches. RSC Adv 2023; 13:14340-14349. [PMID: 37180002 PMCID: PMC10170355 DOI: 10.1039/d3ra01646c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
A well-explained mechanism for synthesizing carbon dots (CDs) is not yet explored and is still a subject of great debate and challenge. This study used a one-step hydrothermal method to prepare highly efficient, gram-scale, excellent water solubility, and blue fluorescent nitrogen-doped carbon dots (NCDs) with the particle size average distribution of around 5 nm from 4-aminoantipyrine. The effects of varying synthesis reaction times on the structure and mechanism formation of NCDs were investigated using spectroscopic methods, namely FT-IR, 13C-NMR, 1H-NMR, and UV-visible spectroscopies. The spectroscopic results indicated that increasing the reaction time affects the structure of the NCDs. As the hydrothermal synthesis reaction time is extended, the intensity of the peaks in the aromatic region decreases, and new peaks in the aliphatic and carbonyl group regions are generated, which display enhanced intensity. In addition, the photoluminescent quantum yield increases as the reaction time increases. The presence of a benzene ring in 4-aminoantipyrine is thought to contribute to the observed structural changes in NCDs. This is due to the increased noncovalent π-π stacking interactions of the aromatic ring during the carbon dot core formation. Moreover, the hydrolysis of the pyrazole ring in 4-aminoantipyrine results in polar functional groups attached to aliphatic carbons. As the reaction time prolongs, these functional groups progressively cover a larger portion of the surface of the NCDs. After 21 h of the synthesis process, the XRD spectrum of the produced NCDs illustrates a broad peak at 21.1°, indicating an amorphous turbostratic carbon phase. The d-spacing measured from the HR-TEM image is about 0.26 nm, which agrees with the (100) plane lattice of graphite carbon and confirms the purity of the NCD product with a surface covered by polar functional groups. This investigation will lead to a greater understanding of the effect of hydrothermal reaction time on the mechanism and structure of carbon dot synthesis. Moreover, it offers a simple, low-cost, and gram-scale method for creating high-quality NCDs crucial for various applications.
Collapse
Affiliation(s)
- Sewara J Mohammed
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani 46002 Kurdistan Regional Government Iraq
- Anesthesia Department, College of Health Sciences, Cihan University Sulaimaniya Sulaimaniya 46001 Kurdistan Region Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani 46002 Kurdistan Regional Government Iraq
| | - Farouq E Hawaiz
- Department of Chemistry, College of Education, Salahaddin University - Hawler Erbil Kurdistan Iraq
| |
Collapse
|
36
|
Munusamy S, Mandlimath TR, Swetha P, Al-Sehemi AG, Pannipara M, Koppala S, Paramasivam S, Boonyuen S, Pothu R, Boddula R. Nitrogen-doped carbon dots: Recent developments in its fluorescent sensor applications. ENVIRONMENTAL RESEARCH 2023; 231:116046. [PMID: 37150390 DOI: 10.1016/j.envres.2023.116046] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Doped carbon dots have attracted great attention from researchers across disciplines because of their unique characteristics, such as their low toxicity, physiochemical stability, photostability, and outstanding biocompatibility. Nitrogen is one of the most commonly used elements for doping because of its sizeable atomic radius, strong electronegativity, abundance, and availability of electrons. This distinguishes them from other atoms and allows them to perform distinctive roles in various applications. Here, we have reviewed the most current breakthroughs in nitrogen-doped CDs (N-CDs) for fluorescent sensor applications in the last five years. The first section of the article addresses several synthetic and sustainable ways of making N-CDs. Next, we briefly reviewed the fluorescent features of N-CDs and their sensing mechanism. Furthermore, we have thoroughly reviewed their fluorescent sensor applications as sensors for cations, anions, small molecules, enzymes, antibiotics, pathogens, explosives, and pesticides. Finally, we have discussed the N-CDs' potential future as primary research and how that may be used. We hope that this study will contribute to a better understanding of the principles of N-CDs and the sensory applications that they can serve.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Angkok, 10330, Pathumwan, Thailand.
| | - Triveni Rajashekhar Mandlimath
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, G-30, Inavolu, Besides AP Secretariat Amaravati, Andhra Pradesh, India
| | - Puchakayala Swetha
- Department of Chemistry, Oakland University, Rochester, MI, 48309, United States
| | | | | | - Sivasankar Koppala
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India
| | - Shanmugam Paramasivam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Bangkok, 12120, Pathumthani, Thailand
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Bangkok, 12120, Pathumthani, Thailand
| | - Ramyakrishna Pothu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Rajender Boddula
- Center for Advanced Materials (CAM), Qatar University Doha, 2713, Qatar.
| |
Collapse
|
37
|
Ayu D, Gea S, Andriayani, Telaumbanua DJ, Piliang AFR, Harahap M, Yen Z, Goei R, Tok AIY. Photocatalytic Degradation of Methylene Blue Using N-Doped ZnO/Carbon Dot (N-ZnO/CD) Nanocomposites Derived from Organic Soybean. ACS OMEGA 2023; 8:14965-14984. [PMID: 37151531 PMCID: PMC10157678 DOI: 10.1021/acsomega.2c07546] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/30/2023] [Indexed: 08/29/2023]
Abstract
This study reports on successful synthesis of carbon dots (CDs), nitrogen-doped zinc oxide (N-ZnO), and N-ZnO/CD nanocomposites as photocatalysts for degradation of methylene blue. The first part was the synthesis of CDs utilizing a precursor from soybean and ethylenediamine as a dopant by a hydrothermal method. The second part was the synthesis of N-ZnO with urea as the nitrogen dopant carried out by a calcination method in a furnace at 500 °C for 2 h in an N2 atmosphere (5 °C min-1). The third part was the synthesis of N-ZnO/CD nanocomposites. The characteristics of CDs, N-ZnO, and N-ZnO/CD nanocomposites were analyzed through Fourier transform infrared (FTIR), UV-vis absorbance, photoluminescence (PL), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), thermal gravimetry analysis (TGA), field-emission scanning electron microscopy energy-dispersive spectroscopy (FESEM EDS), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) analysis. Based on the HR-TEM analysis, the CDs had a spherical shape with an average particle size of 4.249 nm. Meanwhile, based on the XRD and HR-TEM characterization, the N-ZnO and N-ZnO/CD nanocomposites have wurtzite hexagonal structures. The materials of N-ZnO and N-ZnO/CD show increased adsorption in the visible light region and low energy gap E g. The E g values of N-ZnO and N-ZnO/CDs were found to be 2.95 and 2.81 eV, respectively, whereas the surface area (S BET) values 3.827 m2 g-1 (N-ZnO) and 3.757 m2 g-1(N-ZnO/CDs) belonged to the microporous structure. In the last part, the photocatalysts of CDs, N-ZnO, and N-ZnO/CD nanocomposites were used for degradation of MB (10 ppm) under UV-B light irradiation pH = 7.04 (neutral) for 60 min at room temperature. The N-ZnO/CD nanocomposites showed a photodegradation efficiency of 83.4% with a kinetic rate of 0.0299 min-1 higher than N-ZnO and CDs. The XRD analysis and FESEM EDS of the N-ZnO/CDs before and after three cycles confirm the stability of the photocatalyst with an MB degradation of 58.2%. These results have clearly shown that the N-ZnO/CD nanocomposites could be used as an ideal photocatalytic material for the decolorization of organic compounds in wastewater.
Collapse
Affiliation(s)
- Dinda
Gusti Ayu
- Postgraduate
School, Department of Chemistry, Faculty of Mathematics and Natural
Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia
- Cellulosic
and Functional Materials Research Centre, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Saharman Gea
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia
- Cellulosic
and Functional Materials Research Centre, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Andriayani
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Dewi Junita Telaumbanua
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Averroes Fazlur Rahman Piliang
- Cellulosic
and Functional Materials Research Centre, Universitas Sumatera Utara, Medan 20155, Indonesia
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Mahyuni Harahap
- Department
of Chemistry, Faculty of Science Technology and Information, Universitas Sari Mutiara Indonesia, Medan 20124, Indonesia
| | - Zhihao Yen
- School of
Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ronn Goei
- School of
Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Alfred Iing Yoong Tok
- School of
Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
38
|
Atchudan R, Gangadaran P, Perumal S, Edison TNJI, Sundramoorthy AK, Rajendran RL, Ahn BC, Lee YR. Green Synthesis of Multicolor Emissive Nitrogen-Doped Carbon Dots for Bioimaging of Human Cancer Cells. J CLUST SCI 2023; 34:1583-1594. [DOI: 10.1007/s10876-022-02337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/10/2022] [Indexed: 01/20/2023]
|
39
|
Das C, Sillanpää M, Zaidi SA, Khan MA, Biswas G. Current trends in carbon-based quantum dots development from solid wastes and their applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45528-45554. [PMID: 36809626 PMCID: PMC9942668 DOI: 10.1007/s11356-023-25822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Urbanization and a massive population boom have immensely increased the solid wastes (SWs) generation and are expected to reach 3.40 billion tons by 2050. In many developed and emerging nations, SWs are prevalent in both major and small cities. As a result, in the current context, the reusability of SWs through various applications has taken on added importance. Carbon-based quantum dots (Cb-QDs) and their many variants are synthesized from SWs in a straightforward and practical method. Cb-QDs are a new type of semiconductor that has attracted the interest of researchers due to their wide range of applications, which include everything from energy storage, chemical sensing, to drug delivery. This review is primarily focused on the conversion of SWs into useful materials, which is an essential aspect of waste management for pollution reduction. In this context, the goal of the current review is to investigate the sustainable synthesis routes of carbon quantum dots (CQDs), graphene quantum dots (GQDs), and graphene oxide quantum dots (GOQDs) from various types SWs. The applications of CQDs, GQDs, and GOQDs in the different areas are also been discussed. Finally, the challenges in implementing the existing synthesis methods and future research directions are highlighted.
Collapse
Affiliation(s)
- Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Moonis Ali Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| |
Collapse
|
40
|
Siahcheshm P, Heiden P. High quantum yield carbon quantum dots as selective fluorescent turn-off probes for dual detection of Fe2+/Fe3+ ions. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Kalhori S, Ahour F, Aurang P. Determination of trace amount of iron cations using electrochemical methods at N, S doped GQD modified electrode. Sci Rep 2023; 13:1557. [PMID: 36707641 PMCID: PMC9883219 DOI: 10.1038/s41598-023-28872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
In this work, nitrogen and sulfur co-doped graphene quantum dot-modified glassy carbon electrodes (N, S-GQD/GCE) were used for the recognition of iron cations in aqueous solutions. The dissolved cations are detected based on the faradaic reduction or oxidation current of Fe(III) and Fe(II) obtained at the N, S-GQD/GCE surface. Cyclic voltammetry (CV), square wave voltammetry (SWV), and hydrodynamic amperometry are used as suitable electrochemical techniques for studying electrochemical behavior and determination of Fe cations. Based on the obtained results, it is concluded that the presence of free electrons in the structure of N, S-GQD could facilitate electron transfer reaction between Fe(III) and electrode surface which with increased surface area results in increased sensitivity and lower limit of detection. By performing suitable experiments, the best condition for preparing the modified electrode and determining Fe(III) was selected. Under optimized conditions, the amperometric response is linear from 1 to 100 nM of Fe(III) with a detection limit of 0.23 nM. The validity of the method and applicability of the sensor is successfully tested by the determination of Fe(III) in drug and water real samples. This sensor opened a new platform based on doped nanoparticles for highly sensitive and selective detection of analytes.
Collapse
Affiliation(s)
- S. Kalhori
- grid.412763.50000 0004 0442 8645Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - F. Ahour
- grid.412763.50000 0004 0442 8645Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran ,grid.412763.50000 0004 0442 8645Institute of Nanotechnology, Urmia University, Urmia, Iran
| | - P. Aurang
- grid.412763.50000 0004 0442 8645Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
42
|
Anju SM, Aswathy AO, Varghese S, Abraham MK, Lekshmi RS, Ibrahim Shkhair A, Lekha GM, Syamchand SS, George S. Folic acid incorporated nitrogen-doped carbon dots as a turn-on fluorescence probe for homocysteine detection. LUMINESCENCE 2023; 38:19-27. [PMID: 36394200 DOI: 10.1002/bio.4411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/18/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
This study describes the development of a low-cost fluorescence assay for detecting homocysteine (Hcy) without the interference of cysteine and glutathione using carbon quantum dots. Herein nitrogen-doped carbon quantum dots (NCDs) were synthesized from citric acid as the carbon source and urea as the dopant using a one-pot microwave-assisted method. The obtained NCDs were incorporated with folic acid (FA) by the direct ex situ addition method and were used as a fluorescence probe to detect Hcy. The probe exhibited a fluorescence turn-on response with increased Hcy concentration up to 50 μM with a limit of detection of 2.276 μM. The point of care detection of Hcy using the probe was also tested with a paper-based assay strip.
Collapse
Affiliation(s)
- Saralammma Madanan Anju
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Asokan Omana Aswathy
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Merin Kodinattumkunnel Abraham
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Ragini Sanjeevan Lekshmi
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Girija Muraleedharan Lekha
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, India
| | | | - Sony George
- Department of Chemistry, School of Physical and Mathematical Science, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
43
|
Issa MA, Zentou H, Jabbar ZH, Abidin ZZ, Harun H, Halim NAA, Alkhabet MM, Pudza MY. Ecofriendly adsorption and sensitive detection of Hg (II) by biomass-derived nitrogen-doped carbon dots: process modelling using central composite design. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86859-86872. [PMID: 35802332 PMCID: PMC9264744 DOI: 10.1007/s11356-022-21844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
In this study, luminescent bio-adsorbent nitrogen-doped carbon dots (N-CDs) was produced and applied for the removal and detection of Hg (II) from aqueous media. N-CDs were synthesized from oil palm empty fruit bunch carboxymethylcellulose (CMC) and urea. According to several analytical techniques used, the obtained N-CDs display graphitic core with an average size of 4.2 nm, are enriched with active sites, stable over a wide range of pH and have great resistance to photobleaching. The N-CDs have bright blue emission with an improved quantum yield (QY) of up to 35.5%. The effect of the variables including pH, adsorbent mass, initial concentration and incubation time on the removal of Hg (II) was investigated using central composite design. The statistical results confirmed that the adsorption process could reach equilibrium within 30 min. The reduced cubic model (R2 = 0.9989) revealed a good correlation between the observed values and predicted data. The optimal variables were pH of 7, dose of 0.1 g, initial concentration of 100 mg/L and duration of 30 min. Under these conditions, adsorption efficiency of 84.6% was obtained. The adsorption kinetic data could be well expressed by pseudo-second-order kinetic and Langmuir isotherm models. The optimal adsorption capacity was 116.3 mg g-1. Furthermore, the adsorbent has a good selectivity towards Hg (II) with a detection limit of 0.01 μM due to the special interaction between Hg (II) and carboxyl/amino groups on the edge of N-CDs. This work provided an alternative direction for constructing low-cost adsorbents with effective sorption and sensing of Hg (II).
Collapse
Affiliation(s)
- Mohammed Abdullah Issa
- Department of Oil and Gas Economics, College of Administrative and Financial Sciences, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq.
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Hamid Zentou
- Division of Physical Sciences and Engineering, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Zaid H Jabbar
- Environmental Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Zurina Z Abidin
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Haninah Harun
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Noor Amirah Abdul Halim
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600, Arau Perlis, Malaysia
| | - Mohammed M Alkhabet
- Medical Instrumentation Technical Engineering, Al-Rasheed University College, Baghdad, Iraq
| | - Musa Y Pudza
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
44
|
Cobalt-conjugated carbon quantum dots for in vivo monitoring of the pyruvate dehydrogenase kinase inhibitor drug dichloroacetic acid. Sci Rep 2022; 12:19366. [PMID: 36371411 PMCID: PMC9653503 DOI: 10.1038/s41598-022-22039-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Dichloroacetic acid (DCA), an organohalide that present in environmental sample and biological systems, got high attention for its therapeutic potential as the inhibitor of pyruvate dehydrogenase kinase (PDK), elevated in obesity, diabetes, heart disease and cancer. Herein, we developed a Cobalt conjugated carbon quantum dots (N-CQDs/Co) that selectively detect DCA by fluorescence "turn-on" mechanism. Utilizing TEM, DLS, UV-vis and fluorescence spectroscopy, the mechanism has been thoroughly elucidated and is attributed to disaggregation induced enhancement (DIE). The limit of detection of the N-CQDs/Co complex is 8.7 µM. The structural characteristics and size of the N-CQDs and N-CQDS/Co complex have been verified using FT-IR, XPS, HRTEM, DLS, EDX have been performed. Additionally, the complex is used to specifically find DCA in the human cell line and in zebrafish.Journal instruction requires a city for affiliations; however, these are missing in affiliation [4]. Please verify if the provided city is correct and amend if necessary.Kharagpur is the city. The address is okay.
Collapse
|
45
|
Bacterial cellulose production from wastewater and the influence of its porosity on the fluorescence intensity of prepared carbon dots. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Madhu J, Madurai Ramakrishnan V, Santhanam A, Natarajan M, Palanisamy B, Velauthapillai D, Lan Chi NT, Pugazhendhi A. Comparison of three different structures of zeolites prepared by template-free hydrothermal method and its CO 2 adsorption properties. ENVIRONMENTAL RESEARCH 2022; 214:113949. [PMID: 35934143 DOI: 10.1016/j.envres.2022.113949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, zeolite sodalite SOD (50NaO2:Al2O3:5SiO2), zeolite LTA (2NaO2:Al2O3:1.926SiO2) and zeolite FAU (16NaO2:Al2O3:4SiO2) of different structures were synthesized successfully through simple conventional hydrothermal crystallization technique without using any template agent. Morphological analysis of three different types of zeolites revealed that the samples exhibit three different shapes such as the "Raspberry-like", "Dice" cube like and "Octahedral" shaped morphology respectively. The thermal stability was found to be about 4.8%, 14.6% and 20.5% for the synthesized zeolites SOD, LTA and FAU respectively. From the N2 adsorption-desorption studies, it was observed that adsorption types IV and I correspond to the synthesized samples. CO2 adsorption by the synthesized zeolite SOD, LTA and FAU were examined in the pressure range from 0 to 101.325 kPa at a constant temperature of 297.15 K. The highest adsorption capacity of 3.7 mmol/g was obtained for zeolite FAU. The synthesized zeolite was studied using a nonlinear regression curve fit to determine the adsorption isotherm model using Langmuir and Freundlich isotherm model. It has been found that the synthesized zeolites have a large electric field gradient due to which they can strongly adsorb quadrupole of CO2 molecules.
Collapse
Affiliation(s)
- Jayaprakash Madhu
- Department of Physics, Coimbatore Institute of Technology, Coimbatore, 641 014, Tamil Nadu, India
| | | | - Agilan Santhanam
- Department of Physics, Coimbatore Institute of Technology, Coimbatore, 641 014, Tamil Nadu, India
| | | | - Balraju Palanisamy
- Department of Physics, Coimbatore Institute of Technology, Coimbatore, 641 014, Tamil Nadu, India
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, 5063, Bergen, Norway
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
47
|
Carneiro SV, Oliveira JJP, Rodrigues VSF, Fechine LMUD, Antunes RA, Neto MLA, de Moura TA, César CL, de Carvalho HF, Paschoal AR, Freire RM, Fechine PBA. Doped Carbon Quantum Dots/PVA Nanocomposite as a Platform to Sense Nitrite Ions in Meat. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43597-43611. [PMID: 36103380 DOI: 10.1021/acsami.2c09197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A sensor device based on doped-carbon quantum dots is proposed herein for detection of nitrite in meat products by fluorescence quenching. For the sensing platform, carbon quantum dots doped with boron and functionalized with nitrogen (B,N-Cdot) were synthesized with an excellent 44.3% quantum yield via a one-step hydrothermal route using citric acid, boric acid, and branched polyethylenimine as carbon, boron, and nitrogen sources, respectively. After investigation of their chemical structure and fluorescent properties, the B,N-Cdot at aqueous suspensions showed high selectivity for NO2- in a linear range from 20 to 50 mmol L-1 under optimum conditions at pH 7.4 and a 340 nm excitation. Furthermore, the prepared B,N-Cdots successfully detected NO2- in a real meat sample with recovery of 91.4-104% within the analyzed range. In this manner, a B,N-Cdot/PVA nanocomposite film with blue emission under excitation at 360 nm was prepared, and a first assay detection of NO2- in meat products was tested using a smartphone application. The potential application of the newly developed sensing device containing a highly fluorescent probe should aid in the development of a rapid and inexpensive strategy for NO2- detection.
Collapse
Affiliation(s)
- Samuel Veloso Carneiro
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - José Joelson Pires Oliveira
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - Vivian Stephanie Ferreira Rodrigues
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - Lillian Maria Uchoa Dutra Fechine
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - Renato Altobelli Antunes
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, CEP 09210-580 Santo André, São Paulo, Brazil
| | - Manoel Lourenço Alves Neto
- Department of Physics, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
- National Institute of Photonics Applied to Cell Biology, State University of Campinas, IFGW - Unicamp Cid. Universitária, 13083863 Campinas, São Paulo, Brazil
| | - Thiago Alves de Moura
- Department of Physics, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - Carlos Lenz César
- Department of Physics, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
- National Institute of Photonics Applied to Cell Biology, State University of Campinas, IFGW - Unicamp Cid. Universitária, 13083863 Campinas, São Paulo, Brazil
| | - Hernandes Faustino de Carvalho
- National Institute of Photonics Applied to Cell Biology, State University of Campinas, IFGW - Unicamp Cid. Universitária, 13083863 Campinas, São Paulo, Brazil
- State University of Campinas, Institute of Biology, Department of Cell Biology, Department of Cell Biology - IB - CP, 6109 UNICAMP Cid. Universitária, 13083863 Campinas, São Paulo, Brazil
| | - Alexandre Rocha Paschoal
- Department of Physics, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - Rafael Melo Freire
- Laboratory of Pesticide Residues and Environment, Instituto de Investigaciones Agropecuarias, INIA Centro Regional La Platina, Santiago 8820000, Chile
| | - Pierre Basílio Almeida Fechine
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| |
Collapse
|
48
|
A Review on Graphene Quantum Dots for Electrochemical Detection of Emerging Pollutants. J Fluoresc 2022; 32:2223-2236. [PMID: 36042154 DOI: 10.1007/s10895-022-03018-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Graphene quantum dots which are known as zero-dimensional materials are gaining increasing attention from researchers all over the world. This is predicated upon their relatively unique chemiluminescent, fluorescent, electrochemiluminescent, and electronic properties. The precise mechanism of electrochemiluminescence continues to be a subject of debate in the research world, and this is important in identifying synthetic pathways for graphene quantum dots. Heavy metals and other emerging pollutants are global health and environmental concerns. Several studies have reported the sensitivity and limit of detection of graphene quantum dots up to the nano-, pico-, and femto- levels when used as sensors. This review seeks to bridge information gaps on the reported electrochemiluminescence chemosensors for emerging pollutants using graphene quantum dots under the sub-headings, synthesis, characterization, electrochemiluminescence chemosensor detection, and comparison with other detection methods.
Collapse
|
49
|
Investigating the effect of N-doping on carbon quantum dots structure, optical properties and metal ion screening. Sci Rep 2022; 12:13806. [PMID: 35970901 PMCID: PMC9378613 DOI: 10.1038/s41598-022-16893-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Carbon quantum dots (CQDs) derived from biomass, a suggested green approach for nanomaterial synthesis, often possess poor optical properties and have low photoluminescence quantum yield (PLQY). This study employed an environmentally friendly, cost-effective, continuous hydrothermal flow synthesis (CHFS) process to synthesise efficient nitrogen-doped carbon quantum dots (N-CQDs) from biomass precursors (glucose in the presence of ammonia). The concentrations of ammonia, as nitrogen dopant precursor, were varied to optimise the optical properties of CQDs. Optimised N-CQDs showed significant enhancement in fluorescence emission properties with a PLQY of 9.6% compared to pure glucose derived-CQDs (g-CQDs) without nitrogen doping which have PLQY of less than 1%. With stability over a pH range of pH 2 to pH 11, the N-CQDs showed excellent sensitivity as a nano-sensor for the highly toxic highly-pollutant chromium (VI), where efficient photoluminescence (PL) quenching was observed. The optimised nitrogen-doping process demonstrated effective and efficient tuning of the overall electronic structure of the N-CQDs resulting in enhanced optical properties and performance as a nano-sensor.
Collapse
|
50
|
Kang L, Yang H, Yu H, Wu Q. Insight into the existent state of nitrogen-doped carbon dots in titanate nanotubes and their roles played toward simultaneous removal of coexisted Cu 2+ and norfloxacin in water. J Colloid Interface Sci 2022; 628:910-923. [PMID: 35963176 DOI: 10.1016/j.jcis.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
In this work, nitrogen-doped carbon dots (NCDs) were introduced in different existent sites of titanate nanotubes (TNTs) by a facile synthesis, and their effects on surface potential, photoelectrochemical properties and simultaneous removal of coexisted Cu2+ and norfloxacin (NOR) performance in water were systematically investigated. Constructed NCDs-TNTs composite displayed superior performance towards the adsorption (ion exchange/coordination) of Cu2+ and adsorption-oxidization of NOR over the two individuals, mainly benefiting from the collaboration of NCDs in different existent states. The existence of TiNH chemical linkage was identified between TNTs and NCDs-OT (NCDs on the outer surface of TNTs), which not only modulates the surface potential to favor the external diffusion of Cu2+ or NOR+ from aqueous solution to the negatively charged NCDs-TNTs, but also facilitates the intraparticle transfer of contaminants to the reactive sites. In addition, the up-conversion light property of NCDs-OT and the interstitial NCDs-IT (NCDs on the inner surface of TNTs) doping in TNTs interact together to enable NCDs-IT-TNTs to fully absorb and utilize all visible light. The photoexcited electrons were further trapped by NCDs-OT to promote the photogenerated carrier separation. Adsorbed Cu2+ could also improve the performance of NCDs-TNTs toward NOR oxidization, mainly owing to the self-synchronous doping of adsorbed Cu2+ broadening light absorption area and acting as mediators for delivering electrons. This work provides unique insights into the structural design of composite materials for such combined contamination remediation in water.
Collapse
Affiliation(s)
- Li Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hanpei Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Haibo Yu
- Institute of Big Data and Visual Computing, North University of China, Taiyuan 030051, China
| | - Qiangshun Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|